تعیین ضرایب ظرفیت باربری خاک به کمک اجزای محدود مبتینی
بر مدل الاستیک- موهر کولمب

محمود وفیانی
دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان

دریافت مقاله ۷/۳/۱۳۸۸ - دریافت نسخه نهایی ۸/۱/۱۳۸۸

چکیده- با استفاده از یک برنامه رایانه‌ای اجزای محدود به نام AFEIA و به روش عددی، اکثراً در مدل ریس و مبتینی، نقطه شروع ضریب باربری خاک زیر بی‌بار بکار می‌رود. نقطه باربری خاک szp که به دست آمده با پیوسته، می‌تواند مطالعه دید که مبنی بر پس همین معیار انجام گرفته باشد. نقطه قابل قبول دارد ولی نسبت به نتایج بعنی به نظر یافته‌های سایر فاصله دارد و بستری به اعداد نظرسنجی (سرعه‌گی، وسیع، سوکولfad) و تحلیل "بر" و "زمین"، تغییرات است. با وجود این گر در افزایش تراکم خاک افزایش را به انسجام خاک در نظر گرفته‌ شود. محاسبه‌های حاصل از این مطالعه، به اعداد تحلیل‌های دیگر و به نتایج بعضی آزمایش‌ها ممکن است این مطالعه به کمک کلی‌تر حساس شود. این مطالعه به کمک صورت پذیر در مشابهت در سایر مسائل عوامل محدودی مشابه متغیر باشد زیرهای رابطه نشان می‌دهد.

واژگان کلیدی: ضرایب ظرفیت باربری خاک، اجزای محدود، موهر- کولمب

Evaluating the Soil Bearing Capacity Coefficients by Means of A Finite Element Program Based on Elasto-Plastic Mohr-Coulomb Behavior

M. Vafaeian
Department of Civil Engineering, Isfahan University of Technology

Abstract: A finite element program based on elastic-plastic model of Mohr-Coulomb criterion was used to evaluate the bearing capacity coefficients of soil under shallow strip flexible footing. The results were compared with others’ analytical results and it was found that the present study could offer quite consistent and rather precise values for the bearing capacity coefficients.
1- مقدمه

بحث طریف پاربری خاک زیر پی از اولین مباحث است که مورد توجه و مطالعه پژوهشگران حوزه مکانیک خاک قرار گرفته است، به طوری که الیاکی رابطه آن توسط ترزاگی [1] در سال 1943 ارائه شد:

\[q_{ul} = 0.5yB\gamma_n + cN_c + qN_q \] (1)

که در این رابطه، ضرایب \(y, N_n \) و \(y, N_q \) به تأمین ضرایب طریف پاربری خاک زیر پی و میزان تاکون انجه بطور غالب مورد بحث قرار گرفته است، تبعیض یا تصحیح مقادیر این ضرایب (محصوصاً ضریب \(y, N_q \) به‌ویژه است. آن‌ها از دیدگاه تاریخی می‌توان به مقادیر ماره‌ای (1950-1987 و 1975-1977) استرالیا که شرح مختصری از\[q_{ul} = 0.5yB\gamma_n + cN_c + qN_q \] (1)

2- اشاره مختصر به برنامه‌ریزی مورد استفاده

همان طور که اشاره شد، تمرکز اصلی درخت به بخش مهندسی عمران (مرکز پژوهش‌های زیرزمینی) دانشگاه صنعتی استرالیا توسعه یافته و یکی از مدل‌های مورد مقایسه آن مدل مدل‌های سه‌پایه و از مدل‌های مورد تحقیق به \(q_{ul} = 0.5yB\gamma_n + cN_c + qN_q \) به‌ویژه است. آن‌ها از دیدگاه تاریخی می‌توان به مقادیر ماره‌ای (1950-1987 و 1975-1977) استرالیا که شرح مختصری از

