تعیین مشخصات دینامیکی سد مارون با استفاده از آزمایش‌های ارتعاش محیطی FEM و روش عددی

محمد کاظم جعفری، محمد داوودی و مهران سید رضوی
پژوهشگاه بین المللی زلزله شناسی و هندسی زلزله
(دریافت مقاله ۱۴/۹/۱۴۹۱، بررسی نسخه نهایی ۵/۱/۱۴۹۲)

چکیده: تعیین مشخصات دینامیکی سازه‌های مهمی از جمله سدک‌های خاکی در مناطق زلزله‌پر خیز جهان از اهمیت ویژهای برخوردار است. بر این مبنای برای اولین بار در ایران آزمایش‌های ارتعاش محیطی بر روی سد مخزنی مارون صورت گرفته است و به کمک روش‌های جدید برداشت‌سنجی، مشخصات دینامیکی این سد از جمله فرکانس‌ها، اشکال و سیل‌پیچی‌های مودی بدنه سی دست آمده است. همچنین مدل‌های اجرای محدود این سد با استفاده از نرم‌افزار رآپینه ای ANSYS تهیه شده است و با این حال بدین دقت مدل‌سازی از نظر شرایط هندسی، مشخصات مصالح، شرایط مرزی-تبکه کامی و نهایتا کانیبراسیون مدل FEM سد با نتایج آزمایش‌های ارتعاش محیطی مدل عددي سد مارون در محدوده کرنشهای کوچک تهیه شده است.

واژگان کلیدی: سد خاکی - مشخصات دینامیکی - آزمایش‌های ارتعاش محیطی - تحلیل مودال

Evaluation of Dynamic Characteristics of Marun Embankment Dam Using Ambient Vibration Test and FEM

M.K. Jafari, M. Davoodi and M. Razzaghi
International Institute of Earthquake Engineering and Seismology

Abstract: There is a worldwide interest in the proper design of embankment dams to resist earthquake loadings. For the first time in Iran, a complete ambient vibration survey due to low-level loads such as wind, machinery activities, low level tectonic activities, and water exit from bottom outlet was performed on Marun embankment dam. These kinds of ambient vibration tests are suitable for manifesting the lower vibration modes of the dam body. Using different signal processing methods such as Power Spectra Density, the results of in-situ tests have been used to evaluate the natural frequencies, mode shapes and modal damping of the dam body. Besides ambient vibration tests, the 3-D modal analysis of the dam body was performed using ANSYS software. The foundation and abutment flexibility effects on dynamic characteristics of the dam body was investigated and the dynamic soil properties were used from Engineer's report and some empirical relations. Also initial shear modulus of the dam body and foundation materials were evaluated by refraction survey. In this paper, the test procedures, related signal processing results, numerical analysis results and its comparison with the dynamic characteristics of the dam body obtained from the full-scale dynamic tests will be presented. Finally, calibrating procedures of the numerical model (based on increasing the accuracy of dam body geometry, soil and rock material parameters and foundation and abutment flexibility) will be discussed.

