تعیین مشخصات دینامیکی سد مارون با استفاده از آزمایش‌های ارتعاش محیطی FEM و روش عددی

محمد کاظم جعفری، محمد داوودی و مهران سید رضائی
پژوهشگاه بن المللی زلزله شناسی و هندسی زلزله

(دریافت مقاله 8/1/1393 - دریافت نسخه نهایی 12/11/1393)

چکیده - تعیین مشخصات دینامیکی سازه‌های مهم از جمله سدهای خاکی در مناطق لرزه خیز جهان از مهم‌ترین ویژگی‌های مورد بررسی ورزیده است. بر این مبنای برای اولین بار در ایران آزمایش ارتعاش محیطی بر روی سد مختری مارون صورت گرفت. این سد و به کمک روش‌های جدید پردازش سیگنال، مشخصات دینامیکی این سد از جمله فرکانس‌ها، اشکال و میزان‌های مودی بندن سه به دست آمد. همچنین مدل‌های اجزای محوری آن سد با استفاده از نرم‌افزار‌های ANSYS تهیه شده است و با بالا بردن دقت مدلسازی از نظر شرایط هندسی، مشخصات مصالح، شرایط مرزی-کتابی گامی و نهایتاً کالریاسیون مدل سد با تابع آزمایشات ارتعاش محیطی مدل عددی سد مارون در محیط FEM است. و این کارکردها با کمک کامپیوتر کوچک تنظیم شده است.

واژگان کلیدی: سد خاکی - مشخصات دینامیکی - آزمایشات ارتعاش محیطی - تحلیل مودال

Evaluation of Dynamic Characteristics of Marun Embankment Dam Using Ambient Vibration Test and FEM

M.K. Jafari, M. Davoodi and M. Razzaghi
International Institute of Earthquake Engineering and Seismology

Abstract: There is a worldwide interest in the proper design of embankment dams to resist earthquake loadings. For the first time in Iran, a complete ambient vibration survey due to low-level loads such as wind, machinery activities, low level tectonic activities, and water exit from bottom outlet was performed on Marun embankment dam. These kinds of ambient vibration tests are suitable for manifesting the lower vibration modes of the dam body. Using different signal processing methods such as Power Spectra Density, the results of in-situ tests have been used to evaluate the natural frequencies, mode shapes and modal damping of the dam body. Besides ambient vibration tests, the 3-D modal analysis of the dam body was performed using ANSYS software. The foundation and abutment flexibility effects on dynamic characteristics of the dam body was investigated and the dynamic soil properties were used from Engineer's report and some empirical relations. Also initial shear modulus of the dam body and foundation materials were evaluated by refraction survey. In this paper, the test procedures, related signal processing results, numerical analysis results and its comparison with the dynamic characteristics of the dam body obtained from the full-scale dynamic tests will be presented. Finally, calibrating procedures of the numerical model (based on increasing the accuracy of dam body geometry, soil and rock material parameters and foundation and abutment flexibility) will be discussed.

Keywords: Embankment Dam, Dynamic Characteristics, Ambient Vibration Test, Modal Analysis.
فهرست علائم

\[
\begin{align*}
\text{k}_2 & \quad \text{طیف همبستگی متقاطع} \\
\text{Mود ارتعاشی طولی} & \quad \text{CPS و S}_{XY} \\
\text{NFFT} & \quad \text{C}_S \text{ و } \gamma_{xy} \\
\text{OCR} & \quad \text{نسبت تعامل خاکی} \\
\text{PSD و S}_{xx} & \quad \text{امنیت فرکانس مودی سد} \\
\text{R}_{xx} & \quad \text{روش تحلیل اجزاء محدود} \\
\text{R}_{xy} & \quad \text{تبدیل فوریه سریع} \\
\text{U-D} & \quad \text{مدل برای دینامیکی بیشته مصالح خاکی} \\
\text{V} & \quad \text{ارتفاع حداکثر ناحیه از روي فونداسیون} \\
\text{v} & \quad \text{ضخامت بستر الانتیک} \\
\sigma' & \quad \text{ضخامت تکه کاهای جابجای الانتیک} \\
\sqrt{-1} & \quad \text{I} \\
\end{align*}
\]

1-مقدمه

با توجه به روند رو به گسترش ساخت سد‌های خاکی در کشور در سال‌های اخیر و محدودیت ویژه لازم‌ترهای خبری کشور، ضروری است تاثیر بیشتری در مورد رفتار این سد‌ها در حین وقوع زمین لرزه حاصل شود. بررسی رفتار زمین لرزه ای سد‌های خاکی معمولاً به چهار روش صورت می‌پذیرد: "استفاده از نگاشتهای لایه شده از پاسخ سد به زلزله‌های واقعی"، "زمین لرزه از آزمایش‌های اختصاصی در خاک و به‌وسیله انجام تحقیقات و انجام آزمایش‌های تحقیقی"، "بکار بردن روش‌های ابداعی در زمینه ساختمان‌های هم‌ارتباطی" و "بکار بردن روش‌های ساختمان‌های هم‌ارتباطی در زمینه ساختمان‌های هم‌ارتباطی".

آزمایش‌های ارتعاشی در جا و نهایتاً "انجام تحقیقات عمده"، بررسی رفتار سد‌های خاکی با استفاده از زلزله‌های واقعی به دلیل نیاز به افزایش دقیق بر روی بدنه سد از یک طرف و وقوع زمین لرزه در منطقه است. انجام آزمایش‌های آزمایشگاهی بر روی سهمه‌های کوچک بسیار مشابه سد مانند آزمایش‌های ساخت مدل زمین و یا گرینز از مرکز نیز، یکی از مهم‌ترین اعمال آزمایش‌های ارتعاشی دامنه‌ها را راه‌حل معینی که روی یک‌یا مشکلاتی از قبیل هزینه ساختن آزمایش‌ها و مطالعه بر روی مدل کوچک‌شده سد به جای مطالعه بر روی اندازه واقعی مواجهه است. در این میان آزمایش‌های ارتعاشی از جا مانند آزمایش‌های ارتعاشی محسوب