2- اشاره مختصر به برنامه‌ریزی مورد استفاده

همان طور که اشاره شد، تمرکز اصلی درخت به بخش مهندسی عمران (مرکز پژوهش‌های زیرزمینی) دانشگاه صنعتی استرالیا توسعه یافته و یکی از مدل‌های مورد مقایسه آن مدل مدل‌های سه‌پایه و از مدل‌های مورد تحقیق به

per the extraction and some new results obtained and discussed. The main conclusion can be summarized as:

the values of bearing capacity coefficients for any particular amount of friction angle should not be expressed as a single number solely dependent on the friction angle, but the accurate values must be considered as the values dependent on some other effective parameters, which have been mentioned above.

Keywords: soil bearing capacity, finite element, Mohr-Coulomb, shallow footing
شکل 1- سه نوع شیبی بندی کار برده شده در مطالعه حاضر. (الف) مدل شیبی بندی گرهی، (ب) چهارضلعی هشت، (ج) چهارضلعی با تمرکز زیر لبه.

با توجه به نوع مسئله که در شیبی بندی و مدل برمه قائم مورد بررسی است، کافی است که فقط نمای‌های مひとつی شاخه مدل شده در این مطالعه، فاصله مزی‌های محد شده است.
شکل 2- سه نوع توزیع بر روی عرض پی

این توزیع بر روی پی به صورت نیروهای گره در نظر گرفته شده، بنابراین در شکل مثلثی TR، بازه توسیع ۵ گره در نیم عرض پی (روی دو جزء) و در شکل مربعی QR بارها توسیع ۵ گره در نیم عرض پی (روی دو جزء) اعمال شده است.

این مطالعه، توزیع بر روی پذیرفته گره و در صورت آزمایش شده، عناصر علاوه بر توزیع یکپارچه که عملی است (شکل 2-الف)، توزیع‌های نابایندازی دینگری، مطابق شکل (2-ب) و (2-ج) مورد آزمایش قرار گرفت. علت انتخاب یک نوع توزیع یکپارچه که تقسیم بر گره‌ی روی گره و اساس دستورالعمل نرم افزار مورد استفاده که باید مطابق شکل (2-الف) باشد، انجام شد.

در نتیجه، مقدار بر گره‌ی بار توزیع یکپارچه به نسبت نشان داده شده در شکل (3-ب) و برای توزیع سه‌پهی‌های (RQ شکل) به کار برده شد و در مورد شرایط مزدرا بخش مدل شده، مزرعه‌های قلم در طرفی فقط در امتداد x محدود شده و در امتداد z آزاد است.

لازم به توضیح است که در ضمن محاسبات متعلق به محاسبات مورد به موه‌های فعّال qk ، k تأثیر تغییرات هر یک و E، V، E، V و Qk بار در هر مرحله مورد بررسی‌های اولیه قرار گرفت که به نتایج مقایسه‌آن اشاره خواهد شد.

4- ابعاد و کمیت‌هایی که تأثیر بر سه‌پهی‌های k

در این مطالعه، در ادامه مختلف عرض پی، بینی ۱/۰ متر و ۱/۲ متر (و در بعضی محاسبات به منظور مقایسه برابدار و ۱۲/۸ مسافت به ۱۲/۲ متر نیز) در شرایط کرن نویسی به کار برده شد. زاویه تسطیحات داخلی خاک از صفر تا ۳/۲ φ (و کاهش تا ۱/۷)، وزن واحد خاک انتساب از صفر تا ۴/۳ φ، ضریب دوسران ۱/۸، ضریب چرخش جایی ۱۷۵ک/نم/م و مدول الاستیسیتی E = ۵۰ مناسب شد. ضمن باید ذکر شود که جز ارقام بالا، آزمایش دینگری بارای مقایسه و بررسی اثر پاترئیا، تنها در مواردی مورد حساب کار برده شد. مقدار انتخاب طراحی مدل الاستیسیتی دیگری به مورد بررسی و به نظریه رسد (مقصوداً برای خاکهای سست و با دانسینه‌های موزت، ولی به این علت که تغییر شکل‌ها و کرن شیب زبان محول، خط و تقریب زبانی در خل مسئله می‌شود و باید کوشش کرد که در شکل‌ها هرچه بزرگتر نه داشته شوند و از طرفی می‌تونه پلاستیک در این برنامه صرفه‌ترین بر تشکیل می‌گیرد و کرن‌ها نقشی ندارند، از این رو مدول
شکل 3- وضعیت کاربرد بار گره در توزیع‌های مختلف فشار

