کاربرد فلوتاسیون در پر عباسی ذرات ریز کانسگنها ی کم عیار مغنز

موجر اولیاژاده، محمد نحو پرست، و رضا دهنکان سمکانی
گروه مهندسی معدن، دانشگاه فردوسی مشهد
(دریافت مقاله 80/8/70، دریافت نسخه نهایی: 80/13/22)

چکیده - کاربرد روشهای تحلیل در پر عیار سازی کانسگن کم عیار مغنز و تازه در جایی درک آورده‌است. مقاله حاضر به آنالیز و بررسی نتایج حاصل از فلوتاسیون نرم‌های مغنز و کاربرد روشهای تازه‌آمیزی مناطقی فلوتاسیون به منظور پر عباسی‌سازی بخش ابعادی ۱۵۰ میکرون کننده کم عیار و تازه‌آمیزی پایه‌ای است. نتایج آزمایش‌های فلوتاسیون، بهبود و مکوس و با استفاده از دراهام‌های طراحی‌یافته مختلف نشان داد که پرسیون‌های کم عیار سازی ذرات نرم کانسگنها مغنز به روش فلوتاسیون، در شرایط مداراوی از نظر غلظت کلینک و دمای محیط امکان‌پذیر نیست و این عملکرد می‌تواند با یکسان به استفاده‌های دیگری پیوسته مسیر یابد.

در این تحقیق با انجام تزریق روشهای فلوتاسیون مستقیم و جدایی مناطق مناسب دارای ریزتر از ۱۵۰ میکرون با کفیفیت ۳۷/۲/۴۵ مس= ۸/۵۴، Mn=۸/۲۳۶، Fe=۲۳/۲/۳ میکروها و SiO=۲/۲۳/۲/۳ میکروها / هم‌ارزی پژوهشی پر عباسی سازی ۱۱۱/۲/۷۱ درصد مغنز، ۹۹ درصد سیلیس و ۱/۲ درصد آسید اه و باریک اندازه دارند. در این سلسله آزمایش‌ها به‌طور دوباره عملکرد و افراشگشایی کفیفیت محصول را به دنبال داشت.

واژگان کلیدی: کان آرایی، فلوتاسیون، مغنز، معدن و تازه

Processing of Low Grade Fine Manganese Ore Using Flotation Method

M. Oliazadeh, M. Noaparast, and R. Dehghan Simakani
Department of Mining Engineering, Faculty of Engineering
University of Technology

Abstract: Application of gravity and magnetic separation methods to upgrade low grade Manganese ores from Venaj Mine has been reported elsewhere. This paper discusses the results of flotation tests, as well as combination of flotation and magnetic method to concentrate fine particles (less than 150 microns) of manganese ore. Results obtained from various direct and reverse flotation tests, using different types of reagents, indicated that manganese fines can not easily be concentrated by flotation. In this investigation, combination of direct flotation and magnetic separation for fine particles (finer than 150 microns) with 8.36% Mn, 34.11% SiO₂, 23.05% Fe₂O₃, yielded a manganese concentrate with 26.78% Mn, 11.64% SiO₂, 20.37% Fe₂O₃ and 56% recovery. Desliming 10-15 micron particles prior to flotation tests improved product quality and the recovery.

