Evaluation of Microstructure and Mechanical Properties of Ti6Al4V/(WC-Co) Friction Welds

M. Shamanian, A. Saatehi, M. Salehi, T.H. North
Department of Materials Engineering, Isfahan University of Technology
Department of Metallurgy and Materials Engineering, University of Toronto, Canada

Abstract: The metallurgical and mechanical properties of Ti6Al4V/(WC-Co) friction welds have been investigated. The microstructure close to the bondline comprised a mixture of acicular and equiaxed α + β phases. The diffusion of elements in the welded specimens has been detected. The fracture strengths of Ti6Al4V/(WC-Co) friction welds markedly improved when the cobalt content in the (WC-Co) carbide substrate increased.

During the three-point bend testing of Ti6Al4V/WC-6 wt.%Co welds, the crack initiated at the bondline region at the periphery of the weld and then propagated into the brittle (WC-6 wt.%Co) substrate, while with the Ti6Al4V/WC-11 wt.%Co and Ti6Al4V/WC-24 wt.%Co welds, the crack initiated and propagated at the bondline region.

Keywords: Friction welding, Ti6Al4V alloy, Cemented tungsten carbide, Microstructure, Fracture strength
از شاخص‌های مهم تیتانیم و آلیاژهای آن، نسبت استحکام به وزن باید مقاومت خوردگی عالی، مقاومت خراب در دمای بالا و زیست سازگاری با سطح سایر بدن است [1] و بندهای لحاظ از ترانای کاربردی بسیار بالایی در تکنولوژی هوا - فضا، صنایع شیمیایی، صنایع خودروسازی، صنایع دیاینی و مهندسی پزشکی برخوردند [2].

از طرف دیگر، مقاومت ضعیف تیتانیم و آلیاژهای آن در ترپوسیمتر که ناشی از همبستگی با خاصیت گریزی در اتصال‌های آلیاژی (WC-Co) کاربرد نگرفته است. از این رو روش‌های انرژی و دمای آلیاژ که از آن بستگی دارند، مورد استفاده قرار گرفته است.

2- روش تحقیق
در این تحقیق از دو نوع های تیتانیم و کاریبید تکثیف کلایت (WC-Co) با ضایع 11/8/Nm الماس انجام شده است. به دلیل آن که در آلیاژ‌های تیتانیم، آلیاژی Ti6Al4V از همه پیشرفته‌تر است و مورد استفاده قرار می‌گیرد، لذا این نوع آلیاژ تیتانیم به عنوان یکی از قطعات جوشکاری اصلی در ترکیب تیتانیم استفاده شده است. استفاده کردن گره‌های شیمیایی Ti6Al4V و Sیاکوت در حالات متفاوت در شکل (1) نشان داده است. تحقیق مکانیکی آن در حالات ایالی انجام شده است. تحقیق مکانیکی آلیاژ مشکل از فاز آلیاژ آلیاژ آلفا در زمان و شبکه ای تقطیری بسته از (α+β) است.

از کاریبید تکثیف کلایت (WC-Co) نیز سه نوع شماول (تیمر) که در حالت 11 و 24 و درصد تمیز کلایت استفاده شده است. از ساختن آلیاژی که در سه نوع کاریبید تکثیف-کلایت در شکل (2) ارائه شده است. ضریب انبساط آلیاژی Ti6Al4V و Sیاکوت درحالات آن در جدول (2) آورده شده است.
سطح نمونه‌های تیتانیم قبل از جوش‌کاری عمود بر مقطع طولی مشابه‌کاری شده و انحراف نمونه‌ها از محور عمودی کمتر از 1 درجه است. نمونه‌های کاری که تیتانیم کتابته شده‌اند نیز در آماده سطح مقطعی دارند که مسطح و انحراف کمتر از 1 درجه نسبت به محور عمودی نیستند. نمونه‌های تیتانیم نسبت به دسته‌های کربن که 1200 سانتی‌متر زنده هم نمونه‌های تیتانیم و هم نمونه‌های کاری تیتانیم کلکتها با استفاده از خمیر عالی 1 پوشی شده اند.