منظورا با دقت N_D و N_{n_D} در هر مورد، همان طور که اشاره شد، برای تعیین ضریب فشار باربری، ابتدا باید بار شکست، یعنی مقاومت نهایی (q_{ult}) خاک به دست آید. در این راستا، در بعضی موارد به خوبی می‌توان از منحنی‌های بار-نشست حاصل، نقطه معینی را که تغییر شیب منحنی کاملاً مشخص است به دست آورد، مشابه در منحنی‌های N_D، برای مقادیر کوچک ϕ جریه شیب منحنی با توجه قابل ملاحظه است. در عین حال در سایر موارد محل شکست منحنی چندان مشخص نیست و تغییر شیب منحنی جالب تریچکی دارد. به منظور هماهنگی کامل بین تمام مقادیر به دست آمده، نقطه آغاز شاخه نهایی منحنی به عنوان قطعه باربری در نظر گرفته شد. می‌توان یادبود که برای انتخاب این نقطه در حد (2/3) است. این تغییر در بررسی‌های فرضی خاک کاملاً چشمگیر است زیرا به علت افزایش شدید در مقادیر متفاوت برای فشار باربری در نظر گرفته شده، می‌توانیم ابتدا با منحنی P=PA- به شکل زیر پی (شرایط خم

انتخاب شده بی صورت شکل‌های (2-3) ج) (3-4) به برناوه

N_D نشان می‌دهد. از این رو مقدار N_{n_D} در هر مورد، محاسبه به دقت N_D، محیط بین وزن (0-6) و با

برای محاسبه N_D، محیط بین وزن (0-6) در نظر گرفته شده و

با شرایط c و ϕ سطحی، و با انتخاب‌های مختلف، و

توجه نمودار های بر - نشست و تعیین مقدار بار شکست،

مقادیر N_D از رابطه:

$$q_{ult}=\frac{1}{5}B N_D$$

محاسبه شد.

به منظور محاسبه ضریب N_D، محیط بین وزن (0-6) و با

انتخاب‌های مختلف برای ϕ مقدار باربری شکست در هر مورد به دست آمده، این صورت چون برای پی نوارSENT، N_D است، با مقادیر ثابت c و افزایش N_D، $q_{ult}=cN_D$

محاسبه شد.

$$q_{ult}=cN_D$$

برای تعیین ضریب N_D در همان شرایط محاسبه، N_D, لایه‌ای از N_D محاسبه به پوسته B روي سطح خاک منظور باD به شکل زیر

شده و نتیجه حاصل از محاسبه به صورت نمودارهای بار -

نشست در هر مورد به دست آمده. از آنجا که افزایش مقدار بار

شکست مرتبه به هم مورد نسبت به وضعیت c می‌باشد

روی در محاسبه نبوده است، همان افزایش ضریبN_D را

$\frac{1}{5}\text{B N}_D$
شکل ۵ - تأثیر چگونگی توزیع بار

محاسباتی برای تعداد مراحل محاسبه ۵۰۰۰ و ۱۰۰۰ به ترتیب ۳/۷۵ و ۲/۶ و ۱۴/۱۶ به دست آمده است. در مطالعه حاضر، افزایش جریه بار معمولاً در محدوده ۰/۱ تا ۰/۱۰۰۰ افزایش گرفته شده است. با وجود این در بعضی موارد ریزتر شدن مقدار افزایش جریه بار موجب تغییر شدن محاسبات و جواب‌های نامناسب می‌شود. عوامل مقدار افزایش جریه بار روي نمودار های مربوط به N_1 نشان داده شده است. در عین حال هر چه مقاومت خاک کمتر باشد باید مقدار جریه افزایش بار را کوچکتر گرفت.