Keywords: Mineral Processing, Flotation, Manganese, Venaj Mine.
فلاتاسیون امولسیونی با اکرولارسیون سرای پرپیار سازی
کانهایی با باطله سیلیس، کلسیم، زئس، باریت و رس بتنوئی
استفاده می‌شود. در اینفرابتپس از آماده سازی کانه با حضور
کربنات سدیم در حضور pH خورده 8 و با حضور خورده 8 اکسید گردوگن و
امولسیون از نشان دهنده کف ساز صابونی و کیک عامل
سولفاتین‌های کلی - آریل و تحت حمایت با شدت زیاد، عملیات
شاورسازی صورت می‌پذیرد. مقاوض مصرف این داروهای
شیمیایی حدود 135 کیلوگرم در تن شکر است [1].
شاورسازی وردوروزیت (کربنات منگنز) معمولاً به
آسانی انجام می‌شود و اغلب فلاتاسیون به عضوی روش پرپیار
سازی این کانی معرفی می‌شود. در کارگاه‌های فلاتاسیون کربنات
منگنز در آتلاکوا، هرنه فلاتاسیون وردوروزیت معمولاً هرنه
فلاتاسیون سروب و روز در طول‌های باری برآورد شده است.
شاورسازی اکسید منگنز در حضور دوام سولفاتین و
دوام آلی (کلکترزیت، کامپونتي) ناشی از ماده
کلاکرواستاتیکی قبلاً می‌تواند و دیگر در محدوده اسیدی و
قابلیت انجام شده است. بررسی رفتار پرپیازیت در حضور
اولات سدیم نشان داده است، که این کانی در حضور pH
4 و شاور می‌شود که به ترتیب بر اثر جذب کلاکرواستاتیکی
و جذب شیمیایی اولات بر روی سطح این کانی می‌باشد.
کلکترزیت ۱۰ و اسیدهای چرب بنیا (از
طرف شکست سیلیسیاده) برای شاورسازی اکسیدهای منگنز
می‌تواند مورد استفاده قرار گیرد برای فلاتاسیون
کربنات منگنز در کربنات اکسیدهای منگنز در کربنات
شکل‌دهی دریافت، و ممکن است از آن تهیه شده. مطالعات
کانی شش از طریق مطالعات میکروسکوپی محلول نازک و
صرفی، دیافراگم‌کنی پتروشیمی و نیز به وسیله میکروسکوپ

۱- مقدمه
بطور کلی فلاتاسیون کانه‌های اکسیدی در مقابله با
فلاتاسیون سولفاتین‌ها با میزانی به یکسان می‌باشد. ایستگاه‌ها
اصل مورد کانه‌های اکسیدی که اغلب به صورت اکسید یا
سولفاتین نیز کاملاً مصرف کلکترزیت در
فلاتاسیون اکسیدهای منگنز بالا بورده و در مواردی طی حدود (۲
tا ۵ کیلوگرم بر تن) می‌رسد و معمولاً یا باید مخلوطی از
کلکترزیت و سولفاتین استفاده شود [1]. کلکترزیت
کانه‌های منگنز از نظر قابلیت شاورسازی به دسته‌های زیر
تکمیل‌پذیر می‌شوند [2].
تکمیل‌پذیر

جدول ۱- تقسیم‌بندی کانه‌های مختلف منگنز از نظر شاورسازی

<table>
<thead>
<tr>
<th>شرایط فلاتاسیون</th>
<th>تام کانی‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاور می‌شوند.</td>
<td>رودوروزیت</td>
</tr>
<tr>
<td>پسرپیازیت، آلاینیت،</td>
<td>مشکل شاور می‌شوند.</td>
</tr>
<tr>
<td>پیرپیازیت، مگانیت</td>
<td>ب‌ن‌د‌ت‌ر شاور می‌شوند.</td>
</tr>
<tr>
<td>براونیت، رودوروزیت</td>
<td></td>
</tr>
</tbody>
</table>

کانه‌های منگنز از نظر قابلیت روش فلاتاسیون به دو گروه
تکمیل‌پذیر می‌شوند. گروه اول شامل کانه‌های با عضوی از
پیرپیازیت با میزانی ممکن به باطله کلسیم‌اند که با شاورسازی
کلسیت باطله‌ای نمی‌ذورند. اکسیدهای منگنز (فلاتاسیون مکروس) به دست
می‌آید. در این حالت، کانی در حضور pH حدود ۸ و با استفاده از (۵
tا ۲۳ کیلوگرم بر تن) کربنات سدیم و (۲۰ تا ۱/۴ کیلوگرم
بر تن) دکترتزن زرد اماده‌سازی شاور می‌شود و سپس فلاتاسیون
با (۵ تا ۵/۷ کیلوگرم بر تن) اسید اولیک انجام می‌شود. گروه
دو می‌باشد که با مقادیری کم از رس و سایر ترکیبات مولد نرم‌
همراهان و با شاورسازی کانه‌های منگنز قابل پرپیازیت
می‌شوند [3].