Keywords: Embankment Dam, Dynamic Characteristics, Ambient Vibration Test, Modal Analysis.
یک آزمایش ارتعاشی در جا و نهایتاً ارتعاش تحلیل‌یابی عدید. بررسی رفتار سدهای خاک با استفاده از زیرآب‌های واقعی به دلیل نیاز به ایزوگرافی دقیق بر روی بدنه سد زیر طرف و وقوع زمین لرزه در منطقه تحلیل‌گرگی دیگر اغلب داشته و گام‌گیری دست نیافته است. انجام آزمایش‌های آزمایش‌گاهی بر روی مدل‌های کوچک می‌حساسیت سد ساخته‌اند. آزمایش‌های بزرگ بر روی مدل‌های کوچک مقایسه‌ای انجام گرفته است. گرچه امکان اعمال نیروهای ارتعاشی دخواش و راه‌ها ممکن است، می‌کند ولی مشکلاتی از قبیل هزینه سگی در آزمایش و مطالعه بر روی مدل کوچک شده سد به جای مطالعه بر روی اندازه واقعی مواجه است. در این حال آزمایش‌های ارتعاشی در چاپ سه‌بعدی آزمایش‌های محیطی بر روی مدل واقعی سدهای خاکی از سال 1973 آغاز شده است و تا به حال بر روی 16 سد خاکی بزرگ بر اهمدافت مشترک صورت گرفته است. آزمایش ارتعاش اجباری بر روی مدل واقعی سدهای خاکی بزرگ نیز در فاصله زمانی 1980-1986 بر روی 11 سد انجام
شامل فرکانسها، اشکال و میرایه‌های مولوی سد به دست آمد و همه آن مدل اعضا تحلیل دینامیک سد در محدوده کرنش‌های کوچک با انجام مقابله بین رفتار دینامیک پیش‌بینی شده و رفتار مشاهده شده (بعد از ساخت سد) تدقيق شده. با کلیپرایسیون مدل اعضا در کرنش‌های کوچک از طریق انتقال واقعی از رفتار سد را در زمین حالت‌های برگ آن را با استفاده از روش‌های استادی خطر به دست آورد. در مقاله حاضر کاربرد روش‌های کاربردی تحلیل و تحلیل در نهایت تدقيق مدل زیر، ارائه می‌شود.

2- معرفی سد مخزنه مارون

سد مخزن مارون، در جنوب غربی ایران و در 19 کیلومتری شمال شهر بهبهان بر روی رودخانه مارون احداث شده است. این سد که از نوع سکوریزه ای به همراه رژیم ثابت با حجم مخزن 210 میلیارد متر مکعب دریای ارتفاع حداکثر 160m از رود فونداویون، طول تاج 345 و عرض تاج 15 متر است. بدنه این سد مشکل از 9 نوع مصالح جنگلی گوناگون است که جمعا حجمی حدود 870 میلیون متر مکعب را شامل می‌شود. طراحی این سد توسط شرکت مهندسان مشاور مهاب پرداخته و به احتساب از کش صخره‌ای صورت گرفته و احداث آن در سال 1377 انجام شده است. سد مارون در تقاطع ایران در 10 نشان داده شده و مقطع تاب و همچنین پلان ایسند در شکل (2) مشاهده می‌شود.

3- مشخصات دستگاه‌های استفاده شده در آزمایش

ارتعاش محیطی

SS-1-3- حسگرهای 1

از آنگاه سنجش پرتو کننده (SS-1) که ساخت کارخانه‌که سابقات استقلال، سال ۲۲، شماره ۱، شهريور ۱۳۸۲
کیمی‌تریکس اند در ایل منجی‌ها حریم سیست‌های باعث شده است که
تمامی عکس‌ها به‌طور وسیعی در مطالعات صحرایی مورد
استفاده قرار گیرده‌اند.[3]

SSR-1-2 نیازهای

SSR-1 ساخت کارخانه کیمی‌تریکس می‌تواند
باید با آن در نظر گرفته شود. این دستگاه‌ها در
حالت معول قابلیت ضبط حریم را دارند و قادر به
نموده می‌باشند که تا به‌طور نسبی به

1500 نمونه در ثانیه وضوح اسیم و

محدوده دینامیکی

برای حریم

10 A/D

این نتایج ضبط ناگهانی، اطلاعات نمی‌خست بر روی

دبک سخت، این تابیت ضبط می‌شد و سپس به فلایی دیسک

و یا رایانه منتقل می‌شد.[4]
شکل ۲- پلان و مقطع تیپ سد مارون به همراه موقعیت انفجارهای سابقه و نحوه استقرار حسگرها در تاج شبهای بالا است-پایین دست