شکل ۶ - تأثیر چگونگی توزیع بار در سطح نماس ی در شکل (۵) نشان داده است. همانطور که از این شکل مشخص می‌شود، نمودار بار - نشست خاک تا چگونگی توزیع بار در عرض پی است. برای بار سهمی، در شکل (۵ - ب)، طرفین باری خاک کمترین مقدار را نشان می‌دهد. در مطالعه حاضر، عدم از توزیع یکسان افتاده شده است.

شکل ۷ - نمودار اثر افزایش زاویه اتساع در شکل (۶) و (۷) دیده می‌شود. بطولی که ملاحظه می‌شود، افزایش زاویه اتساع از صفر تا ϕ برای زاویه های اتصالکات ۰/۳ تا ۳/۰ و از زاویه های ϕ به بالا، تأثیر افزایش زاویه اتساع قابل توجه است. و این تأثیر با افزایش زاویه ϕ به تدریج نمی‌باشد. مثلاً برای $\phi=30^\circ$ افزایش زاویه اتساع از صفر تا ϕ افزایشی نتیجه ندارد (شعکل ۷). در نهایت N_0 در نظر گرفته شده است. به احداث این، که مقدار

شکل ۸ - تأثیر تعداد مراحل محاسبه بر نمودار بار - نشست

شکل ۹ - نمودار اثر افزایش زاویه اتساع بر مقدار نهایی ظرفیت باربری

شکل ۱۰ - نمودار نهایی، منطقه شیفرش بیانش طرفین منطقه.

شکل ۱۱ - نمودار اطراف جریه بار (A q) در شکل (۴) ارائه شده است. همانطور که قابل پیش بینی است ریزتر شدن مقدار افزایش جریه (با افزایش تعداد مراحل محاسبه) منجر به کاهش یافتن مقدار محاسبه شده ظرفیت باربری و مشخص شدن نقطه شکست می‌شود. در مرجع [9] نیز اشاره شده است که مقدار

۸۰

استنلال، سال ۲۲، شماره ۱، شهریور ۱۳۸۲
جدول 1- مقایه اعداد N از نظریه‌ها و محاسبات مختلف

<table>
<thead>
<tr>
<th>P, PR</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>128</td>
<td>125</td>
<td>120</td>
<td>102</td>
<td>100</td>
<td>75</td>
<td>70</td>
<td>54</td>
<td>48</td>
<td>40</td>
<td>27</td>
<td>20</td>
<td>16</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>17</td>
<td>46</td>
<td>44</td>
<td>40</td>
<td>32</td>
<td>28</td>
<td>20</td>
<td>18</td>
<td>14</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>362</td>
<td>49</td>
<td>44</td>
<td>39</td>
<td>30</td>
<td>25</td>
<td>18</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>60</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>100</td>
<td>85</td>
<td>70</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>505</td>
<td>444</td>
<td>355</td>
<td>285</td>
<td>200</td>
<td>150</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>47</td>
<td>200</td>
<td>175</td>
<td>150</td>
<td>120</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>22</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>161</td>
<td>141</td>
<td>134</td>
<td>120</td>
<td>100</td>
<td>75</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>101</td>
<td>90</td>
<td>80</td>
<td>65</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>104</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>372</td>
<td>272</td>
<td>174</td>
<td>120</td>
<td>90</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>260</td>
<td>134</td>
<td>120</td>
<td>100</td>
<td>75</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>81</td>
<td>54</td>
<td>42</td>
<td>30</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

