تعیین ضرایب ظرفیت باربری خاک به کمک اجزای محدود مبتنی

بر مدل الاستیک - Mohr-Kolmرب

محمدرضا واقیان
دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان

دریافت مقاله ۲/۱۳۸۶ - دریافت نسخه نهایی ۱/۱۳۸۷

چکیده - با استفاده از یک برنامه رایانه‌ای اجزاء محدود به نام Afnen، ضرایب ظرفیت باربری خاک زیر بار افزایشی تحت اثر بر قسمت محوری سورد برسی قرار گرفت و مبتنی بر مدل ظرفیت باربری الاستیک - Mohr-Kolmرب و برای وضعیت مختلف مشخصات خاک، ضرایب ظرفیت باربری محاسبه شد. همچنین اثر نوع توزیع بار وارد بر سطح خاک از طرف پی به صورت بکنش دهی و تأثیر داشته است و نتایج به صورت توزیع سه‌차 می‌باشد. این امر از پی و تأثیر امکان برای نظیره‌های سطحی و بکنش دهی به اعداد نظیره‌های "سرزبان"، "سوکولوفسکی" و "تیلم" و "راید" همان است. با وجود این اگر افزایش لایه‌های فوقانی و افزایش ذخایر خاک در نظر گرفته شود، محاسبه‌های حاصل از این مطالعه به اعداد تحلیل‌های دقیق و مناسب به دست آمده است. در این مطالعه از نتایج کلی زیر حاصل شد: اول به عنوان مقادیر ضرایب ظرفیت باربری خاک به صورت اعداد به دقت و مناسب به فرد می‌تواند اهمیت بکند و از این نتایج به بر ارائه می‌تواند مفید باشد. به عنوان نتیجه کلی این مطالعه ضرایب ظروفیت باربری خاک می‌تواند به صورت اعداد می‌باشد.

واژگان کلیدی: ضرایب ظرفیت باربری خاک، اجزاء محدود، Mohr-Kolmرب

Evaluating the Soil Bearing Capacity Coefficients by Means of A Finite Element Program Based on Elasto-Plastic Mohr-Coulomb Behavior

M. Vafaeian
Department of Civil Engineering, Isfahan University of Technology

Abstract: A finite element program based on elastic-plastic model of Mohr-Coulomb criterion was used to evaluate the bearing capacity coefficients of soil under shallow strip flexible footing. The results were compared with others’ analytical results and it was found that the present study could offer quite consistent and rather precise values for the bearing capacity coefficients.

* دانشیار

استقلال، سال ۱۳۸۲، شماره ۱، شهرویور ۱۳۸۲
مقدمه
بحث طوریت باربری خاک زیر پی از اولین ماهنی است که مورد توجه و مطالعه پژوهشگران شوید با توجه به قرار گرفتن است که طریقی که را باید به آن توسط ترکیب
[1] در سال 1948 آرائه شد:

\[q_{ul} = 0.5 \gamma B N_y + c N_c + q N_q \]

(1)

که در این رابطه، ضرایب \(\gamma \), \(N_y \), \(N_c \) و \(N_q \) به ترتیب ضرایب طوریت باربری خاک زیر پی، ناپیدایی شرایط و از آن زمان ناکامان آنچه بطور غالباً مورد بحث قرار گرفته است. تعیین یا تصمیم‌گیری از مقادیر این ضرایب (مختصات ضربی \(N_x \)) بوده است.

در مورد بررسی چگونگی رفتار خاک زیر پی از مرحله وارد آمدن باید تا مرحله گسیختگی خاک و مختصاتی مورد شکل و از زمان بخش گسیختگی شونده زیر پی، شنا کننده ارتباط ضرایب را به افزایش است. افزایش ضرایب تا حدی تاثیر قابل ذکر است که استفاده از فرض رفتاری استیک-موهر - کلوبسی در محاسبات بوده است. این مقاله به هیا محاسباتی ضرایب طوریت باربری به کمک اجزای محدود نیز در سالهای اخیر کاملاً معنی‌دار بوده است [10-12]. در مقاله حاضر، علاوه بر ارزیابی کارایی این برآورد محاسباتی در مطالعه رفتار خاک و مقایسه نتایج حاصل با نتایج موجود در مقالات دیگران، دیدگاه‌های دیگری در خصوص بعضاً از معتبر‌گرده مورد توجه قرار گرفته و تأیید آنها برسی شده است.