استقلال، ۱۲، سپانه، ١، شهرورد ١۳۸۲

۱۱۰
شامل فرانسه‌ها. اشکال و میرایهای مودی سد به دست آمد و به کمک آن مدل عدیده تحلیل دینامیک سد در محدوده
کرنش‌های کوچک با انجام مقایسه بین رفتار دینامیکی یکی
شهده و رفتار مشاهده شده (بعد از ساخت سد) تدقیق شد. با
کالپیراسیون مدل عدیده در کرنش‌های کوچک می‌توان دو منابع
واقعیت از رفتار سد را در زمین لرزه‌های بزرگ آنی با استفاده
از روش‌های عدیده غیر خشک به دست آورد. در مقاله خاض
نحو انجام آزمایش ارتعاش مهیجی بر روی سد، پردرازی
زکوهای حاصله، تحلیل عدیده صورت گرفته به روش سد،
مقایسه بین نتایج آزمایش و تحلیل و در نهایت تدقیق مدل
عدیه ارائه می‌شود.

2- معرفی سد مخزنی مارون
سدهای مخزنی مارون در جنوب غربی ایران و در
کیلومتری شمال شرق بهبهان بر روی رودخانه مارون احداث
شهده است. این سد که از نوع سرگزرهای ای به همین رسمی است
با حجم مخزنی 12 میلیارد متر مکعب دارای ارتفاع حاکم
165m از روی فونداسیون، طول تاج 345 ت و عرض تاج
150m متر است. بندهای این سد مشکل از ۹ نوع مصالح خاکی گوناگون
است که جمعاً حجمی حدود ۸۷/۵ میلیون متر مکعب را شامل
می‌شود. طراحی این سد توسط شرکت مهندسی مشاور مهاب
قدس و همکاری شرکت مهندسی مشاور را کانسالت-
بنیان‌گذاری از شکور و چسب در حفره و احداث آن در سال
1377 پایان یافت. است. [1] تحقیق سد مارون در نهایت ایران
در شکل (1) نشان داده شده و مقطع بیضی و همچنین بینان ایست
سد در شکل (2) مشاهده می‌شود.

3- مشخصات دستگاه‌های استفاده شده در آزمایش
ارتعاش مهیجی
SS-1-3- حسگرهای
آرزه سنجشی ۱-۹ با کوثر کامیارانی SS که ساخت گروه آزمایش
شد است. در مرجع [1] مشخصات جمعه کلیه آزمایش‌ها و
پرداخته شد. سرعت گردنه در سدهای مذکور جمع آوری شده و
در هنگام مورد نظر به تفصیل شرح داده شده است.
روشهای عدیده تحلیل دینامیک سدهای خاکی دارای
محدودیت‌هایی که عوامل مربوط به عدم تطبیق کامل مدل از
حافظ شرایط هندسی، مشخصات مصالح و شرایط مرزی و تکه
گاهی با خصوصیات واقعی سد است. ولی با وجود این، به
دلیل هزینه پایین انجام تحلیل در مقایسه با دیگر روش‌ها از یک
ظرف و نیاز به تهیه مدل عدیده برای بررسی کامیارانی
ازدهای سد در زمین لرزه‌های قوی از طرف دیگر، در کلیه
مطالعات رفتار لرزه‌ای سدهای خاکی از روش عدیده استفاده
می‌شود. در مجموع توصیه می‌شود که این مطالعات
ارتعاش مهیجی و تحلیل‌های عدیده به صورت هم‌زمان در
مطالعات پارامترهای لرزه‌ای سدهای خاکی استفاده شود و از این
رهگذر، علایق به دسترسی به مشخصات در جای دینامیکی
سدهای عدیده سد نیز برای استفاده در مطالعات کامپیوتر تدفیق
شود.

بی جای خطر بالایی لرزه خزین در کشور و ضرورت
تدقیق مدل‌های محاسباتی تحلیل و طراحی سازه‌های یپسرگ در
مقابل زمین لرزه با انجام آزمایش‌های انجام‌شده در چارچوب روی
سازه‌های واقعی، پژوهشگاه بین المللی زلزله شناسی و
مهندسی زلزله در چارچوب برنامه تحقیقاتی خود، انجام
آزمایش‌های ارتعاش مهیجی و اجباری بر روی سدهای خاکی را
به موانع انجام آزمایش‌های بزرگ سدهای خاکی بینی
ساخته‌های بلند و سکوهای نیفت دریایی برای اولین بار در
ایران در دستور کار خود قرار داده است. بی‌بینان منظور پیش از
مطالعه سدهای خاکی موجود در کشور، دو سد خاکی مارون و
مسجد سلیمان در استان خوزستان به دلیل خصوصیات خاص
آنها انتخاب شد و بر روی سد مارون آزمایش‌های انجام
ارتعاش مهیجی و آزمایش زنسیزمیک در بیمار و نابی‌اند
۱۳۸۷/ ۹ موفقیت انجام شد. بنابراین انجام آزمایش‌ها و مطالعات تحلیلی
مربطه، پارامترهای ارتعاشی سد در محدوده کرنش‌های کوچک

111
استقلال، سال 22، شماره 1، شهریور 1382
شکل 1- موقعیت سد مارون بر روی نقشه ایران

کیمی‌پیکس اند دارای خصوصیات حساسیت بالا، قابلیت تنظیم فرکانس طبیعی، ساختار محکم و با دوام و ضد آب با ابعاد ۱۵۰۰ میلی‌متر قطر، ۴۰ میلی‌متر طول و وزن ۵ کیلوگرم هستند. خروجی مستورمناسب با سرعت ارتعاش محل استقرار آن است و فرکانس طبیعی حسگر نیز در حالت معمولی برای یک هرتز است. محدوده کارکرد حسگرها از 0/۰۱ هرتز تا حداقل ۵۰ هرتز است و این در حالی است که نسبت مصرفی را ۱/۷۰ نمونه با تغییر یک مقاومت خارجی، بر روی مصرفی اسیمی تظیم کرد. در این حالت دامنه پاسخ فرکانس در محدوده بالای فرکانس طبیعی حسگر تغییری افکن است و در مقادير کوچکتر از فرکانس طبیعی با شیب 40 dB/dec کاهش می‌یابد. بدیل اینکه حسگرهای مذکور به صورت نافعال عمل می‌کنند نیازی به نیروی محرک خارجی ندارند و در رکودهای ثبت‌شده نیز مشکلات ظهور تلاش‌های با مقداری DC مشاهده