به منظور ارزیابی زری سطح نمونه‌ها از سطح زبری بینه استفاده شده و زبری سطح در گذره‌های 1/100–1/13 μm به نظر می‌رسد. برای جوش‌کاری اصطکاکی از یک مشابه جوش‌کاری اصطکاکی مدار استفاده شده است. فشار اصطکاکی در گستره 10 تا 60 MPa، زمان جوش‌کاری اصطکاکی در گستره 0 تا 4 ثانیه، فشار فروج (Pf) در گستره 300 تا 1500 MPa، زمان فروج 5 ثانیه و سرعت حرکت 1000 دور بر دقیقه انتخاب شده اند. انتخاب پارامترهای یپهنه جوش‌کاری بر اساس ابراز نمونه در فواصل مشترک عدم شکست ذرات کربن تنش‌ها و حصول خواص مکانیکی مطلوب به عمل آمده است.

برای بررسی متالوگرافی نوری و میکروسکوپ الکترونی رویش (SEM)، ابتدا مقاطعی از جوش عمود بر وضعیت جوش با استفاده از دستگاه بررسی با تغییر الماس تهیه شده است. [7]
جدول 1- ترکیب شیمیایی آلیاژ تیتانیم Ti6Al4V و سه نوع کاربرد تکنیک یکالت [10]

<table>
<thead>
<tr>
<th>Ti</th>
<th>H</th>
<th>N</th>
<th>C</th>
<th>Si</th>
<th>Fe</th>
<th>V</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>افزایش</td>
<td>0/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد وزنی</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2- ضریب انقباض گرمایی آلیاژ تیتانیم Ti6Al4V و سه نوع آلیاژ

<table>
<thead>
<tr>
<th>ضریب انقباض گرمایی (μm/m.K)</th>
<th>نوع آلیاژ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/30</td>
<td>Ti6Al4V</td>
</tr>
<tr>
<td>1/3</td>
<td>WC-6wt.% Co</td>
</tr>
<tr>
<td>1/4</td>
<td>WC-11wt.% Co</td>
</tr>
<tr>
<td>1/5</td>
<td>WC-24wt.% Co</td>
</tr>
</tbody>
</table>

شکل 3- طرح ساده ای از آزمایش خم شکست نمونه

پس از ان煨 نمونه های تهیه شده به روش استاندارد سبیده ذبیح و به کمک خمیرهای الماسی پولیش شده اند [6]. کارهای پولیش کردن شامل استفاده از خمیرهای الماسی با اندازه ذرات 25- 40 μm برای پولیش اولیه، خمیرهای الماسی با اندازه ذرات 5-8 μm برای پولیش ثانویه و خمیرهای الماسی با اندازه ذرات کمتر از 2 μm برای پولیش نهایی است. پس از پولیش کردن نمونه ها با آب شستشو و سپس استر زده شده اند.

برای آزمایش شکست، نمونه های جوشکاری شده از محلول شیمیایی 5 میلی لیتر اسید هیدروفلوریک (HF) و 5 میلی لیتر اسید نیتریک (HNO3) و 95 میلی لیتر آب به مدت 5 ثانیه استفاده شدند [9]. محلول اج کردن شکست کاربردی (K2Fe(CN)6) برابر 10 گرم فسفرات پانسیم (KNO3) و 100 میلیلیتر آب و 5 گرم هیدروکسید نیترات (NaOH) مدت زمان اج کردن 3 ثانیه است [8]. بررسی میکروسکوپی نوری و میکروسکوپ الکترونی در هر مورد استفاده به عمل آمده است.