- اشاره مختصر به برآورد رایانه‌ای مورد استفاده

همان‌طور که در بررسی ترس افزار در خشک، مهندسی عمران (مرکز پژوهش‌های زوئولوژیکی) دانشگاه سیدنی استرالیا توصیه یافته و یکی از مدل‌های استرالیا می‌باشد، آن مدل

استقلال، سال 12، شماره 1، شهریور 1382

76
شکل 1: سه نوع شبکه بندی پیکار برده شده در مطالعه حاضر:الف- مثلث شش گرهی ب- چهارضلعی هشت گرهی ج- چهارضلعی با نمرک زیر لبه پی

1- محور تقاضای پی، حدود 10 برای عرض پی در نظر گرفته شد (شکل 1)؛ این فاصله عموماً پیش از حد مورد نیاز است زیرا چه در آزمایش‌ها و چه در تحلیل‌های نظری در ۳/۵B تابع بیشتر نیست [۹، ۱۰، ۱۱] همچنین با توجه به شرایط کرنش صفحه‌ای و پی باریک‌کرای مورد نظر، حالت مستطیل در شرایط دور به نظر افتاده است. B۱ = ۱/۱۲m

dارای دو متغیر مختلف عرض پی، یعنی B۱ = ۱/۱۲m و B۲ = ۱/۳m و این است که برای دانسته‌های خاص از این دو محصولات به نظر می‌رسد. B۲ = ۱/۴m، مقادیر جدید به ترتیب qab، ۵/۰۱ و ۱۰ W/m² است و مقدار به دست آمده برای همان نیاز به ۱۰ خواهد بود. در عین حال در مواردی برای بروز اثر ایجاد، در بعضی از حالت‌ها، پی باریک به عرض ۱۰ برای کوچکتر و ۱۰ برای بزرگر هم در محاسبات به کار برده شد.

در انجام محاسبات سه نوع شبکه بندی تعريف شد. این شبکه‌ها در شکل‌های (۱-۶) آلف، ب، و ج) دیده می‌شود (شکل TR) تیم ششم مثلاً ۶ گرهی (شبکه SQ) و با تمرکز اجزای زیر کنار، پی ۸ گرهی (شبکه) که با محیط مخلوط مدل شد.

3. روش کار و مدل کردن فضای خاکی

با توجه به نوع مدل که در شرایط مدار و بار محوری قائم ورود پرسته است، کافی است که فقط نمایه محیط خاکی مدل شود. در این مطالعه، فاصله مرزی محیط مدل شده

استقلال، سال ۳۲، شماره ۱، شهریور ۱۳۸۲
ابعاد و کمیتی به کاربرده شده

توزیع بار روی پی به صورت نیروهای کوهی در نظر گرفته شد. بنابراین در شیب مثلثی TR ثانیا توزیع گردید. عرض پی (در هر دو جزء) و در هر سطح ضریب مقاومت 7 گردان در نظر گرفته شد. در این مطالعه، توزیع بار وارد بر گره یک بار به صورت آزمایش شد. بنی‌سازان عوامل توزیع یکپارچه که معمول است (شکل 2-الف)، توزیع‌های ناب‌پایداری دیگری، مطالب شکل (2-ب) و (2-ج) مواد آزمایش قرار گرفت. علت انتخاب این نوع توزیعها که تقریباً مشابه سه‌نگ، این است که این نوع بار یک‌پارچه در پایان توزیع مثبت باشد.

تقسیم بار گره‌ی روی گره‌ی بر اساس دستورالعمل نرم‌افزار مورد استفاده که باید مطالعه شکل (2-الف) باشد، انجام شد. در نتیجه، مقادیر بار گره‌ی بار توزیع یکپارچه که تقریباً مشابه شکل داده شده در شکل (3-ب) و در بررسی توزیع سه‌نگ

اسبانشیه‌ی (RQ) شبکه

به کاربرده است و در مورد شرایط مرزی بخش مدل شده، گره‌های قائم در طرف فقط در اندما 3 آزاد است. لازم به توضیح است که در ضمن معادلات فوق‌العاده مهم علت عمده محاسبات بر با پایه همین نوع شبکه صورت گرفت. از طرفی مشاهده شد که افزایش قابل‌توجهی مزری (یعنی از آنچه که در شکل 1 (آسیب) منجر به تابع دیفرانسیل نمی‌شود. همچنین در بسیاری از موارد نتایج حاصل از نیم مقفع مورد محاسبه با تابع تری‌نیتی و تابع معقquete کاملاً مقایسه‌ی شده است.