۱۱۲

استقلال، سال ۲۲، شهریور ۱۳۸۲
شکل ۲- پلان و نقشه تپ سد مارون به همراه موقعیت انفجارها سایتی و نحوه استقرار حسگرها در ناحیه
شیب‌های بالادست-پایین دست

۴- آزمایش ارتعاش محیطی
برای به دست آوردن پارامترهای ارتعاشی در جای بدن سد مارون، آزمایش‌های ارتعاش محیطی بر روی بدن سد انجام شد که در این مقاله به تشریح نحوه انجام آزمایش، پرداشته و رکوردهای حاصله و نتایج به دست آمده از آن می‌پردازیم.

۴-۱- نحوه انجام آزمایش
در آزمایش ارتعاش محیطی سد مارون که در خرداد ماه ۱۳۷۹ انجام شد، پاسخ سد به ارتعاشاتی که به صورت معمول در طبیعت وجود دارد به دست آمد. برخورد با دیواره‌ها یا بدن سد، فعالیت‌های مکانیکی و راه‌سازی و تزریق، حمل و نقل و سایت نقشه، رفت و آمد افراد، حركات زمین ساخیت

۱۱۴
استقلال، سال ۲۲، شماره ۱، شهریور ۱۳۸۲
دست پایین دست (U-D)، طول ناحیه (L) و قانون (V) مستقر شدن و در هر کدام از جهات ذکر شده ارتعاشات نقاط محل استقرار خود را به صورت همزمان ثبت کرده. برای مشخص کردن خطای ناشی از نحوه استقرار حسگرها بر روی قسمتهای خاکی به نزدیکی سطح، از ته دستگاه حسگر با فاصله هدایت از یکدیگر استفاده شد. بدین صورت که یک دستگاه بر روی یک قطعه سگ برزگ گیردار در زمین دستگاه دوم بر روی یک قطعه بلوک بینی 50x50 مکف در زمین و دستگاه سوم نیز مستقیما بر روی خاک سفت قرار گرفت و کلیه دستگاهها به صورت همزمان، ارتعاشات محیطی را ثبت کردن. نتایج آزمایش ارتباط کامل دامنه و محوری فرانکنی نگاشتهای دو حسگر اخیر حکایت می‌کرد که بر این اساس، در ادامه آزمایش، کلیه حسگرها مستقیما بر روی خاک سفت محکم شدند. در هر کدام از آزمایش‌های اصلی آزمایش ارتعاش محیطی، مشخصات پارامترهای دستگاه‌های طریق تعیین شد که در طول یک شبان روز، هر ساعت به مدت 65 دقیقه رکورد گیری پیوسته با نرخ نمونه برداری 100 هرتس صورت گیرد.
شکل 4- ال-تاریخ‌چگی زمانی سرعت ثابت شده در نقطه‌ای از تاج سد خاکی مارون (واقع در 1/4 طولی سمت راست) در آزمایش ارتباط محتوی ب- چگالی طیف نوار رکورد ج- دامنه طیف نوار منتقاط در رکورد مذکور نسبت به نقطه مرجع واقع در مرکز تاج د- طیف ارتباط در رکورد مذکور ه- فاز طیف نوار منتقاط در رکورد

\[S_{xx}(f) = \int_{-\infty}^{\infty} R_{xx}(\tau)e^{-j2\pi ft}d\tau \]

\[S_{xy}(f) = \int_{-\infty}^{\infty} R_{xy}(\tau)e^{-j2\pi ft}d\tau \]
در معادلات فوریان متغیره‌ای S_{xx} عددی از نتایج چگالی طیف همبستگی متقاطع γ_{xy}، طیف همبستگی متقاطع γ_{xy}، طیف ارتباط γ_{xy}، طیف همبستگی متقاطع γ_{xy}، و R_{xx} نتایج همبستگی متقاطع γ_{xy} و R_{xx}.

\[
\gamma_{xy}(f) = \frac{|S_{xy}(f)|^2}{S_{xx}(f)S_{yy}(f)}
\]

در شکل (4-این) رکورد ارتقاء محیطی نقطه ای نتایج سد در جهت بالا دست-پایین دست، در شکل (4-این) پیک مکانیک طیف همبستگی متقاطع γ_{xy}، طیف همبستگی متقاطع γ_{xy}، طیف ارتباط γ_{xy}، طیف همبستگی متقاطع γ_{xy}، و R_{xx} نتایج همبستگی متقاطع γ_{xy} و R_{xx}.

\[
\gamma_{xy}(f) = \frac{|S_{xy}(f)|^2}{S_{xx}(f)S_{yy}(f)}
\]

در معادلات فوریان متغیره‌ای S_{xx} عددی از نتایج چگالی طیف همبستگی متقاطع γ_{xy}، طیف همبستگی متقاطع γ_{xy}، طیف ارتباط γ_{xy}، طیف همبستگی متقاطع γ_{xy}، و R_{xx} نتایج همبستگی متقاطع γ_{xy} و R_{xx}.

\[
\gamma_{xy}(f) = \frac{|S_{xy}(f)|^2}{S_{xx}(f)S_{yy}(f)}
\]
جدول 1- مشخصات مدل‌های نهایی استفاده شده در تحلیل مودال سد مارون