در این پژوهش به منظور ارزیابی خواص مکانیکی و موضع اتصال از آلیاژ‌های خم شکست نمونه استفاده شده است. طرح ساده ای از این آلیاژ در شکل (3) نشان داده است.

\[\sigma_f = \frac{8FL}{n \varrho} \]

\(\sigma_f \) (MPa) نشان دهنده نیروی لازم برای شکست نمونه است. \(F \) (N) نیروی لازم برای شکست نمونه. \(L \) (mm) فاصله بین دو نگاه. \(d \) (mm) قطر نمونه.
شکل 4- ریزساختار موضوع اتصال جوش اصطکاکی Co (مرکز اتصال).

1-3- ریزساختار جوش‌های اصطکاکی Ti6Al4V/WC-Co

نمونه ای از ریزساختار میکروسکوپی جوش‌های اصطکاکی آلیاژ تیتانیم با Co در شکل (۴) ارائه شده است. شکل (۴) نشان دهنده فصل مشترک صفحه ای در موضوع اتصال می‌باشد. در ضمن، جوش‌های اصطکاکی مواد غیر مشابه در لحظات اولیه تماس، یکسری اتصالی بین سطح واقعی تماس تیتانیم می‌شود. در حرکات بعدی این اتصالات در عمفی از فصل مشترک در ماده نرم‌تر (آلیاژ تیتانیم) شکسته شده و باعث اتصال ماده ای، که سطح به سطح دیگر

می‌شود [11]. به این علت وجود ذرات سنگ در سطح WC در شکل تگتیس - کبالت می‌تواند باعث ایجاد پدیده خیس خوردن در سطح تیتانیم شود [11]. تکمیل فصل مشترک صفحه ای در موضوع اتصال پانجر آن است که در طی فرآیند جوش‌کاری اصطکاکی یک لایه کاملاً خمیری در فصل مشترک ایجاد شده است. به دلیل آنکه آلیاژ تیتانیم دارای تنن سیلان کنترل نیست به کاریتی تگتیس - کبالت می‌باشد، تقییت نمایی تغییر شکل در فصل مشترک رخ داده ولی خمیری را در فصل مشترک ایجاد می‌کند. مشابه چنین رفتاری را می‌توان در جوش‌های اصطکاکی فولاد دنک نزن 304 و کرومیت آلومینیم حاوی ذرات استحکام پخش SiC مشاهده کرد [13].
تغییر شکل بلاتیستیک به واقعی در این آلیاژ رخ خرابه داد. در این پژوهش دمای منطقه تغییر شکل بلاتیستیکی بالاتر از دمای استحالة β بوده است. زیرا اگر در این منطقه بالاتر از دمای استحالة β بود، در این منطقه استحالة نازی رخ می‌داد. اما مدرک محاسبه استحالة نازی در این منطقه مطابق است. در شکل (6) می‌توانیم در مواد اتصال جوش Ti6Al4V/WC-2A وTi6Al4V که برای گسترش شکل قابل‌شدن شکل گرفته شده است. با توجه به این شکل نفوذ نسبی تبادل تیتانیوم و کبالت در فصل مشترک اتصال قابل مشاهده است. با توجه به ترکیب تیتانیوم و کبالت در دمای 990 °C و Ti6Al4V و کاربرد تغییرات دمای Ti6Al4V بالاتر از 960 °C به دلیل اینکه در دمای 960 °C بالای دمای تبادل مغناطیسی تبادل تیتانیوم و کبالت در دمای بالا مشاهده شده است. با توجه به نوسان فاز سیستم Ti-Co شکل (7) با این شکل که تبادل کبالت و تیتانیوم در فصل مشترک اتصال به وجود آورده و وجود ترکیبات بین ترکیبات یک طرفه ای بر کیفیت جوش‌های اصطکاکی مؤثر می‌باشد [16]. به نحوی ارزیابی احتمال ترکیبات بین فلزی در فصل مشترک اتصال مستحکم‌تر از اولیه می‌باشد. پیشرفت‌های XRD در سطح مقطع شکست اتصالات در سمت تبادل انجام گرفته است. از لحاظ تغییر شکل β این است که در مورد جوش‌های اصطکاکی آلیاژ تبادل با کاربرد آزمایش گرفته شده حاصل 24 درصد کیت‌تین نمایشگر جوش از فصل مشترک اتصال شکست شده است. این تغییرات شکست اتصالات Ti6Al4V/WC-11 ما توجه به شکل 4 دیده می‌شود که در دمای مجاور مواد اتصال (شکل 1) خرابه‌های خودکاری، تبادل مغناطیسی و تغییرات شکل در فاز F و تغییرات شکل F و سپس در اثر سردر شدید نموده می‌شود در هوا F سردره سوزی در منطقه های جوانه زده و غیر وریدیم به دلیل بالاترین میزان وریدیم F و سپس در F اولیه می‌باشد. بررسی‌های با دمای اصلی میزان تغییرات اصطکاکی Ti6Al4V/760 °C حدود 800 °C سردر شکست استحالة F این می‌باشد.