تولید تغییر قدرت‌های چون k، V، E

اگر یک مورد بر هر مرحله مورد بررسی اولیه قرار گرفت که به تابع مقایسه‌ی آنها اشاره خواهد شد.

شکل 2- بُند نوع توزیع بار روی عرض پی

اگر یک مورد بر هر مرحله مورد بررسی اولیه قرار گرفت که به تابع مقایسه‌ی آنها اشاره خواهد شد.
شکل 3- وضعیت کاربردی بار گره در توزیع‌های مختلف فشار

انتشار شده به صورت شکل‌های (۲-۳) و (۲-۴) به‌نمایش داده شد و در هر حال وضعیت پی جهت انعطاف‌پذیری دارد.

برای محاسبه N'، محیط بی و (نیرو) N' در نظر گرفته شده و با شرایط c و b سطحی، و با انتخاب‌های مختلف، و ترسیم نمودار های £- نشان و تعیین مقادیر بار شکست، مقادیر N' را از رابطه $N'=
محاسباتی مربوط به تعداد مراحل محاسبه ۵۰۰۰ و ۱۰۰۰ به ترتیب ۷۱۲۵/۱۷ و ۲۵/۱۶ به دست آمده است. در مطالعه حاضر، افزایش جریه باز معمولاً در محدوده ۰/۰۲ تا mass ناتمام کردن افزایش جریه باز موجب نزول سطح محاسبات و حصول جواب‌های ناهنجار می‌شود. عموماً مقدار افزایش جریه باز روی نمودار های مربوط به نشان داده شده است. در عین حال هر چه مقاومت خاک کمتر باشد مقدار افزایش جریه باز را کم کرده گرفته.

شکل ۵- تأثیر شکست پایه از توزیع بار در سطح نمودار

۲- تأثیر پایه از توزیع بار در توزیع بار در سطح نمودار داده است. میزان طور که از این شکل مشخص می‌شود، نمودار بار نشست خاک تابع چگونگی توزیع بار در عرض پی است. نمودار بار این، در شکل (۲- ب)، طرفین پایه خاک کمترین مقاومت را نشان می‌دهد. در مطالعه حاضر، عمده‌اً از توزیع پایدار استفاده شده است.

شکل ۶- نمونه‌ای از چگونگی اثر افزایش زاویه اتصال بر مقدار انتقال طرفین پایه (ب) شکست‌پذیری پایه و مقدار نهایی مانند باگستر بخانه منطقه.

۳- چگونگی اثر افزایش زاویه اتصال در شکل (۱- و ۷- دیده می‌شود. بنابراین که ملاحظه می‌شود افزایش زاویه اتصال از صفر تا نام‌برای خاک اصطکاکی تا ۰/۰۲ تا نام‌برای خاک اصطکاکی (شکل ۷) و از زاویه ۳۵ درجه بالا. تأثیر افزایش زاویه اتصال، قابل توجه است و تأثیر با افزایش زاویه نمی‌باشد. تاثیر بیاید. مثال برای ۳۵ درجه با افزایش زاویه اتصال از صفر تا ۰/۰۲ تا نام‌برای خاک اصطکاکی (شکل ۷) در N به مقدار (۷) تأثیری نزدیک ۹۲/۳ در مقدار در نموداد به نموداد است. در مرطع (۹) نیز اشکار شده است که مقدار

شکل ۴- تأثیر تعداد مراحل محاسبه بر نمودار بار نشست

پایه‌پذیر شرط زیر بی‌مکرو (شهر شاخه نهایی منحنی).