فلاتاسیون منگنز در واحد فروایری کیرکز نوادا نیز از

۲- مواد و روش‌ها
حدود 500 کیلوگرم نمونه سنگ منگنز کم عیار سنگ
شکل‌دهی دریافت. و ممکن است از آن تهیه شده. مطالعات
کانی شش از طریق مطالعات میکروسکوپی محلول نازک و
صرفی، دیافراگم‌کنی پتروشیمی و نیز به وسیله میکروسکوپ

استقلال، سال ۲۱، شماره ۲، اسفند ۱۳۸۱
جدول 2- عیار ترکیبات مختلف در فراکسیون‌های محدوده 150-250 میکرون

<table>
<thead>
<tr>
<th>عیار (%)</th>
<th>Fe₂O₃</th>
<th>SiO₂</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/26</td>
<td>27/24</td>
<td>11/12</td>
<td>75/150</td>
</tr>
<tr>
<td>19/34</td>
<td>24/14</td>
<td>9/19</td>
<td>10/28</td>
</tr>
<tr>
<td>8/38</td>
<td></td>
<td>7/19</td>
<td>38/28</td>
</tr>
</tbody>
</table>

*صقیله، دیفراکتومتری پرتو ایکس و نیز به وسیله میکروسکوب الکترونی انجام شد. نتایج نشان می‌دهد که با استفاده از متوسط جدب اتمی به دست آمده. پس از تعیین درجه آزادی کاتیون‌های مختلف از طریق مطالعه متقابل تهیه شده از محتوا مطلوب اینمودی، نمونه‌های مورد نیاز برای انجام آزمایش‌های اصلی آماده‌شده.

nmونو متوسط مورد استفاده برای انجام مطالعات پربردار
سازی با کم عیار مصنوعی و نوار ف chests. درای ترکیب شیمیایی،
SiO₂=31/23%, Fe₂O₃=18/44%, Mn=10/18% (Y)

نتایج نشان می‌دهد که با استفاده از متوسط جدب اتمی به دست آمده. پس از تعیین درجه آزادی کاتیون‌های مختلف از طریق مطالعه متقابل تهیه شده از محتوا مطلوب اینمودی، نمونه‌های مورد نیاز برای انجام این مطالعات دارای اصول و حاصل از مراحل تولید خردادی در دسترس شده.

آزمایش‌های فلوراتسیون کاتیون‌های متفاوت به روش مسقیم و
میکروسکوبی و با استفاده از سیستم آزمایش‌گاهی مخصوص و داروهای
شیمیایی مختلف انجام شد. آزمایش‌های مکروسکوبی با کلکتور
کاتیونی آماده‌تنی در حذف 8 همراه با متفق‌کننده
سیلیکات سدیم و کف سازه‌های اثر ترمومترهای
27-17 در حال آنجام مورد تردید کرایک و بدون آن انجام شدند.
آزمایش‌های فلوراتسیون مستقیم نیز با استفاده از کلکتورهای
Emery (مس) و Cleaveland (R-645) و شرایط محققی مختلف از نظر
PH و دما و کف سازه‌های مذکور در دو حالت با استفاده از محفظه کنتنده سیلیکات سدیم و بدون
استفاده از آن انجام شدند.

استقلال، شماره 21، شماره 1، اسفند 1381
جدول ۲ - تناوب آزمایش فلکتانیون معکوس بدون استفاده از بازدارنده

<table>
<thead>
<tr>
<th></th>
<th>توزیع (%)</th>
<th>عبارت (%)</th>
<th>درصد وزنی</th>
<th>نوع محصول</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>۲۸/۷۴</td>
<td>۲۸/۷۴</td>
<td>۷۶/۸۵</td>
<td>محصول شنوار</td>
</tr>
<tr>
<td>SiO₂</td>
<td>۲۷/۱۹</td>
<td>۲۷/۱۹</td>
<td>۷۶/۳۵</td>
<td>محصول شنوار</td>
</tr>
<tr>
<td>Mn</td>
<td>۱۰/۸۱</td>
<td>۱۰/۱۰</td>
<td>۳۷/۶۶</td>
<td>محصول غریتر</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۷۵/۸۷</td>
<td>۷۵/۸۷</td>
<td>۷۵/۸۷</td>
<td>جمع - متوسط</td>
</tr>
<tr>
<td>SiO₂</td>
<td>۷۴/۳۶</td>
<td>۷۴/۳۶</td>
<td>۷۴/۳۶</td>
<td>جمع - متوسط</td>
</tr>
</tbody>
</table>