ضعیف، حرکت آب از تونل تخلیه تحتانی و کارکرد بمب‌های آب برای انتقال آب از مخزن به تاج سد از جمله منابع ایجاد ارتعاشات محیطی در سایت سد هستند. در این آزمایش، پاسخ نقاط مشخصی از بدن سد با استفاده از ۹ دستگاه حسگر-1 و ۴ دستگاه ثابت-1 SSR-1 اندازه‌گیری شد. به علت محدودیت تعداد لزه نگاراها و تک مولفه‌ای بودن آنها (امکان تصب حسگر و لیت ارتعاشات در جهت افقی و یا قائم) لزه نگاراها به نحوی آرایش بافتند که بتوانند مقاطع مهم سد را پوشش دهند. شکل (2) نحوه آرایش حسگرها در طول تاج سد (نیمه چپ) به راست و کل طول تاج) و همچنین در طول مقطع بینیم سد و شکل (3) نیز تصویری از یکی از آرایشهای مذکور را نشان می‌دهد. در آزمایش‌های مذکور، حسگرها در جهت بالا

۴- آزمایش ارتعاش محیطی

برای به دست اوردن پارامترهای ارتعاشی در جای بدن سد مارون، آزمایش‌های ارتعاشی محیطی بر روی بدن سد انجام شد که در این مقاله به تشریح نحوه انجام آزمایش، پرداش رزکره‌های حاصله و نتایج به دست آمده از آن می‌پردازیم.

۴-۱- نحوه انجام آزمایش

در آزمایش ارتعاش محیطی سد مارون که در خردود ماه ۱۳۷۹ انجام شد، پاسخ سد به ارتعاشاتی که به صورت معمول در طبیعت وجود دارد به دست آمد. برخورد باد و امواج دریایی با بدن سد، فعالیت‌های مکانیکی و راهسازی و تریق، حمل و نقل وسیع نقلیه، رفت و آمد افراد، حرکات زمين سنگین...
شکل 3- نمایی از تاج سر (دید از سمت راست به چپ) و نمودار از آراشی حسگرها

دست پایین دست (U-D)، طول تاج (L) و قائم (V) مستقر

در آزمایش ارتعاش محیطی سد مارون با وجود انکه حرکات برفی ناظر تکیه گاهی و چانه‌ای سد در سطح نماس سد و فونداسیون اندازه گیری شده است، به دلیل ترکیب اندکی سد-فونداسیون بر روی نگاه‌شتهای مذکور، اینها را نمی‌توان به عنوان سیگناپل ورودی سیستم استفاده کرد. از سوی دیگر تحقیقات و مقالات زیادی در ساختار این نشان می‌دهد که ترکیبی فیل از مهندسی می‌توان نیروی ناشی از لرزه‌های کروکی زمین، تراکم و غیره را توانسته با تایج جهانی طبیعی تابت در فرض کرد [67]. در نتیجه اگرچه رکورد‌ها شرایط مانا اندازه‌گیری شده از روشهای کلاسیک برداشت سیگنال می‌توان فرکانس‌ها، اشکال و‌میرای‌های موثر بدنی سرا به دست آورده در روشهای کلاسیک، هنگامی که دسترسی به محک، ورودی امکان‌پذیر نیستند، برای محاسبه پاسخ‌های دینامیکی از تابع حساسیتی طیف نوار PSD طبقه‌بندی (1) و از طیف همیشه طبقات متفاوت (2) استفاده