۵- نتایج محاسبات

۱- تأثیر افزایش زاویه بار (Δ q) در شکل (۴ ارائه شده است. همانطور که قابل پیش بینی است برتر شدن مقدار افزایش جریه (Δ q) افزایش تعداد مراحل محاسبه) منجر به کاهش پایین مقدار محاسبه شده طرفین پایه و مشخص شدن نقطه شکست می‌شود. در مرجع (۹) نیز اشکار شده است که مقدار

استقلال، سال ۲۲، شماره ۱، شهید بهشتی ۱۳۸۲

۸۰
جدول 1- مقایه اعداد زبان از نظرهای و محاسبات مختلف

<table>
<thead>
<tr>
<th>P, PR</th>
<th>16</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>φ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/8</td>
<td>0/5</td>
<td>1/5</td>
</tr>
<tr>
<td></td>
<td>3/1</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>102.</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>141</td>
<td>134</td>
</tr>
</tbody>
</table>

توضیح: اعدادی که اعداد آنها کامل نیست به این علت است که آن اعداد در مرجع اصلی موجود نبوده است و یا محاسبه نشده است. شماره ستوهای به ترتیب حروف به درجات زیر است:

1- پراوندی (1942) [16], 2- ترازگی (1943), 3- درازگی (1943), 4- برش مکا و موقعیتی [1], 5- هانسن و گرینتون (1949) [10], 6- ویسک (1943), 7- یک و همکاران (1947) [1], 8- گریفت (1992) [12], 9- برای و عرصه بیستم و نهم (1986) [10], 10- رای (1985), 11- فردی و آموزش ناپایانه (1949) [9], 12--Stannen 10 و 11 دو عدد نشان داده شده است که این دو عدد مربوط به حالت‌های ناپایانه (0 = φ) و یا برابر نیست (1 = φ) است.

13- مطالعه حاضر، توزیع بر پایکست (0 = φ), 14- مطالعه حاضر، بار پایکست و (φ/3 = ψ). نابیناکتیار (0 = ψ)

دانشگاه عرض پی از 12 سانتیمتر تا 12 متر تغییری در ضریب

ظرفیت پارامتر R نی‌افاکس می‌کند ولی براز یک پی تصوری

می‌کند. براز اینکه اعداد به دست آمده حروف به شکست

محاسبه شده و در

جدول (1) نشان داد شده است.

4- از نمونه‌های پارامتر R نی‌افاکس در شکل (7) و

مقدار R ۰۵، مقادیر θ محاسبه شده و در

بدون (1) نشان داد شده است.

3- از نمونه‌های پارامتر R نی‌افاکس در شکل (8) و

مقدار R ۰۵، مقادیر θ محاسبه شده و در

بدون (1) نشان داد شده است.

2- انتخابی P می‌پذیرد، این نتیجه‌گیری قاعدتاً

قابل پیش‌بینی است. زیرا تا این از آزمایش‌های متعدد که گزارشی

شد است همین واقعیت را نشان می‌دهد. شکل (9).
شکل 7- وضعیت نمودارهای پار - نسبت (در حالت ورودی) برای محاسبه

(توزیع بار (U

شکل 8- منجیل پار - نسبت برای چهار اندازه مختلف عرض پی و دو نوع توزیع بار (U و P

پایداری پیامدی که در مورد ضریب N، اندازه عرض پی هیچ

گونه تأثیری بر مقدار این ضریب ندارد. در مطالعه حاضر نیز

همان اندازه‌های عرض پی که برای ضریب N به کار برده

استقبال، سال 22، شماره 1، شهریور 1382

82
توضیح: شماره سوتنه‌مربعی به مراجع زیر است:

2- مقدار از صفر تا ۰.۴۰، در جدول (۲) ارائه شده است.
3- محاسبه مقدار در این منطقه علائم بر اثر زاویه اتصال برای تغییر نرخ با زاویه اتصال، سه حالت شناخته می‌شود.