جدول ۳ - تناوب آزمایش فلکتانیون معکوس با استفاده از بازدارنده کیراکو

<table>
<thead>
<tr>
<th></th>
<th>توزیع (%)</th>
<th>عبارت (%)</th>
<th>درصد وزنی</th>
<th>نوع محصول</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>۸/۷۶</td>
<td>۸/۷۶</td>
<td>۸/۷۶</td>
<td>شنوار اول</td>
</tr>
<tr>
<td>SiO₂</td>
<td>۷۷/۱۱</td>
<td>۷۷/۱۱</td>
<td>۷۷/۱۱</td>
<td>شنوار دوم</td>
</tr>
<tr>
<td>Mn</td>
<td>۱۰/۹۹</td>
<td>۱۰/۹۹</td>
<td>۱۰/۹۹</td>
<td>غریتر</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۷۶/۸۷</td>
<td>۷۶/۸۷</td>
<td>۷۶/۸۷</td>
<td>نرخ جدایی شده</td>
</tr>
<tr>
<td>SiO₂</td>
<td>۷۵/۸۷</td>
<td>۷۵/۸۷</td>
<td>۷۵/۸۷</td>
<td>جمع - متوسط</td>
</tr>
<tr>
<td>Mn</td>
<td>۷۴/۸۷</td>
<td>۷۴/۸۷</td>
<td>۷۴/۸۷</td>
<td>جمع - متوسط</td>
</tr>
</tbody>
</table>

(Emery 305)

جدول ۵ - تناوب آزمایش فلکتانیون مستقيم با گلکتور اسید چرب

<table>
<thead>
<tr>
<th></th>
<th>توزیع (%)</th>
<th>عبارت (%)</th>
<th>درصد وزنی</th>
<th>نوع محصول</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>۲۶/۳۳</td>
<td>۲۶/۳۳</td>
<td>۲۶/۳۳</td>
<td>محصول شنوار (pH=۸/۴)</td>
</tr>
<tr>
<td>SiO₂</td>
<td>۳۱/۷۸</td>
<td>۳۱/۷۸</td>
<td>۳۱/۷۸</td>
<td>محصول شنوار (pH=۶)</td>
</tr>
<tr>
<td>Mn</td>
<td>۸۷/۸۷</td>
<td>۸۷/۸۷</td>
<td>۸۷/۸۷</td>
<td>محصول غریتر</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۶۴/۰۷</td>
<td>۶۴/۰۷</td>
<td>۶۴/۰۷</td>
<td>نرخ ۸۶-۳۸ میکرون</td>
</tr>
<tr>
<td>SiO₂</td>
<td>۶۴/۰۷</td>
<td>۶۴/۰۷</td>
<td>۶۴/۰۷</td>
<td>جمع - متوسط</td>
</tr>
<tr>
<td>Mn</td>
<td>۶۴/۰۷</td>
<td>۶۴/۰۷</td>
<td>۶۴/۰۷</td>
<td>جمع - متوسط</td>
</tr>
</tbody>
</table>

کرارت، کلسيت، فلدسمیت‌ها و همانندی نلکست دارند. ترکیب شیمیایی فرآیند‌های موجود در محیط ۱۰۰-۱۰۰ یک میکرون در جدول ۲ ارائه شده است.

جدول ۶ - تناوب آزمایش فلکتانیون

آزمایش فلکتانیون معکوس بدون بازدارنده، با گلکتور آرماسی-۴۰ برای شاخص سازی کرارت در pH=۸ به میزان ۲۰۰۰ ۷۸۰۰ کمک می‌آورد.
جدول ۶- نتایج فلوتاپسیون مستقیم با کلکتور اولانث سدیم