۴- ۲ پردازش رکورد‌های ناپا در آزمایش ارتعاش محیطی

کردن خطای ناشی از نواحی ارتعاش حسگرها بر روی فیل‌شتهای خاکی بدنه سد، از سه دستگاه حسگر با فاصله ۵۰ cm یا ۱۰۰ cm در زمین، دستگاه‌های دوم بر روی یک قطعه سبک بالای گیرنده از زمین، دستگاه سوم بر روی یک قطعه بالکن به قدر ۱۵۰ cm نیز مستقيم بر روی خاک سفت قرار گرفته و کلیه دستگاه‌ها به صورت همزمان ارتعاش محیطی را نمایش دادند. نتایج آزمایش از تغییر دانه‌ای محویتی فاکتوری نگاشته‌ای دو جهانی، اگرچه حکایتی می‌کرد که بر این اساس، در ادامه آزمایش، کلیه حسگرها مستقیماً بر روی خاک سفت محکم شدند. در هر کدام از آراشی‌های اصلی آزمایش ارتعاش محیطی، مشخصات پارامترهای دستگاهی طوری تعیین شد که در طول یک نشان روز، هر ساعت به مدت ۵ دقیقه رکورد گیری پیوسته با نرخ نموداری ۱۰۰ هرتز صورت گیرد.
شکل 4- زماینده زمانی سرعت لبه شده در نقطه‌ای از تناج سد خاکی مارون (واقع در 1/4 طولی ست مامت راست) در آزمایش ارتعاش محیطی ب- چگالی طیف توان رکورد ج- دامنه طیف توان متقابل رکورد مذکور نسبت به نقطه مرکز واقع در مرکز تاج د- طیف ارتباط زیر رکور مذکور ه- فاز طیف توان متقابل تونر رکورد

\[
S_{xx}(f) = \int_{-\infty}^{\infty} R_{xx}(\tau) e^{-j2\pi f \tau} d\tau
\]

\[
S_{xy}(f) = \int_{-\infty}^{\infty} R_{xy}(\tau) e^{-j2\pi f \tau} d\tau
\]
مشاهده شود، نتایی دامنه طیف CS در فرکانس مذکور مقادیر بزرگی داشت باشند به طوری که با نزدیکی شدن به واحد اطمینان بخش می‌شد، نتایی در فرکانس مذکور فاصله بین نقطه ركوردو گیری شده و نقطه مرجع نزدیک به صفر یا ۱۸۰ درجه باشد. باید اطمینان بیان این مطلب که فرکانس‌های مذکور در کلیه ركوردو نیز مشاهده می‌شود و در تهیه به یکی از فرکانسهای تشکیل تعلق داردند. با توجه به شیفت CS و PSD برای کلیه نقاط ركوردو گیری به دست آمدند. باعث دیگر تنش‌های یکتهایی از محتوای فرکانسی را می‌توان به عنوان پنهان ترکیب از فرکانسهای تشکیل دهنده. این فرکانس‌ها یا این‌که به سمت اضافه شدن یا از مختصات نقاط مربوط به نقاط مرجع داده و همچنین در نتایج ركوردپذیری شده دیگر نقاط نیز مشاهده می‌شود. به عنوان یک چندین ترکیب از فرکانس تشکیل می‌شود.

بنده سد در جهت بالادست-پایین دست به دست آمد.

تحویل تحریک سد با توجه به نوع بارگذاری محیطی و جهت برخورد با دانه سد به دقت به گونه‌ای بوده است که در فرکانس ۴۰ هرتز با ترکیب اولین مود متقای ماده-پایین دست، فرکانس ۴۰ هرتز با ترکیب اولین مود متقای ماده-پایین دست، فرکانس ۳۵ هرتز با ترکیب اولین مود متقای ماده-پایین دست، فرکانس ۳۰ هرتز با ترکیب اولین مود متقای ماده-پایین دست، فرکانس ۲۵ هرتز با ترکیب اولین مود متقای ماده-پایین دست، فرکانس ۲۰ هرتز با ترکیب اولین مود متقای ماده-پایین دست و فرکانس ۱۵ هرتز با ترکیب اولین مود متقای ماده-پایین دست است.

\[
\gamma_{xy}(f) = \frac{|S_{xy}(f)|^2}{S_x(f)S_y(f)}
\]

در معادلات فوق منفی‌های \(S_{XX} \) و \(S_{YY} \) طیف همبستگی مقاطع \(\gamma_{xy} \) طیف ارتباط، طیف همبستگی مقاطع \(\gamma_{xx} \) و \(\gamma_{yy} \) نتایج خود همبستگی مقاطع \(X \) و \(Y \) است. در شکل (۴-۱) ركوردو ارتعاش محبوب نقطه ای از ناحیه سد جهت بالا یا پایین دست، در شکل (۴-۲) جگرخ PSD طیف توان در شکل (۴-۳ و ۴) طیف توان مقاطع ركوردو مذکور نسبت به نقطه مرجع در اطراف نام مربوط به نقاط ۲۵۱ نمونه شناسایی داده شده است. با هنگام ارتعاسات، از تعداد نمونه برداری در ثانیه ۱۰۰ و هنگام پردازش ارتعاشات که با استفاده از نرم‌افزار MATLAB ۶ انجام شده است.