جدول ۲- مقادیر ضریب N س از تحلیل‌های مختلف

<table>
<thead>
<tr>
<th>φ</th>
<th>0</th>
<th>0</th>
<th>0.8</th>
<th>1.0</th>
<th>1.2</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>28</td>
<td>8.7</td>
<td>30</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>0.4</td>
<td>21</td>
<td>34</td>
<td>31</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>1.0</td>
<td>31</td>
<td>45</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>1.5</td>
<td>35</td>
<td>50</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>2.0</td>
<td>35</td>
<td>50</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
</tbody>
</table>

الف- در مورد ضریب N س

در جدول (۱) مقادیر حاصل از تحلیل‌ها به محاسبات متعدد در مورد ضریب N س در مقاله با مقاله محاسبه شده و در محل این مقایسه به شکل‌های ۱۴ و ۱۵ نیز دیده می‌شود. به طوری که از این مقایسه‌ها مشخص می‌شود اعداد حاصل از محاسبه این ضریب در طی این سطح بیش از پیشکار، علمی اندکی کمتر از ضریب نظری ممکن است و در این ضریب با زاویه اتصال، سه حالت شناخته می‌شود. به دست آمده است و در مهندس حالت با افزایش زاویه اتصال و تغییر نوع تغییر بار این اعداد به مقادیر تحلیل‌های دیگر نزدیک می‌شود.

ب- در محاسبات اضافه شده.

۶- منحنیه‌های بار- نشان دهنده است. از این منحنی، مقادیر به دست آمده بار ضریب N س در جدول (۳) ارائه گردده است.
جدول 3- مقادیر ضریب N از تحلیل‌ها و محاسبات مختلف

<table>
<thead>
<tr>
<th>N</th>
<th>N_4</th>
<th>N_3</th>
<th>N_2</th>
<th>N_1</th>
<th>N_ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/8</td>
<td>1/67</td>
<td>1/35</td>
<td>1/7</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1/70</td>
<td>4/27</td>
<td>4/83</td>
<td>4/7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3/2</td>
<td>4/96</td>
<td>4/96</td>
<td>4/46</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6/4</td>
<td>6/4</td>
<td>6/4</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>1/50</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1/50</td>
<td>1/24</td>
<td>1/24</td>
<td>1/24</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>1/35</td>
<td>8/2</td>
<td>8/2</td>
<td>8/2</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>3/2</td>
<td>3/3</td>
<td>3/3</td>
<td>3/3</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6/2</td>
<td>6/2</td>
<td>6/2</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>1/50</td>
<td>1/35</td>
<td>1/35</td>
<td>1/35</td>
<td>160</td>
<td>0</td>
</tr>
</tbody>
</table>

توضیح: شماره سوتنهامربوط به مراجع زیر است:

- مانند جدول شماره 2. مطالعه حاضر، با یکتوخات

شکل 9- تأثیر عرض بر مقادیر N_y اقیاف از N_ϕ مربوط به محاسبه مقايسه حاضر مبتنی بر شکل 8 است.

خط AB در y, kg/cm^2

در این است که نمودارهای شکل (14) حاصل از نظریهای و تحلیل‌های مبتنی بر سطح کسبی گرفته شده و نتایج مبتنی بر نظریه‌ای شکل 14 را در نظر می‌گیرد. در گرفته است. تفاوت نمودارهای شکل‌های (14) و (15)
شکل 10- وضعیت نمودارهای بار- نشست (خاک یا وزن) برای محاسبه N_v

شکل 11- منحنی‌های بار- نشست برای محاسبه N_v
شکل 14- مقایسه ارقام به دست آمده برای ضریب τ با اعداد تحلیل‌های دیگران و تجربه آزمایشگاهی

شکل 15- مقایسه ارقام به دست آمده برای ضریب τ با نتایج محاسبات دیگر

شکل 13- مقایسه به دست آمده برای ضریب ظرفیت باربری در مقياس نیمه‌گازی

شکل 12- نمودار ضرایب ظرفیت باربری به دست آمده از محاسبه حاضر
ن‌ی = 2(۱ + exp(π tan φ))N_s tan φ = √N_s (Prandtl, 1921)
N_y = 2 tan φ exp(π tan φ)N_s + 1 (Vesic, 1973)
N_y = exp(π tan φ)N_s - 1 (Berry & Reid, 1987)
N_y = 0.25 exp(3π 2 tan φ - 1) + 3 sin φ + 8 sin 2 φ N_s - cot φ 3 exp(3π 2 tan φ) + cot φ 2 \sqrt(N_s) + 1 (Huang & Chen, 1994)

و در این رابطه، \(\phi = \frac{\pi}{2} \) است.