استحالة F از F از فریش سوزی و هم‌کاری همکاری با F مجموعه. از F استحالة F از فریش سوزی و هم‌کاری همکاری با F مجموعه. از F استحالة F از فریش سوزی و هم‌کاری همکاری با F مجموعه. از F استحالة F از فریش سوزی و هم‌کاری همکاری با F مجموعه. از F استحالة F از فریش سوزی و هم‌کاری همکاری با F مجموعه. از F استحالة F از فریش سوزی و هم‌کاری همکاری با F مجموعه. از F استحالة F از فریش سوزی و هم‌کاری همکاری با F مجموعه. از F استحالة F از فریش سوزی و هم‌کاری همکاری با F مجموعه. از F استحالة F از فریش سوزی و هم‌کاری H از فریش سوزی و هم‌کاری H از فریش سوزی و هم‌کاری H از فریش سوزی و H از فریش S
[ن] Ti-Co
دیاگرام نیترید
درصد های مذکور
جدول 1

[ن] Ti-Co
[ن] Ti-Al

[ن] Ti-Al

[ن] Ti-Al

[ن] Ti-Al

[ن] Ti-Al

[ن] Ti-Al

[ن] Ti-Al
شکل 7- آزمایش پراش پروپاکس (XRD) بر سطح منطقه شکست چوش

تنگکننده Ti6Al4V/WC-Co

این کامپوزیت Ti6Al4V/WC به علت ترکیب شیمیایی و جرم ارزشی Ti6Al4V/WC-Co می‌تواند، لذا امکان وجود یک آزاد در تنگکننده Ti6Al4V/WC-Co کتالیز و دارای (TiC) ترکیب شیمیایی آلیاژ Ti6Al4V جدول (1) نشان می‌دهد که مقداری کریک در این آلیاژ وجود دارد. کریک آزاد موجود در تنگکننده Ti6Al4V/WC-Co کتالیز و تنگکننده Ti6Al4V/WC-Co ترکیب شیمیایی آلیاژ Ti6Al4V/WC-Co صحت مطالعه XRD را نشان می‌دهد.

W (s) + C (s) = WC (s) ΔG° = -38000-8.4 T J/mole. K (500-1300 K)
Ti (p) + C (s) = TiC (s) ΔG° = -186606+13.22 T J/mole. K (1150-2000 K)

برای مثال دمای 1000°C (1733 K) مقدار آنزیمی

آزاد تشکیل TiC و WC به ترتیب برای این است:

آزاد تشکیل TiC و WC به ترتیب برای این است:

1878 KJ/mole و 487 KJ/mole

می‌توان که منجر به در شیمیایی بیشتری در مقایسه با تنگکننده Ti6Al4V/WC-Co کتالیز می‌شود. بنابراین ترکیب (TiC) می‌شود. با توجه به ترکیب مکانیکی مکانیکی و ترکیب (TiC) به داخل کتالیز ترکیب Ti6Al4V/WC-Co کتالیز و تنگکننده Ti6Al4V/WC-Co به ترتیب این آزاد در منطقه شکست چوش در زمینه کاریابی تنگکننده کاریابی (TiC) است. در مقایسه با شیمیایی برداشت.
جدول ۳: استحکام شکست جوشه‌ای اصطکاکی (MPa)

<table>
<thead>
<tr>
<th>نوع اتصال</th>
<th>استحکام شکست (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti6Al4V/WC- 6 wt. Co</td>
<td>۱۵ (۴۰۰)</td>
</tr>
<tr>
<td>Ti6Al4V/WC- 11 wt. Co</td>
<td>۱۶ (۴۰۰)</td>
</tr>
<tr>
<td>Ti6Al4V/WC- 24 wt. Co</td>
<td>۱۷ (۴۰۰)</td>
</tr>
</tbody>
</table>

کیفیت تایل قابل ملاحظه‌ای ای بر افزایش استحکام شکست اتصالات دارد که نمایی از دو مورد زیر است:
- بررسی‌هایی انجام شده، در ذریعه مواد انعطاف‌پذیر ترداشت نمایان می‌نماید که رشد تکریک در فصل مشترک اتصال در ضمن آزمایش‌های مکانیکی مستمر بین زنده و تشکیل ریط‌هایی در ماده انعطاف‌پذیر است [18]. افزایش درصد کیفیت در زینه کاربید تگنجنس - کیفیت باعث افزایش تمدید پایه‌ها و لذا کند شدن سرعت رشد تکریک خواهد شد. بنابراین با استحکام شکست جوشه‌ای اصطکاکی Ti6Al4V(WC-Co) افزایش درصد کیفیت مورد ذیل در زینه کاربید تگنجنس - کیفیت افزایش خواهد یافت.

کیفیت اتصال دارای کمترین استحکام شکست باشد:
- نتایج آزمایش خمش سه نقطه‌ای جدول (۳) بیانگر آن است که اتصال Ti6Al4V/WC-6 wt.%Co افزایش شکست است. با افزایش درصد کیفیت در زینه کاربید تگنجنس - کیفیت باعث دلیل افزایش هَمرگی شکست آن و ممکن است کاهش قدرت آنتی میزان پیماید. بنابراین موارد افزایش قدرت آنتی میزان Ti6Al4V(WC-Co) در موضع اتصال، استحکام شکست اتصالات به‌طور میانگین برای مدل‌های تکرسی نا ۸/۸ MPa, m ۱/۲ تا ۲۰/۲ MPa, m ۱/۲ و همچنین کاهش قدرت آنتی میزان پیماید. بنابراین موارد افزایش قدرت آنتی میزان Ti6Al4V(WC-Co) در موضع اتصال، استحکام شکست اتصالات به‌طور میانگین برای مدل‌های تکرسی نا ۸/۸ MPa, m ۱/۲ تا ۲۰/۲ MPa, m ۱/۲ و همچنین کاهش قدرت آنتی میزان پیماید. بنابراین موارد افزایش قدرت آنتی میزان Ti6Al4V(WC-Co) در موضع اتصال، استحکام شکست اتصالات به‌طور میانگین برای مدل‌های تکرسی نا ۸/۸ MPa, m ۱/۲ تا ۲۰/۲ MPa, m ۱/۲ و همچنین کاهش قدرت آنتی میزان پیماید. بنابراین موارد افزایش قدرت آنتی میزان Ti6Al4V(WC-Co) در موضع اتصال، استحکام شکست اتصالات به‌طور میانگین برای مدل‌های تکرسی نا ۸/۸ MPa, m ۱/۲ تا ۲۰/۲ MPa, m ۱/۲ و همچنین کاهش قدرت آنتی میزان پیماید. بنابراین موارد افزایش قدرت آنتی میزان Ti6Al4V(WC-Co) در موضع اتصال، استحکام شکست اتصالات به‌طور میانگین برای مدل‌های تکرسی نا ۸/۸ MPa, m ۱/۲ تا ۲۰/۲ MPa, m ۱/۲ و همچنین کاهش قدرت آنتی میزان پیماید. بنابراین موارد افزایش قدرت آنتی میزان Ti6Al4V(WC-Co) در موضع اتصال، استحکام شکست اتصالات به‌طور میانگین برای مدل‌های تکرسی نا ۸/۸ MPa, m ۱/۲ تا ۲۰/۲ MPa, m ۱/۲ و همچنین کاهش قدرت آنتی میزان پیماید. بنابراین موارد افزایش قدرت آنتی میزان Ti6Al4V(WC-Co) در موضع اتصال، استحکام شکست اتصالات به‌طور میانگین برای مدل‌های تکرسی نا ۸/۸ MPa, m ۱/۲ تا ۲۰/۲ MPa, m ۱/۲ و همچنین کاهش قدرت آنتی میزان پیماید. بنابراین موارد افزایش قدرت آنتی میزان Ti6Al4V(WC-Co) در موضع اتصال، استحکام شکست اتصالات به‌طور میانگین برای M (MPa)