به‌طور کلی این نتایج نشان می‌دهد که مقایسه طیف نیز با استفاده از پرورودیگم ۱۳ متغیر گری شده ولی ۱۰ انجام شده [۶]. در طیف PSD چندین پیک مشاهده می‌شود که هر کدام یک نشان دهنده یکی از مودهای ارتعاشی بدن است و یا مشخص کننده یک پیک در محور رودی است. برای تشخیص این پیک از خواص امواج دودینی اشاره می‌شود. این مورد از مشاهده می‌کنیم. به این صورت، هنگامی که دانه سد در یکی از مودهای ارتعاشی تحریک می‌شود و میرایی مقادیر کوچکی دارد، کلیه نقاط نسبت به پیدایش بسته به شکل مورد ارتعاشی با هم فاز و یا با ۱۸۰ درجه در مختل‌های اقدامی [۱۰۰] است. برای استفاده از این اصول، فاز بین دو نقطه انتزاعی گیری را افزایش طیف همبستگی متقاطع آن‌ها بیان می‌کند، با این توضیح، روش کار چنین مرحله به مرحله یکپارچه از نظریه PSD که پیک از پیدایش یکی از مودهای ارتعاشی در نظر گرفته که اولاً پیک مذکور در محور اصلی
با توجه به لازمی که در اینجا بررسی شود، بخش‌هایی از متن ذکر شده در زیر به‌دست می‌آید:

بخش اول:

در این بخش، اشاراتی به مراحل آزمایش‌های مختلف و نتایج آنها در تحقیقات مربوط به محصولات مختلف نمودار می‌شود.

بخش دوم:

این بخش به‌عنوان آماری‌نگایی بر اساس نتایج آزمایش‌ها که در بخش اول ذکر شد، می‌باشد.

بخش سوم:

در این بخش، نتایج آزمون‌های مختلف و تصمیمات وابسته به نتایج آنها نمودار می‌شود.

بخش چهارم:

این بخش به‌عنوان نتایج پایانی تحقیقات مربوط به محصولات مختلف که در بخش‌های先ی ذکر شد، می‌باشد.
جدول ۲- مشخصات مکانیکی مصالح به کار رفته در تحلیل مودال سد مارون بر اساس مقدار پیشنهادی

<table>
<thead>
<tr>
<th>ناحیه و نوع مصالح</th>
<th>وزن مخصوص $\times 10^{-3}$ (تن/م3)</th>
<th>ضریب پوشاک $\times 10^9$ (نیتن/م2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سنگ یا سنگی</td>
<td>26/6</td>
<td>20/6</td>
</tr>
<tr>
<td>سنگ یا سنگی</td>
<td>26/6</td>
<td>20/6</td>
</tr>
</tbody>
</table>

* از انجام تحلیلهای مودال که تأثیر بر سنگی و تکیه‌گاه‌های جانی بر مشخصات مودال سد در نظر گرفته می‌شود جرم سنگی و یا مقدار بی‌شماری وارد می‌شود در غیر اینصورت به دلیل حجم زیاد فلزاتیون نسبت به بدن سد، فرکانسهای طبیعی سازه از مقدار واقعی دور می‌شود و به سمت فرکانسهای طبیعی بستر می‌کند.