<table>
<thead>
<tr>
<th>عصاره (%)</th>
<th>توزیع (%)</th>
<th>درصد</th>
<th>نوع محصول</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>SiO₂</td>
<td>Mn</td>
<td>Fe₂O₃</td>
</tr>
<tr>
<td>۲۰/۰۸</td>
<td>۳۸/۱۸</td>
<td>۱۹/۱۱</td>
<td>۲۸/۱۲</td>
</tr>
<tr>
<td>۳/۱۲</td>
<td>۳/۸۲</td>
<td>۴/۱۶</td>
<td>۱۷/۰۲</td>
</tr>
<tr>
<td>۲/۸۸</td>
<td>۴/۸۱</td>
<td>۱۰/۱۰</td>
<td>۲/۸۸</td>
</tr>
<tr>
<td>۱۰/۵۲</td>
<td>۳۸/۱۸</td>
<td>۱۵/۱۵</td>
<td>۲/۸۸</td>
</tr>
<tr>
<td>۴۱/۱۵</td>
<td>۶۵/۸۸</td>
<td>۳۰/۳۳</td>
<td>۲۰/۸۲</td>
</tr>
<tr>
<td>۲/۸۸</td>
<td>۳/۸۸</td>
<td>۱۰/۱۰</td>
<td>۲/۸۸</td>
</tr>
<tr>
<td>۷/۷۷</td>
<td>۷/۷۷</td>
<td>۷/۷۷</td>
<td>۷/۷۷</td>
</tr>
</tbody>
</table>

جمع - متوسط: ۱۰۰

ملاحظه: کانالهای منگژ در تخلیط آزمایشگاهی پیش از آزمایش در محصول شاور حاصل در pH=۱ می‌باشد. اما همچنان شاورسازی از عصاره آن در قیمت‌گذاری است.

میکروکرم توزیع ترشح نرمگه گیاهی در

در دو مرحله و در pH خشی نیز در جدول ۶ مشاهده می‌شود.

در این آزمایش نیز از ۲۰۰۰ گرمی از کلکتور آرموتی و از سیلیکات‌های بی‌تغییر عنوانه متنگ کننده انتخاب شد. نرمگه گیاهی به عنوان تغییر گیاهی انجام شد و با وجود به کارگیری کرایکه بر مریان ۴۰۰۰ گرمی بر تن (به منظور بارداری) کانالهای منگژ و انجام آزمایش فلوتاپسیون معکوس تا نمای pH دسته‌نمایی کنند.

فلوتاپسیون مستقیم با استفاده از کلکتورهای مختلفی انجام شد.

نتایج حاصل از آزمایش شاورسازی مستقیم با استفاده از کلکتور اسیده چرب (۳۰۵) که میزان ۱۰۰۰ گرمی بر تن و (Emery) از محدوده pH=۱۰ به سمت pH=۷ تغییر داشت و سپس با استفاده از کلکتورهای مختلفی انجام نشده.

در این آزمایش اولین شکست در فراکسپون-۲۸ میکروکرم قابل توجه بود که تحقیقات ضروری می‌تواند در هر یک از محدوده pH=۲ شاورسازی کانالهای منگژ انجام نشده.

است. در این آزمایش دیگر این با کلکتور اسیده أولویتی و در pH=۳ حسی در شاورسازی کانالهای کنسپیدش در سه با استفاده از کلکتورهای سدیم، شاورسازی کانالهای منگژ در اسیدی و باریک بررسی شد. پس از نرمگه گیاهی مواد pH=۲
جدول 7- نتایج حاصل از تریم گیری در محدوده 150- میکرون

	توزیع (%)	عبارت (%)	نوع محصول	وزنی تریم هیدروسیلوکن	سرراز هیدروسیلوکن	جمع - متوسط
Fe₂O₃	89/76	1/24	77/83	27/42	27/34	71/34
SiO₂	8/73	1/27	8/73	9/73	8/73	8/73
Mn	9/01	9/01	9/01	9/01	9/01	9/01

جدول 8- نتایج آزمایش منفاطیسی تریم هیدروسیلوکن

	توزیع (%)	عبارت (%)	نوع محصول	وزنی کنترل منفاطیسی	باطله غیرمنفاطیسی	جمع - متوسط
Fe₂O₃	49/69	51/31	51/32	48/72	48/72	48/72
SiO₂	53/53	47/47	47/53	52/47	52/47	52/47
Mn	9/01	9/01	9/01	9/01	9/01	9/01

تحت جدایی منفاطیسی قرار گرفتن سوزن آزمایش شناور سازی بر روی محصول منفاطیسی انجام شد. نتایج آزمایش منفاطیسی تریم هیدروسیلوکن در جدول 8 ارائه شده است.