\[\sigma = \Delta a. \Delta T \frac{E_1 E_2}{E_1 + E_2} \]
شکل 8- جوش اصطکاکی WC-6 wt.%Co و Ti6Al4V
الف- سطح شکست WC-6 wt.%Co و Ti6Al4V
ب- میکروسکوپ الکترونی نشان دهنده مسیر رشد ترک
ج- سطح شکست جوش اصطکاکی در سمت تیتانیم (در قسمت شروع رشد ترک)
د- سطح شکست جوش اصطکاکی در سمت تیتانیم (در قسمت نزدیک به مرکز اتصال).

به ترتیب در قسمت شروع ترک (قسمت محیطی اتصال) و در مرکز اتصال نشان داده شده است.

Ti6Al4V/WC-6 wt.%Co در مورد جوشهای اصطکاکی در ضمن آرایش خمش ترک Ti6Al4V/WC-24 wt.%Co در فصل مشترک اتصال جونه زده و رشد می‌کند. در شکل (9) سطح شکست در سمت تیتانیم و کاربید تکسست- کیالت

(3-2-3) بررسی سطوح و مقاطع شکست Ti6Al4V/WC-6 wt.%Co در مورد جوش‌های اصطکاکی در ضمن آرایش خمش سطح شکست (الف-گ) و (ب) ترک در فصل مشترک اتصال جونه زده و سپس به سمت زمینه کاربید تکسست- کیالت رشد می‌کند. در شکل (8-گ) و (8-د) سطح مقطع شکست جوش در سمت تیتانیم

استقلال، سال 1381، شماره 2، اسفند 1381
ضرایب ابزار گرماپی، استحکام شکست اتصالات تیرانی با کاریبید تکست - کیالت کاهش می‌یابد. با توجه به اینکه حداکثر مقادیر تنش‌های پسماند گرماپی از نوع کشش در قسمت محیطی موقعیت اتصال به داخل زمینه کاریبید تکست - کیالت می‌باشد، نشان‌برای انتظار می‌رود که منطقه شروع شکست (ایجاد ترک) در قسمت محیطی فصل مشترک اتصال در مسیر شروع اتصال‌کاریبیدی آوردته شده است.