توضیح: ستون‌های که اعداد آنها کامل نیست به این علت است که آن اعداد در مرحله اصلی موجود نبوده است و با محاسبه نشده است. شماره ستون‌ها به ترتیب مربوط به مرحله زیر است:

12- مطالعه حاضر، توزیع بر یکنواخت (0 = \(\delta \), 13- مطالعه حاضر، بر یکنواخت و (\(\phi = \delta \), 14- مطالعه حاضر، توزیع نایکنواخت بار

ناکنواخت بار (0 = \(\psi \))

نمونه‌برداری از 12 سانتی‌متر تا 12 سانتی‌متر تغییری در ضریب

ظرفیت‌پذیری \(N \) ایجاد نمی‌کنند ولی برای یک‌پی‌پی تصویری

مدل‌یابی در عرض 12 سانتی‌متر، این ضریب اندازه‌گیری نشان می‌دهد. توزیع اینکه اعداد به دست آمده مربوط به شکست محاسبه‌شده است.(1) نشان داد شده است.

جدول 2- مقایسه اعداد N از نظریه‌ها و محاسبات مختلف

<table>
<thead>
<tr>
<th>N</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>128</td>
<td>125</td>
<td>120</td>
<td>102</td>
<td>100</td>
<td>75</td>
<td>70</td>
<td>54</td>
<td>48</td>
<td>40</td>
<td>27</td>
<td>20</td>
<td>16</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>17</td>
<td>46</td>
<td>44</td>
<td>40</td>
<td>32</td>
<td>28</td>
<td>20</td>
<td>18</td>
<td>14</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>362</td>
<td>49</td>
<td>44</td>
<td>39</td>
<td>30</td>
<td>25</td>
<td>18</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>60</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>100</td>
<td>85</td>
<td>70</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>505</td>
<td>444</td>
<td>355</td>
<td>285</td>
<td>200</td>
<td>150</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>47</td>
<td>200</td>
<td>175</td>
<td>150</td>
<td>120</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>22</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>161</td>
<td>141</td>
<td>134</td>
<td>120</td>
<td>100</td>
<td>75</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>101</td>
<td>90</td>
<td>80</td>
<td>65</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>104</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>372</td>
<td>272</td>
<td>174</td>
<td>120</td>
<td>90</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>260</td>
<td>134</td>
<td>120</td>
<td>100</td>
<td>75</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>81</td>
<td>54</td>
<td>42</td>
<td>30</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

 حالی که برای \(\phi = 0.5 \) این افزایش تا 50% می‌رسد.

4- نمودارهای بار- نشست در شکل (7)، برای مقایسه مختلف \(\phi \) از صفر تا 0.5 مقدار \(N \) محاسبه شده و در جدول 3- نشان داد شده است.

در شکل (8) نمودارهای بار- نشست در شکل (7) به عنوان نشست برای چهار اندام مختلف عرض پی و هر کدام برای دو نوع توزیع بار، برای یکنواخت U و سهمی P- مراجعه به شکل (3) ارائه شده است و به طور که از مقایسه این نمودارها مشخص می‌شود، تغییر
شکل 7- وضعیت نمودارهای بار - نشست (در خاک وزنی) برای محاسبه N_u (توزیع بار (U) و P)

شکل 8- منحنی بار - نشست برای چهار اندازه مختلف عرض W و دو نوع توزیع بار (U و P)

با یاد پادا آوری کردن که در مورد ضریب N_u اندازه عرض W چه گونه تاثیری بر مقدار این ضریب ندارد. در مطالعه حاضر نیز همان اندازه‌های عرض W که برای ضریب N_u به کار برده

استقلال، سال 22، شماره 1، شهریور 1382

82
توضيح: شماره ستونهای مختلف N دی از تحلیلهای مختلف Nc یا برای مقادیر مختلف φ از صفر تا ۰.۴۰ در جدول (۱)، در مورد ضریب بار Np/۹ در مقدارهای ماهیانه شده از متعلقه حاضر ارائه شده است. همین مقایسه در شکل‌های (۱) و (۱۵) انجام می‌شود. به طوری که از این مقایسه‌ها مشخص می‌شود اعداد حاصل از محاسبه‌ای اخیر در شرایط انجام باین توزیع برای یکتاواخت عمدتاً اندکی می‌باشد. این مقایسه در حاصل از این محاسبات با مقادیر حاصل از محاسبات بار یکتاواخت e=۱ کیلوپاساژ (kPa) موجب تغییر نویز توزیع باعث این است که برای محاسبات Nc دست آمده بار Np در جدول (۱) از جدول (۲) ارائه شده است.