<table>
<thead>
<tr>
<th>شرح مدل</th>
<th>نام</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل ساده که در آن از پنج مقطع عرضی در مدل‌سازی استفاده شده است. مقیاس عرضی استفاده شده است. این مدل از لحاظ هندسی مصادف است و در مدل‌سازی از 11 مقطع عرضی استفاده شده است. و این مدل از لحاظ هندسی مشابه مدل 2 است. وی لی مشخصات مصالح. مدل 2 نسبت به 3 مدل از ارتفاع به صورت خطی افزایش داده شده است. این مدل از لحاظ هندسی مشابه مدل 3 است. و این تغییر مشخصات مصالح از تحلیل استاتیکی خطی استفاده شده است. کاملا مشابه مدل 8 است و برای تعیین مشخصات مصالح از تحلیل‌های استاتیکی غیرخطی استفاده شده است. مدل سه بعدی از نظر سه‌بعدی به صورت یک سطح به ارتفاع 125 متر و ضخامت‌های مختلفی از تکیه‌گاهی جابجایی مدول (0.5، 0.6، 0.7 و 0.8) به ارتفاع بین‌شبین سد مدل سه بعدی سد همراه با ضخامت‌های مختلفی از سنتیک بسترهای را (محل حرکت بنر) مدل سه بعدی سد و پرراب ارتفاع بیشینه سد و یکی گاهی) چندین مدل اجرای محدود سه بعدی از سد مارون با استفاده از برنامه ANSYS به تهیه شده و مورد تحلیل مقدار ویژه مودال) قرار گرفت. جدول (1) هفت سنتی‌گاهی مدل‌های نهایی مورد استفاده در این تحقیق را نشان می‌دهد. در بخش‌های آنی تأثیر یکی از عوامل مؤثر بر روی نتایج تحلیل مودال سد مارون مورد بررسی قرار می‌گیرد.</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۲- مشخصات مکانیکی مصالح به کار رفته در تحلیل مواد سد مارون بر اساس مقادیر پیش‌نهادی

<table>
<thead>
<tr>
<th>ضریب پوشاک</th>
<th>N</th>
<th>وزن مخصوص</th>
<th>TAشه و نوع مصالح</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۴</td>
<td>۲/۷</td>
<td>۰/۲۰۶</td>
<td>هسته رسی</td>
</tr>
<tr>
<td>۰/۲۴</td>
<td>۱۹/۵</td>
<td>۰/۵۰۲ - ۰/۳۷۶</td>
<td>مصالح فیلتر</td>
</tr>
<tr>
<td>۰/۴۲</td>
<td>۲/۰۵</td>
<td>۱/۰۶ - ۱/۲۱</td>
<td>شن بوست بالادست</td>
</tr>
<tr>
<td>۰/۴۲</td>
<td>۲/۱</td>
<td>۰/۴۸ - ۱/۰۷</td>
<td>شن بوست پایین دست</td>
</tr>
<tr>
<td>۰/۳۸</td>
<td>۲/۱</td>
<td>۰/۲۵ - ۰/۸۷</td>
<td>سنگریز بوست بالادست</td>
</tr>
<tr>
<td>۰/۳۸</td>
<td>۲/۱</td>
<td>۰/۲۵ - ۰/۸۷</td>
<td>سنگریز بوست پایین دست</td>
</tr>
<tr>
<td>۰/۳۸</td>
<td>۲/۱</td>
<td>۰/۲۵ - ۰/۸۷</td>
<td>سنگ پی</td>
</tr>
</tbody>
</table>

* از انجام تحلیل‌های مودی که تأثیر بستر سنگی و تکیه‌گاه‌های جانی بر مشخصات مودی سد در نظر گرفته می‌شود، جرم بستر سنگی و یا مقادیر بسیار تافوی وارد می‌شود در غیر اینصورت به دلیل حجم زیادی فندرایانسیون نسبت به بدنه سد، فرکانس‌های طبیعی سازه از مقدار واقعی دور می‌شود و به سمت فرکانس‌های طبیعی بستر می‌کند.

سپس می‌باشد. جهت ایجاد تغییرات در مشخصات مصالح در ارتفاع سد هشت مقطع بتنی اقی از سد سه بطور متوسط ۲۰ متر از یکدیگر فاصله دارند مش نظر قرار گرفت که وجود بالا بی‌پایینی بلوک‌ها به این صفحات محدود می‌شوند. به منظور مقایسه نتایج تحلیل مودال در مدل شماره ۲ و ۳ به منظور که فناوری‌های موجود بین نتایج تحلیل مودال این دو مدل صرفه‌نامه از توانایی توانایی نه‌سی و مدل مذکور بالاپناه مطالعه مصالح ارتفاع بسیار کم‌سپرده‌تر است. ادامه این توانایی نه‌سی و مدل مذکور بالاپناه تکیه‌گاهی در هر دو مدل پیکان در نظر گرفته شد. پایین اساس در هر مدل به مشخصات دینامیکی مصالح ارائه شده توسط مشاور طراح سد جدول (۲) استفاده گردید(۸). مدل بریش بهینه مصالح هر زون بسته خسته در ارتفاع سد تغییر در داده شد. همچنین ارتفاع بسیار بی‌پایینی از روز فندرایانسیون برای با ۱۲۰م در نظر گرفته شد که نتیجه با سریع‌تر واقع منحنی در زمان انجام آزمایشات ارتعاش محیطی است. از لحاظ شرایط مرزی - تکیه‌گاه هر دو مدل بر روی بستر