وجود تنش‌های پسماند گرماپی تأثیر قابل ملاحظه‌ای بر استحکام شکست اتصالات مواد غیرشیبی و منطقه شروع ترک خواهد داشت. همان طور که در قیال توضیح داده شده با افزایش میزان تنش‌های پسماند گرماپی به دلیل افزایش اختلاف...
با کاریک تکنست-کیالت باشد. با توجه به شکل‌های (8 و 9), دمی شدید که در سطح آزمایش خم‌ترک در فصل مشترک اصل جوانه ذوب و در نهایت نمونه کاریک تکنست-کیالت حاوی 11 درصد وزنی کیالت به سمت آن کاریک رو نواخته کرد. در حالت که در نهایت نمونه های کاریک تکنست-کیالت حاوی 11 و 24 درصد وزنی کیالت در فصل مشترک رشد کرده است.

در انتقال Ti6Al4V/WC-6 wt.%Co اتحادیه می توان نشی در انتقال Ti6Al4V/WC-6 wt.%Co را کمک کند که مشترک داشته و جمعیت مشترک باعث بروز این اتصالات در زمان کاریک تکنست-کیالت در مقیاسی با در نوع اتصالات دیگر پس از آلیاژ با کاریک تکنست-کیالت حاوی 11 و 24 درصد Ti6Al4V/WC-6 wt.%Co دارای پیشترین اختلاف در ضرایب اندازه‌گیری با Ti6Al4V/WC-6 wt.%Co بوده و این سبب بوده افزایش چربسی و حملات گاز‌هایی از نظر مشترک در آن کمک می کند.

با توجه به آنکه در هنگام آزمایش خم‌ترک در فصل مشترک باعث بروز این اتصالات در زمان کاریک تکنست-کیالت رشد یک ترکیب به نسبت G/G₁ در داره جایی که نرخ انرژی آزاد شده ۶ لازم برای بروز ترک در فصل مشترک است. در حالت که در نهایت نمونه‌ها در فصل مشترک باعث خروه ماده آری این نسبت یک برابر گزینه نسبت G/G₁ باشد، جایی که انرژی شکست زیسته و انرژی شکست در فصل مشترک Ti6Al4V/WC-6 wt.%Co کیالت رشد کرده است لذا احتمالاً در این حالت کیالت از بروده، در خانه که جوش‌های اصلی Ti6Al4V/WC-24 wt.%Co و Ti6Al4V/WC-11 wt.%Co نسبت G/G₁ بر یک برابر گزاره این کیالت است.

پیشین سطح شکست جوش‌های اصلی Ti6Al4V/WC-6 wt.%Co
جوش‌های اسٹالکاکی (Ti6Al4V/WC-Co) در حدی بوده که نمونه‌ی تیتانیم وارد Ti6Al4V/WC-Co مورد بررسی قرار گرفته است. نتایج اصلی یک پژوهش عبارتند از:

1- با استفاده از روش جوش‌کاری اسٹالکاکی می توان کلایر ای آی از کاربردی تکنیک را بر سطح آلیاژ Ti6Al4V به منظور بهبود خواص تریپلیکی آن ایجاد نمود. روش مذكور سبیلاری از محدودیت‌های روش‌های مدارال نظری محدودیت‌ی ضخامت در روش اسیری گرمایی را ندارد.

2- فصل مشترک جوش‌ها به صورت صحنه ای بوده و آناری از مخلوط شدن مکانیکی و تغذیه منقابل را می‌توان مشاهده کرد. ریز ساختار آلیاژ Ti6Al4V در مجاورت موضع اتصال مجموعه ای از فریب سوزنی و هم محور همه با فاصله بافت است.

3- بررسی‌های ریز ساختاری نشان می‌دهد که دما در فصل مشترک اتصال در طی فرایند جوش‌کاری اسٹالکاکی

واژه تامه

Mراجع

6. شمعانیان، م. جوش‌کاری اسکالکاکی تیتانیم/کربود کاری تکنیک کیالات و ارزیابی خواص اتصال، رساله دکتری مهندسی مواد، دانشگاه صنعتی اصفهان، 1389.

استقلال، سال 21، شماره 2، اسفند 1381