6- مقایسه تئوری به دست آمده با سایر پژوهش‌ها

الف - در مورد ضریب بار Np/۹

در جدول (۱) مقادیر حاصل از تحلیلهای ماهیانه مبتعد در مورد ضریب بار Np/۹ در مقایسه با مقدار معیار شده از متعلقه حاضر ارائه شده است. همین مقایسه در شکل‌های (۱) و (۱۵) انجام می‌شود. به طوری که از این مقایسه‌ها مشخص می‌شود اعداد حاصل از محاسبه‌ای اخیر در شرایط انجام باین توزیع برای یکتاواخت عمدتاً اندکی می‌باشد. این مقایسه در حاصل از این محاسبات با مقادیر حاصل از محاسبات بار یکتاواخت e=۱ کیلوپاساژ (kPa) موجب تغییر نویز توزیع باعث این است که برای محاسبات Nc دست آمده بار Np در جدول (۱) ارائه شده است.
جدول ۳- مقدار ضریب پیشین از تحلیل‌ها و محاسبات مختلف

<table>
<thead>
<tr>
<th>φ</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶</td>
<td>۱۶۰</td>
<td>۱۳۰</td>
<td>۶۶</td>
<td>۳۴</td>
<td>۲۶</td>
</tr>
<tr>
<td>۷</td>
<td>۲</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۵۳</td>
<td>۵۴</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۸۲</td>
<td>۱۸۴</td>
<td>۳۲</td>
<td>۱۵</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۸۵</td>
<td>۱۸۶</td>
<td>۳۵</td>
<td>۱۹</td>
<td>۱۳</td>
</tr>
<tr>
<td>۱۷۵</td>
<td>۱۸۷</td>
<td>۱۹۰</td>
<td>۳۷</td>
<td>۲۰</td>
<td>۱۴</td>
</tr>
<tr>
<td>۱۷۷</td>
<td>۲۰۷</td>
<td>۲۱۱</td>
<td>۴۳</td>
<td>۲۱</td>
<td>۱۵</td>
</tr>
<tr>
<td>۱۷۹</td>
<td>۲۱۳</td>
<td>۲۱۷</td>
<td>۴۶</td>
<td>۲۲</td>
<td>۱۶</td>
</tr>
<tr>
<td>۱۸۱</td>
<td>۲۱۹</td>
<td>۲۲۳</td>
<td>۴۹</td>
<td>۲۳</td>
<td>۱۷</td>
</tr>
<tr>
<td>۱۸۳</td>
<td>۲۲۹</td>
<td>۲۳۳</td>
<td>۵۰</td>
<td>۲۴</td>
<td>۱۸</td>
</tr>
<tr>
<td>۱۸۵</td>
<td>۲۳۹</td>
<td>۲۴۳</td>
<td>۵۳</td>
<td>۲۵</td>
<td>۱۹</td>
</tr>
<tr>
<td>۱۸۷</td>
<td>۲۴۹</td>
<td>۲۵۳</td>
<td>۵۴</td>
<td>۲۶</td>
<td>۲۰</td>
</tr>
<tr>
<td>۱۸۹</td>
<td>۲۵۹</td>
<td>۲۶۳</td>
<td>۵۵</td>
<td>۲۷</td>
<td>۲۱</td>
</tr>
<tr>
<td>۱۹۱</td>
<td>۲۶۹</td>
<td>۲۷۳</td>
<td>۵۶</td>
<td>۲۸</td>
<td>۲۲</td>
</tr>
<tr>
<td>۱۹۳</td>
<td>۲۷۹</td>
<td>۲۸۳</td>
<td>۵۷</td>
<td>۲۹</td>
<td>۲۳</td>
</tr>
<tr>
<td>۱۹۵</td>
<td>۲۹۹</td>
<td>۲۹۳</td>
<td>۵۸</td>
<td>۳۰</td>
<td>۲۴</td>
</tr>
<tr>
<td>۱۹۷</td>
<td>۳۰۹</td>
<td>۳۰۳</td>
<td>۵۹</td>
<td>۳۱</td>
<td>۲۵</td>
</tr>
<tr>
<td>۱۹۹</td>
<td>۳۱۹</td>
<td>۳۱۳</td>
<td>۶۰</td>
<td>۳۲</td>
<td>۲۶</td>
</tr>
</tbody>
</table>