استقلال، سال ۲۲، شماره ۱، شهریور ۱۳۸۲

118
جدول ۳- تأثیر شرایط هندسی بر فراکسیون طبیعی مدل مارون بر حسب هر ترک

<table>
<thead>
<tr>
<th>شماره مود</th>
<th>مدل ۱</th>
<th>مدل ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱/۷۴</td>
<td>۱/۸۸</td>
</tr>
<tr>
<td>۲</td>
<td>۱/۹۱</td>
<td>۳</td>
</tr>
<tr>
<td>۳</td>
<td>۲/۱۳</td>
<td>۲/۸۴</td>
</tr>
<tr>
<td>۴</td>
<td>۲/۲۷</td>
<td>۲/۹۹</td>
</tr>
<tr>
<td>۵</td>
<td>۲/۶۲</td>
<td>۲/۱۸</td>
</tr>
<tr>
<td>۶</td>
<td>۲/۲۲</td>
<td>۳</td>
</tr>
<tr>
<td>۷</td>
<td>۲/۲۴</td>
<td>۳</td>
</tr>
<tr>
<td>۸</td>
<td>۳/۲۷</td>
<td>۳</td>
</tr>
<tr>
<td>۹</td>
<td>۳/۴۳</td>
<td>۳/۴۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۳/۶۰</td>
<td>۳/۶۵</td>
</tr>
<tr>
<td>۱۱</td>
<td>۳/۷۰</td>
<td>۳/۷۰</td>
</tr>
<tr>
<td>۱۲</td>
<td>۳/۷۷</td>
<td>۳/۷۷</td>
</tr>
<tr>
<td>۱۳</td>
<td>۳/۸۴</td>
<td>۳/۸۴</td>
</tr>
<tr>
<td>۱۴</td>
<td>۳/۹۱</td>
<td>۳/۹۱</td>
</tr>
<tr>
<td>۱۵</td>
<td>۳/۹۵</td>
<td>۳/۹۵</td>
</tr>
</tbody>
</table>

مدل‌ها یکسان در نظر گرفته شد. به عبارت دیگر ارتفاع آب پیش‌سدر در تمام مدل‌ها ۱۲۰ m در نظر گرفته شد و فرض یافت.

شکل ۵- مدل‌های اجزای محدود سه بعدی سد مارون در حالت‌های الف- مدل شماره (۱) ب- مدل شماره (۲)
جدول ۴- مشخصات مصالح برای تحلیل استاتیکی سه بعدی
بدن سد [۱۵]

<table>
<thead>
<tr>
<th>ضریب</th>
<th>مصالح</th>
<th>مدلول پایکنگ (KN/m²x10⁴)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شن ۱۳۰</td>
<td>۱۵۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>سنگ ریز</td>
<td>۱۰۰</td>
<td>۷۰</td>
</tr>
<tr>
<td>فیلترهای بخش پایین دست</td>
<td>۶۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>فیلترهای بخش بالا دست</td>
<td>۴۰</td>
<td>۲۵</td>
</tr>
<tr>
<td>همینه رسی</td>
<td>۲۰</td>
<td>۱۰</td>
</tr>
</tbody>
</table>

بر این اساس فشار آب مخزن به صورت یک فشار هیدروستانزیکی بر روی سطح خارجی همه در مجاورت بالا دست قرار داده شد و وزن محصور مصالح فیلتر و پوسته بالاست. در زیر سطح آب به صورت گرفته ور در نظر گرفته شد. در اینجا تأیید آب در سطح بالا نکته ضروري به نظر می‌رسد که در بررسی تأثیر آب مخزن بر تنها تحلیل مولود سدهای خاکی به جز سدهای خاکی با ورودی، به دلیل تخلخل بالا و شیب کم پوسته بالا دست، از فشار هیدروستانزیکی مخزن بر روی رفتاب دینامیکی سد می‌توان صرف نظر کرد [۱۵] و صرفاً تغییرات دانسیتی و سختی مصالح سمت ابعاد شده را در نظر گرفت.

پس از انجام تحلیل‌های استاتیکی، متوسط تنش‌های موتر اصلی موجود در هر یک از ۲۸۵ گرفت و در هر یک از بلکه‌ها سدان برشی دینامیکی بیشتر مصالح (G₀) با استفاده از روابط نجربی که حداکثر مولد برشی دینامیکی را براساس متوسط تنش‌های جنبی بیان می‌کند به دست آمد. برای این منظور در مورد مصالح فیلتر از معادله‌های هاردن-رژنر [۱۵] که عبارت است از:

\[G_i = \frac{3230(2.217 - e^2)}{1 + e} \left(\sigma_i' \right)^{1/2} \]

(۴) \[G_i = \frac{3230(2.217 - e^2)}{1 + e} \left(\sigma_i' \right)^{1/2} \]

که در آن G₀_i مدلول برشی دینامیکی بیشتر و \(\sigma_i' \) نسبت تخلخل و تنش موتر متوسط است. در مورد مصالح همه‌ریز از معادله‌های بررسی شد [۱۵] که عبارت است از:

\[G_i = \frac{3230(2.217 - e^2)}{1 + e} \left(\sigma_i' \right)^{1/2} \]

(۴) \[G_i = \frac{3230(2.217 - e^2)}{1 + e} \left(\sigma_i' \right)^{1/2} \]

به همین‌گونه که در شکل (۳) مشاهده می‌شود انجام تحلیل استاتیکی برای هدف آوردن تنش‌های موتر متوسط در نقاط مختلف بدن سد و استفاده از روابط نجربی برای برآورد مدل‌ریز

شکل ۶- تأثیر نحوه عملیات مشخصات مصالح بر فرکانس‌های طبیعی ۱۵ مود اول ارتعاشی سد مارون

\[G_i = \frac{3230(2.217 - e^2)}{1 + e} \left(\sigma_i' \right)^{1/2} \]

(۴) \[G_i = \frac{3230(2.217 - e^2)}{1 + e} \left(\sigma_i' \right)^{1/2} \]

سازمان جهانی انرژی، تولید کننده‌ای از مداری است که علت افزایش بودجه زلزله در ایران می‌باشد. با توجه به بررسی‌های‌که در اینجا انجام شد، مصالح سیلیکاتیار را می‌توان به عنوان یکی از مصالح مناسب برای استفاده در سد مارون بررسی کرد.

\[G_i = \frac{3230(2.217 - e^2)}{1 + e} \left(\sigma_i' \right)^{1/2} \]

(۴) \[G_i = \frac{3230(2.217 - e^2)}{1 + e} \left(\sigma_i' \right)^{1/2} \]