\(N_y = \tan^2 \left(45 + \frac{\pi}{2} \right) \) در مورد ضریب ن‌ی در شکل (۱۶) نمودارهایی با دست آمده برای ضریب ن‌ی از نظریه معمول و در مقایسه با نتایج کاربرد برنامه‌های اجرای محدود نشان داده شده است. بنابراین که ملاحظه می‌شود محدوده مقداری به دست آمده برای این ضریب و سعی است و نتایج مقداری با ناپسخدا \(\phi \) در بعضی از محاسبات نتایج شرایط پی صاف و پی زیر هم با هم مقایسه شده است و این نتایج به‌جای محقق مشاهده می‌شود. [۱۶] مقایسه عدد ۴۵۰ حاصل از محاسبات حاضر با عدد ۵۰۶ که از رابطه زیر شرایط \(\phi = \phi \) به دست می‌آید. ممکن دقت و صحت عملکرد برنامه به کاربرد ر به دست است.

\[\frac{V}{B} = S_0 \left(1 + \frac{\pi}{2} - \cos \alpha + \sqrt{1 - \alpha^2} \right) \] یک در رابطه \(V/H \), \(\alpha = H/B S_0 \) به ترتیب مؤلفه قائم و افقی بار وارد بر یک پی باریکی به عرض ب ر در واحد پی باریکی به عرض خاک چسبند. با استفاده از تعداد شرایط با قانون \(H \) و مصوب \(S_0 \) به دست می‌آید.

از مجموع این بررسی می‌توان نتیجه گرفت که محاسبات اجرای محدود مبنی بر رشته است. به موجب کلیه محاسبات، نتایج حاصل از مقدار نرگسیزی با توجه به اشارات نDocuments/12/22/15/18.png
نمودارهای نظیری دیگر نرخ رئیسی‌های سود و همین امکان انتخاب متغیرهای مختلف از استاندارد برآوردهای اجزای محدود و تنی استفاده از مدل رفتاری الکترونیک - موه‌کلیپم است که می‌توان بر اساس آن نتایج تجربیات را بررسی کرده و در راستای هماهنگی با آنها مناسب‌ترین وضعیت محاسباتی را تنظیم کرد.

نمودارهای شکل (17)، نشان‌دهنده مقایسه مقادیر بست آمد از محاسبات است و نتایج از ابزار Haar از تحلیل وسیب کاملاً تهدید است.

شکل 16- مقایسه ارقام بست آمده برای ضریب N (پیکاویت و $0 = \psi$) با نتایج بعضی از پژوهشگران

شکل 17- مقایسه ارقام بست آمده برای ضریب N (پیکاویت و $0 = \psi$) با نتایج بعضی از پژوهشگران

ج- در مورد ضریب N
نمودارهای شکل (17)، نشان‌دهنده مقایسه مقادیر بست آمد از محاسبات است و نتایج از ابزار Haar از تحلیل وسیب کاملاً تهدید است.
فرایند نتایج محاسبه با ارقام حاصل از بعضی نظریه‌ها و
تجربی که این نتیجه به دست آمده که اگر ذره ای انساب به
صورت افزایشی به مواد افزایش زاویه اضافه‌کنیم در
محاسبات انرژی شود، در ان صورت ممکن تغییرات ضرایب
ظرفیت باربری به واقعیتی تجربی و به بعضی از نظریه‌ها
زدیک‌تری می‌شود، برای این منظور نریب زی‌پیش‌نمای می‌شود:

قدرتانی
این مطالعه بخشی از پروژه تحقیقاتی مصوب حوزه
بروزه قدردانی و سیاستگری گردید.

1. associated

2. non-associated

15. Schanz, T., and Vermeer, P. A., Angles of Friction

استقبال، سال 22، شماره 2، شهریور 1382

89

21. وفاني، م.؛ ارزیابی ضرایب بار مایل و بار نامحدود در ضرایب طرفین باربری خاک به کمک مدل الاستیک-دلایلیک با معیار موهر-کولمبی؛ نشریه دانشکده فنی دانشگاه تهران، جلد 36، شماره 3-آذر ماه 1381، ص 378-396.