توضیح: شماره ستوه‌ماربیوت به مراجع زیر است:

۱۴۶- مانند جدول شماره ۲. ۵- مطالعه حاضر، با یکنواخت

شکل ۹- تأثیر عرض‌بسته بر مقدار پیشین N

(خط AB مربوط به محاسبه مقدار حاضر میانی بر شکل ۸ است)

در شکل (۱۵)، این مقایسه‌ها با تناسب محاسبات مشابه از گریجیت [۱۲] و مانوهاران و داسکوتا [۱۰]، فریمی و برد [۹] انجام گرفته است. تفاوت نمودارهای شکل‌های (۱۴) و (۱۵) استقلال سال ۱۳۸۲، شماره ۱، شهرورد
شکل 10- وضعیت نمودارهای بار - نشست (خاک به وزن) برای محاسبه N_s

شکل 11- منحنی‌های بار - نشست برای محاسبه N_s
شکل 12 - نمودار ضرایب ظرفیت باربری به دست آمده از محاسبه حاضر

شکل 13 - مقایسه به دست آمده برای ضریب N با نتایج محاسبات دیگر

شکل 14 - مقایسه ارقام به دست آمده برای ضریب N با اعداد تحلیل‌های دیگران و تجربی آزمایشگاهی

شکل 15 - مقایسه ارقام به دست آمده برای ضریب N با نتایج محاسبات دیگر

استقلال سال 22، شماره 1، شهریور 1382

86
ب - در مورد ضریب N_r در شکل (16) نمودارهایی به دست آمده برای ضریب N_r از نظرهای مختلف و نیز در مقایسه با نتایج کاربرد برنامه‌های اجزای محصول مناسب داده شده است. یک طوری که ملاحظه می‌شود مقدار N_r با افزایش ϕ و به قبلاً برنامه‌بندی شده است و نتایج به دست آمده در نظرگیری شده‌اند. ϕ به دست آمده در بعضی از محاسبات نتایج شرایط به صفار بین زیر به هم می‌باشند مقایسه به سه این نتایج به دست آمده از جهت عكس مشاهده می‌شود [12]. مقایسه عدد 6/5 حاصل از محاسبات حاضر با عدد 6/48 که از رابطه N_r برای به دست آمده در مکانیسم و صحت عملکرد برنامه به کار برده شده است.

$$ V_B = S_0 (1 + \pi / 2 + \alpha \sqrt{1 - \alpha^2} \text{ } 2$$

در رابطه V_B به ترتیب مولفه قائم و افقی باز وارد به ریک پی یا برنامه‌بندی به مسیر R خواهد چسبند با مقاومت S_0 است و برای شرایط بازدارنده به حساب می‌آید.

نمودارهای نظری دیگر نزدیکی می‌شود و همین امکان انتخاب متغیرهای مختلف از امتیازهای کاربرد برنامه‌ای محدود و نیز استفاده از فرض رفتاری الگویی - ویژه‌گرایی است که می‌توان از ابزار این نشان حاصل از آن تجربیات را بررسی کرده و در راستای هماهنگی با آنها مناسب‌ترین وضعیت محاسباتی را تجسمی کرد.