به همین‌گونه که در شکل (۳) مشاهده می‌شود انجام تحلیل استاتیکی برای هدف آوردن تنش‌های موتر متوسط در نقاط مختلف بدن سد و استفاده از روابط نجربی برای برآورد مدل‌ریز
شکل 7- مقطع میانی بالادست- پایین دست مدل اجزای محدود

SD مارون با در نظر گرفتن ضخامت بستر سئی پیامبر H

بررسی دینامیکی بیشینه مصالح، تأثیر قابل ملاحظه‌ای بر تناوب تحلیل مودال سد می‌باشد و مقدار فرکانس‌های مود سد با توجه به شکل (8) موجب کاهش فرکانس‌های طبیعی سیستم در حدود 15/4 سود همچنین تحلیل‌های انجام شده نشان می‌دهد که افزایش ضخامت تکیه‌گاهی جانی الاستیک (h1) موجب کاهش فرکانس طبیعی ارتعاش سد می‌شود ولی همانگونه که در جدول (5) مشاهده می‌شود مقدار این تغییر در نیمه سنگین تحلیل شده کمتر از 0/3/ است که اختلاف مربوط به فرکانس طبیعی سیستم با تکیه‌گاهی جانی صلب و سیستم با تکیه‌گاه جانی الاستیک به ضخامت این h1 = 0.5H نتایج این بخش از تحلیل‌ها نیز در شکل (9) مشاهده می‌شود. در نهایت در انجام تحلیل‌های مدل نهایی از مدل عدیدی استفاده شد که در نظر گرفته شد و ضخامت بستر سنگی انعطاف پذیر آن H در نظر گرفته شد و ضخامت تکیه‌گاهی جانی انعطاف پذیر آن H/0 مقدار نظر قرار گرفت که شکل (7) مقطع میانی بالادست- پایین دست سیستم در مدل و A و B 24/6% است.

شکل 8- تأثیر ضخامت‌های مختلف بستر الاستیک بر الف- اولین

فرکانس مودی ب- دومین فرکانس مودی سد مارون

مدل عددی تایپ به مرتبه کمتری بر تناوب تحلیل مودال را گزارش می‌گذارد.

در هر حال در نظر گرفتن ضخامت بستر سنگی مطابق شکل (8) موجب کاهش فرکانس‌های طبیعی سیستم در حدود 15/4 می‌شود. همچنین تحلیل‌های انجام شده نشان می‌دهد که افزایش ضخامت تکیه‌گاهی جانی الاستیک (h1) موجب کاهش فرکانس طبیعی ارتعاش سد می‌شود ولی همان‌گونه که در جدول (5) مشاهده می‌شود مقدار این تغییر در نیمه سنگین تحلیل شده کمتر از 0/3/ است که اختلاف مربوط به فرکانس طبیعی سیستم با تکیه‌گاهی جانی صلب و سیستم با تکیه‌گاه جانی الاستیک به ضخامت این h1 = 0.5H نتایج این بخش از تحلیل‌ها نیز در شکل (9) مشاهده می‌شود. در نهایت در انجام تحلیل‌های مدل نهایی از مدل عدیدی استفاده شد که در نظر گرفته شد و ضخامت بستر سنگی انعطاف پذیر آن H در نظر گرفته شد و ضخامت تکیه‌گاهی جانی انعطاف پذیر آن H/0 مقدار نظر قرار گرفت که شکل (7) مقطع میانی بالادست- پایین دست سیستم در مدل و A و B 24/6% است.

شکل 9- تأثیر اصلاح شرایط تکه‌گاهی بر تناوب تحلیل مودال

SD مارون

SD مارون بر روی یک بستر سنگی قرار گرفته است که مدل بررسی آن بر مبنای اطراف به دست آمده از گزارش‌های مشاور طراح سد [12] و نیز تابعه اطلاعات زیرای اس و سد در این پژوهش بر روی دبند و بستر سد صورت گرفته است [11] بر اساس $V = 12 \times \frac{KN}{m^2}$ و ضریب پواسون آن $G = 0.3$ تربوئید است. بر این اساس به مظور در نظر گرفتن اثر انعطاف پذیری تکیه‌گاه از مختصات انعطاف‌برداری سد مارون شامل ضخامت‌های مختلفی از سه بستر و تکیه‌گاهی جانی به صورت درصدی از ارتفاع کلی سد (H) در نظر گرفته شد. نتایج این تحلیل‌ها نشان می‌دهد که فرکانس طبیعی سیستم از نظر کلی در نظر گرفته شده و در نظر گرفته شد و ضخامت بستر سنگی انعطاف پذیر آن H در نظر گرفته شد و ضخامت تکیه‌گاهی جانی انعطاف پذیر آن H/0 مقدار نظر قرار گرفت که شکل (7) مقطع میانی بالادست- پایین دست سیستم در مدل و A و B 24/6% است.
جدول ۵- اثر انعطاف بهره‌برداری گشته‌های جابجایی بر فرکانس‌های مودل مدل سه بعدی سرد مارون بر حسب هرتز

<table>
<thead>
<tr>
<th>h1/H</th>
<th>0.1</th>
<th>0</th>
<th>0.7</th>
<th>مود ۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۹۴</td>
<td>۰/۹۴</td>
<td>۰/۹۴</td>
<td>۰/۹۴</td>
<td>مود ۲</td>
</tr>
<tr>
<td>۰/۱۹</td>
<td>۰/۱۹</td>
<td>۰/۱۹</td>
<td>۰/۱۹</td>
<td>مود ۳</td>
</tr>
<tr>
<td>۰/۲۹</td>
<td>۰/۲۹</td>
<td>۰/۲۹</td>
<td>۰/۲۹</td>
<td>مود ۴</td>
</tr>
<tr>
<td>۰/۲۸</td>
<td>۰/۲۸</td>
<td>۰/۲۸</td>
<td>۰/۲۸</td>
<td>مود ۵</td>
</tr>
<tr>
<td>۰/۲۷</td>
<td>۰/۲۷</td>
<td>۰/۲۷</td>
<td>۰/۲۷</td>
<td>مود ۶</td>
</tr>
<tr>
<td>۰/۲۶</td>
<td>۰/۲۶</td>
<td>۰/۲۶</td>
<td>۰/۲۶</td>
<td>مود ۷</td>
</tr>
<tr>
<td>۰/۲۵</td>
<td>۰/۲۵</td>
<td>۰/۲۵</td>
<td>۰/۲۵</td>
<td>مود ۸</td>
</tr>
<tr>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>مود ۹</td>
</tr>
<tr>
<td>۰/۲۳</td>
<td>۰/۲۳</td>
<td>۰/۲۳</td>
<td>۰/۲۳</td>
<td>مود ۱۰</td>
</tr>
</tbody>
</table>

مدال می‌شود به طوری که فرکانس‌های طبیعی سیستم به مدت فرکانس‌های طبیعی بستر سنگی می‌کند [۱۷].