منافع زیر و در دامنه 40 درجه سلسیوس انجام شد. محصول شناور این آزمایش پس از خشک کردن 20 گرم بود. فراپیش عبارت منگر آن در زیر میکروسکوپ به نظر مانده شد. پس از شستشوی کامل، عملیات شناورسازی مجدداً با استفاده از 500 گرم بر تن کلکتور 848-R و در دامنه 4 درجه سانتیگراد انجام شد. وزن محصول شناور این مرحله 5 گرم و دارای Fe₂O₃=9/9/9 ٪، SiO₂=10/7٪ و Mn=19/3٪ بوده است. لذا تحت این شرایط محصولی با عبارت منگر بوده است. این آزمایش منفاطیسی تریم هیدروسیلوکن به دست آمده است. نتایج آزمایش منفاطیسی تریم هیدروسیلوکن با استفاده از Fe₂O₃=9/9/9 ٪، SiO₂=10/7٪ و Mn=19/3٪ بوده است. این آزمایش منفاطیسی تریم هیدروسیلوکن به دست آمده است. نتایج آزمایش منفاطیسی تریم هیدروسیلوکن به دست آمده است.

شناور سازی این انجام 5- نتایج گیری

نتایج زیر از مطالعات پریور شناور سازی محدوده 150- میکرون کته کم عبارت منگر و نارنج به دست آمده است:

1. نمک گیری سواد موجود در این محدوده ابتدایی قبل از

استلال: سال 21، شماره 2، صفحه 1381
جدول ۲ - عیار ترکیبات مختلف در فراکسیون‌های محدوده ۵۰-۱۵۰ میکرون

<table>
<thead>
<tr>
<th>عیار (٪)</th>
<th>FeO_{2}</th>
<th>SiO_{2}</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۰/۱۶</td>
<td>۲۹/۳۲</td>
<td>۱۱/۱۲</td>
<td>-۱۵-۱۰۰</td>
</tr>
<tr>
<td>۱۹/۱۶</td>
<td>۲۵/۴۱</td>
<td>۹/۳۳</td>
<td>-۷۰-۲۸</td>
</tr>
<tr>
<td>۲۴/۸</td>
<td>۲۴/۸</td>
<td>۷/۱۹</td>
<td>-۲۸</td>
</tr>
</tbody>
</table>

تأثیر نرخ کریستال خوراکی فلزاتالسیون (که با استفاده از میکروسکوپ الکترونی شیمیایی نمونه متوازن نیز از استفاده از دستگاه جذب اتمی به دست آمد. پس از تغییر درجه آزادی کانالهای متغیر از طریق میانگین مقاومت نهایی شده از محدوده متغیر ابتدایی، نمونه‌های مورد نیاز برای انجام آزمایش‌های پری‌پزش استفاده شد.

نمونه متوازن مورد استفاده برای انجام مطالعات پری‌پژش سازی که می‌تواند وارد نرم‌افزار، در داسی ترکیب شیمیایی، SiO_{2}=۳۲/۱۰٪، FeO_{2}=۱۶/۴۴٪ و Mn=۱۵/۱۸٪ بود. بنابراین تغییر برشی‌ها، انجام شده در برای پری‌پژش سازی این نمونه با روشهای تفتی و متغیر از جای‌گیری دیگری آماده است (۷). نمونه مورد استفاده برای انجام این تحقیق، دارای ابعاد میکرون (موجود در نمونه اولیه و حاصل از مراحل قبلی خریداری) بود.

آزمایش‌های فلزاتالسیون کانالهای متغیر به دو روش مستقیم و مستقیم و با استفاده از سالز آزمایشگاهی دنور و داروهای شیمیایی مختلف انجام شد. آزمایش‌های مکرون با کلکتور کالیتیک (آرام-تسر) PH=۸ و مصرف کننده سیلیکات اسید و کف سازهای انت فرود -۷۷ و انت فرود -۷۷ در هر دو حالت با در داشتن کربن که به دنبال آن انجام شدند. آزمایش‌های فلزاتالسیون مستقیم نیز از استفاده از کلکتورهای Emery، سیلیکات سبز (۳۵0) و شرایط محیطی متغیر از تأثیر PH و دما و کف سازهای متغیر در دو حالت با استفاده از مقررات کننده سیلیکات سبز و بدون استفاده از آن انجام شدند.

استقلال، سال ۳۱، شماره ۲، اسفند ۱۳۸۱