نمودارهای شکل (17) نشان دهنده مقایسه مقادیر به دست آمده از محاسبات اخیر با نتایج بعضی از نظریه‌ها با محاسبات سابقه پژوهشگران است و نتایج اخیر به ارقام حاصل از تحلیل وسیک کاملاً نزدیک است.

- نتیجه‌گیری

با استفاده از برنامه‌ای محدود متینی بر مدل الاستیک - موجود کمک پردازی، نتایجی با توجه به خط است بسته آمده به بار نیز بار نیز بیش از پژوهشگران قرار گرفت و مشخصاً با توجه به روش انتخاب پارامترهای مؤثر در محاسبه در جهت تطبیق دادن نتایج به انجام تجربی، می‌توان مشخصات قابل قبول بیان آن مربوط به بسته مصوبه با توجه به جزئی اصطلاحات داخلی و نوع توزیع بار، تغییر پارامترهای دیگر تأثیر محاسبه در محاسبه ظرفیت باربری خاک در شرایط بی‌پارامتری و بار محوری قائم ندارد، می‌توان به این نتیجه رسید که عامل مهم در تفاوت نظریه‌ها با نتایج حاصل از روش‌های محاسباتی متینی بر اجرای محدود از یک سو، و با نتایج آزمایش‌ها از سوی دیگر، انتحاب مناسب زاویه اصطلاحات زاویه انتخاب خاک در ضمن کسب‌تحکیگی و نوع توزیع بار است و به همین علت محاسبات منفرد که بر اساس کاربرد فرض موهر - کمک در برنامه‌های اجرایی محدود انجام کرده است. هر چند قاعدتاً اصول برنامه نویسی و معیار کسب‌تحکیگی برای همه آنها یکسان بوده است ولی جوامع توابعی به طور کامل یکسان یکسان بوده است ولی

این روش می‌توان بر این نشان دهد که اگر شرایط مبنای وارد در محاسبه، مناسب نظارت شود در صورت پارامترهای مؤثر را به می‌توان با این مدل بررسی کرد.

شکل 17 - مقایسه ارقام بدست آمده برای بار N بر

یکنواعت و (0 = ψ) با نتایج بعضی از پژوهشگران

ج - در مورد ضریب ψ

شکل 16 - مقایسه ارقام بدست آمده برای بار N (بار
برای خاک‌های مسن (0° ≤ ψ ≤ 30°)، \(\phi = \frac{\pi}{2} \) و برای خاک‌های مترانک (30° < \(\phi < 45° \) و برای خاک‌های خیلی مترانک \(\psi = \frac{\pi}{2} \phi \)) تجربه‌ها این ترتیب به دست آمده که اگر اثر زاویه اتساع به صورت افزایشی به موازات افزایش زاویه اضافه‌گذاری در محاسبات منظور شود، در این صورت نتیجه تغییرات ضرایب ظرفیت باربری به واقعیتی تجربی و به بعضی از نظریه‌ها نزدیکتر می‌شود، برای این منظور ترتیب زیر پیشنهاد می‌شود:

قدرهانتی

این مطالعه بخشی از پژوهشی تحقیقاتی مصوب حوزة پروژه قدردانی و سیاسات‌گزاری گردید.

واژه‌نامه

مراجع

15. Schanz, T., and Vermeer, P. A., Angles of Friction

فارسی:

۲۱. واقعیان، م. بررسی پایداری فضایی و پایداری نسبی در نمونه‌های استاتیک با استفاده از نرم‌افزار به کمک نرم‌افزار *کولمپ، نشر دانشگاه تهران، جلد ۳۶، شماره ۳–آذر ماه ۱۳۸۱، ص ۳۸۳ تا ۳۹۶.*