۴-۵ استفاده از آزمایش‌های لرزه‌ای برای افزایش دقیقه تحلیل مودال

مطالعات لرزه‌ای سطحی در سال ۱۳۷۹ بر روی بدن و تکیه‌گاه‌های سرد مارون به منظور شناخت پارامترهای دینامیکی مصالح تکیه‌گاه‌های مختلف سرد و تکیه‌گاه‌های انجام گردیده است [۱۶]. با انجام آزمایش‌های لرزه‌ای سطحی بر روی بدن سد در مجموع شش پروفیل لرزه‌ای انتخابی برداشت شده است که شامل پروفیل در پسته بالادست، پروفیل در پسته پایین‌دست، پروفیل در تاج سد و پروفیل در تونل W2 واقع در تکیه‌گاه راست می‌باشد [۱۶]. در این آزمایش‌ها که از دو نوع انجام موج (با استفاده از ضریب چکش بر روی صفحه فولادی مدفون در حاک و دو انفجار سپر در تکیه‌گاه‌های سرد) استفاده شده است، ۲۴ دستگاه زنر و ماهیت اولین محله‌ای رسمی به نقاط مورد نظر به کار رفته است.

شکل ۹- تأثیر ضخامت‌های مختلف تکیه‌گاه‌های جابجای

البتیک بر این- اولین فرکانس مودی ب- دوییم فرکانس

مدال سد مارون آن نشان داده است، شبایان ذکر است در این تحلیل‌ها جرم بستر سنگی صفر نگرفته شد، زیرا در نظر گرفتن هر سنگ در مدل تحلیلی با توجه به حجم نسبتاً زیاد توده سنگی در مدل عددی موجب پرور خاطرات بزرگی در نتایج تحلیل

استقلال، سال ۲۰/ شماره ۱، شهريور ۱۳۸۲

۱۲۲
جدول ۶- مقایسه فرکانسی مودی حاصل از تحلیل‌های عدیدی و آزمایش‌های ارتعاش محیطی

<table>
<thead>
<tr>
<th>FEM</th>
<th>آزمایش‌های درجا</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدید</td>
<td>عدید</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U-D</th>
<th>جهت ی</th>
<th>جهت ۱</th>
<th>جهت ۷</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۹۵</td>
<td>۱/۹۹</td>
<td>۲/۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>۱/۷۰</td>
<td>۲/۲۹</td>
<td>۳/۳</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲/۴۴</td>
<td>۲/۴۴</td>
<td>-</td>
<td>۲۳</td>
</tr>
<tr>
<td>۳/۱۰</td>
<td>-</td>
<td>-</td>
<td>۱۳</td>
</tr>
<tr>
<td>۲/۰۹</td>
<td>۲/۰۹</td>
<td>۲/۰۵</td>
<td>۱۱</td>
</tr>
<tr>
<td>۲/۰۹</td>
<td>۲/۰۹</td>
<td>۲/۰۵</td>
<td>۱۱</td>
</tr>
<tr>
<td>۲/۰۸</td>
<td>۲/۰۸</td>
<td>۲/۰۸</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲/۴۷</td>
<td>-</td>
<td>-</td>
<td>۱۳</td>
</tr>
<tr>
<td>۲/۴۷</td>
<td>-</td>
<td>-</td>
<td>۱۳</td>
</tr>
<tr>
<td>۲/۴۱</td>
<td>۲/۱۹</td>
<td>۲/۰۵</td>
<td>۱۱</td>
</tr>
<tr>
<td>۲/۴۱</td>
<td>۲/۱۹</td>
<td>۲/۰۵</td>
<td>۱۱</td>
</tr>
<tr>
<td>۲/۱۹</td>
<td>۲/۰۵</td>
<td>۲/۰۵</td>
<td>۱۱</td>
</tr>
<tr>
<td>۲/۰۸</td>
<td>۳/۱۰</td>
<td>۳/۱۰</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲/۱۹</td>
<td>۳/۱۰</td>
<td>۳/۱۰</td>
<td>۱۲</td>
</tr>
</tbody>
</table>

در این موارد فرکانس مودی ارتباط است و مربوط به حالاتی است که شکل مودی مورد نظر از تحلیل‌های عدیدی و با آزمایش ارتعاشی درجه به دست یابیده و با قابل تشخیص تبوده است.

کالیبراسیون FEM با نتایج آزمایش‌های زئوپاسیمیک نشان می‌دهد که مقادیر مربوط به مدل بررسی بیشتر مصایح پوسته که از آزمایش‌ها زئوپاسیمیک به دست آمده است، بین ۱/۷ تا ۱/۷ برای تکنیک ارائه شده توسط مشاور مطرح می‌باشد. لذا در این مرحله مقدار نسبت مدل بررسی حداکثر به دست آمده از آزمایش‌های ارزشی سطحی به مقدار آن از گزارش‌های ارائه شده توسط مشاور برای ۱/۷ در نظر گرفته شد و بر این اساس مشخصات مصالح در مدل نهایی اصلاح گردید. در بخش آینده به پرسی تأثیر این اصلاح بر افزایش دقت خروجی تحلیل‌های FEM برداخته خواهد شد.

۶- کالیبراسیون نتایج تحلیل عدیدی با آزمایشات ارتعاش محیطی

به طور کلی هدف نهایی از کلیه تحلیل‌های عدیدی انجام شده در این تحقیق و استخراج فرکانس‌ها و اشکال مودی مورد مقایسه قرار گرفته که مدل‌های مذکور عبارتند از:

۱۲۳
تیپ جوی گری

1- برای پیدا کردن مشخصات دینامیکی و توقیف مثلثی یک سد خاکی، به استفاده از آزمایش انتظاری در جاولان بهره‌مندی فرض می‌شود.

2- مقایسه نتایج حاصل از آزمایش انتظاری محیطی و تحلیل عادی صورت گرفته قبلاً حاکی از اختلاف زیادی بین فرکانس‌های موردی داده‌های داده‌های در طولی که در اولین فرکانس موردی 27/4 مدرک و در موهای بالاتر افزایش می‌یابد.

3- تحلیل‌های FEM انجام شده در این پژوهش نتایج دقیق ترین به توجه به اطلاعات موجود از شکل‌های و مشخصات مصالحی بندان و یک سد و نتایج آزمایش‌های زنتاسیمک به دقت پیشین تهیه شده است به طوری که فرکانس مخصوص اولین مورد جهت بالادست‌پایین دست نشان‌های 5/5/5 با نتایج آزمایش‌های انتظاری محیطی احتمالات نشان‌دهی می‌دهد. در روند تحلیل‌های صورت گرفته، نتایج زیبایی تهیه نمی‌شود.

4- نتایج مقارن با مقایسه تفسیر مشخصات سد ماریو، نتایج به‌سادگی قابل توجهی تغییر می‌کند. درصد کاهش فرکانس سوم اول انتظار. این نتایج نشان‌گرفته تأثیر زیاد عملکرد انعطاف پذیر فنوساین بر روی سد دینامیکی سد‌های خاکی است. با استفاده از مدل‌های که در بند (ج) توضیح داده شد نتایج تحلیل‌های مجدداً به نتایج آزمایش‌اتناب گیریده شدن به طوری که اختلاف فرکانس طیبی به‌طوری که اختلاف گرفت. انتظاری در جا به‌طوری که اختلاف گرفت.
شکل ۱۰ - شکل‌های مودی سه بعدی سد مارون حاصل از تحلیل FEM

در شکل سمت راست پلان و در سمت چپ دید از بالادست به پایین دست

- استفاده از آزمایش‌های روش‌سازی‌های در پراورد صحیح مشخصات بدن سد و بستر آن و افزایش دقت مدل تحلیل
- انتخاب پذیرش در نظر گرفتن بستر سنگی و تکیه‌گاه‌های جانی
- نسبت به حالت صلب در نظر گرفتن موج‌های کاهش فرکانس
- اولین مود ارتعاشی سد به میزان ۱۵/۵ می‌شود.

استقلال، سال ۱۳۸۲ شهریور ۱.
مشخصات مکانیکی مصالح به کمک این آزمایش‌ها فکر کننده اولین مود ارتعاشعی سنتی به حالتی که مشخصات مکانیکی مصالح با استفاده از تحلیل استاتیکی و روابط نرم‌گیری بدهد اتمام می‌کند. به میزان 14/8 درصد آزمایش می‌باید و با تابع حاصل از آزمایش ارتعاشع محیطی نامه 1/5 اختلاف نشان می‌دهد.

- با توجه به مطالعات انجام گرفته در این تحقیق توصیه می‌شود جهت برآورد دقیق مشخصات دینامیکی سدهای خاکی موارد ذیل رعایت شود:

- در صورت امکان طی پارامترهای دوره ای سد، آزمایش ارتعاشع محیطی بر روی بدن سد صورت گیرد.

قدرداتین

در اینجا از مراحلی تحقیق می‌توان سازمان آب و برق خوزستان، دفتر مهندسی مشاور مهاب قدس و همکاری صمیمانه مشاور مهاب قدس و همکار، مشاور و پیمانکار سد مارون به سبب دلیل مساعده در انجام آزمایشات در جا بر روی سد دسترسی به نشانه‌ها و اطلاعات فنی مورد نیاز تامه

وازه تامه

1. prototype
2. Romconsult-Bucharest
3. passive
4. DC offset voltage problem
5. nominal resolution
6. dynamic range
7. Stationary
8. power spectral density
9. cross correlation spectrum
10. coherence spectra
11. auto correlation function
12. cross correlation function
13. hanning window
14. periodogram
15. Welch method
16. orthogonality
17. Hardin-Black
18. Hardin-Dnevich
19. seed
20. seismic refraction
21. investigation

مراجع

1. جعفری، م. ک. داوود، م. "آزمایش‌های ارتعاشعی اجبای و محیطی در سدهای خاکی"، تهران، 1381.
2. فرهنگی، ب. سلسله‌ای معاصر ایران کمیته ملی سدهای خاکی ایران، تهران، 1379.

Calif., 1990.
6. آفکچکجان، ع.، معماری، ع. "آزمایش‌های لرزه‌ای بر

استقلال، سال 22، شماره 1، شهريور 1382 126
روی ساخته‌های واقعی، جلد اول و دوم، تهران، پژوهشگاه بین‌المللی زلزله شناسی و مهندسی زلزله، 1372.

12. تحلیل دینامیکی سد مارون، گزارش شرکت مهندسی مشاور مهاب قدس، تهران، 1365.

13. تعیین و تحلیل استاتیکی و پایداری و کنترل زهاب سد مارون، گزارش شرکت مهندسی مشاور مهاب قدس، تهران، 1365.

16. گزارش مقدماتی مطالعات لرزه‌ای سطحی در محل سد مارون، پژوهشگاه بین‌المللی زلزله شناسی و مهندسی زلزله، تهران، 1379.

17. حاج موسی ع. آزمایی برای نشان دادن اثرات هیجان‌های ارتغالی و آزمایشات ارتغال محیطی، یابی‌های کارشناسی ارشد، دانشگاه تربت مدرس، زمستان 1379.