صد بند تری‌بانت و تغییر در مشخصات مصالح در ارتفاع سد به‌طور متوسط تقریباً افقی از سد به بطور متوسط ۲۰ متر از یکدیگر فاصله دارند. در نظر گرفته می‌شود که بیشترین برق و پایین بگینگ به این صفحات محدود می‌شود. به منظور مقایسه نتایج تحلیل مودال در محل شماره ۱ و ۲ به این منظور که نتایج طراحی موجود بین نتایج تحلیل مودال این دو محل صرفناش از نقاط بهبودی، هندسی و مدل مذکور باشند، مشخصات مصالح، ارتفاع تراز نشست سد و شرایط تکه‌گاهی در هر دو مدل یکسان در نظر گرفته شد. برای اساس در هر دو مدل از مشخصات دینامیکی مصالح ارائه شده توسط مشاور طراح سد جدول ۱۲ استفاده گردید.

توصیه شده برای یکسانی مصالح هر مدل یکسان در ارتفاع سد تغییر داده شدند. همچنین ارتفاع تراز نشست سد به این فلزاتیون نیاز به روش فنلیسی پرارد با ۱۵۰ متر در نظر گرفته شد که بین نشست به شرایط واقعی می‌خواند. در زمان انجام آزمایشات ارتعاش منجی است. از لحاظ شرایط مزرد - تکه‌گاهی سنگ و مدل به روش بریستر

استقلال، سال ۲۲، شماره ۲، شهريور ۱۳۸۲

number12002
جدول 3- تأثیر شرایط هندسی بر فرکانس‌های طبیعی

<table>
<thead>
<tr>
<th>شماره مود</th>
<th>مدل ۱</th>
<th>مدل ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۴</td>
<td>۱/۸۸</td>
<td>۱</td>
</tr>
<tr>
<td>۱۹۱</td>
<td>۲</td>
<td>۳</td>
</tr>
<tr>
<td>۲۱۱</td>
<td>۳/۱۲</td>
<td>۲</td>
</tr>
<tr>
<td>۲۱۴۱</td>
<td>۴</td>
<td>۵</td>
</tr>
<tr>
<td>۲۹۱۹</td>
<td>۵</td>
<td>۶</td>
</tr>
<tr>
<td>۲۹۳۲</td>
<td>۶</td>
<td>۷</td>
</tr>
<tr>
<td>۲۶۸۵</td>
<td>۷</td>
<td>۸</td>
</tr>
<tr>
<td>۲۶۶۴</td>
<td>۸</td>
<td>۹</td>
</tr>
<tr>
<td>۹۰۲۶</td>
<td>۹</td>
<td>۱۰</td>
</tr>
<tr>
<td>۳۸۱۸</td>
<td>۱۰</td>
<td>۱۱</td>
</tr>
<tr>
<td>۳۷۲۲</td>
<td>۱۱</td>
<td>۱۲</td>
</tr>
<tr>
<td>۳۷۲۲</td>
<td>۱۲</td>
<td>۱۳</td>
</tr>
<tr>
<td>۳۷۲۲</td>
<td>۱۳</td>
<td>۱۴</td>
</tr>
<tr>
<td>۳۷۲۲</td>
<td>۱۴</td>
<td>۱۵</td>
</tr>
</tbody>
</table>

سپاس مدل‌ها پیکان در نظر گرفته شد. به عبارت دیگر ارتفاع آب پیش‌ساز در تمام مدل‌ها به مقدار ۱۰۰m در نظر گرفته شد و فرانسیسی می‌رود.
جدول ۴ - مشخصات مصالح برای تحلیل استاتیکی سه بعدی

| مصالح | ضریب پویاون | شن ترازی | سنگ ریز | فیلترهای بخش بالایی دست | فیلترهای بخش بالا دست | هرته رسی
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KN/m².¹⁰⁰¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سد</td>
<td>۱۲۴</td>
<td>۱۳۰</td>
<td>۱۰۰</td>
<td>۶۰</td>
<td>۴۵</td>
<td>۲۰</td>
</tr>
</tbody>
</table>

شکل ۶ - تاثیر نحوه عملیات مشخصات مصالح بر فرکانس‌های طبیعی ۱۵ مود اول ارتعاشی سد مارون

به این اساس فشار آب مخزن به صورت یک فشار

هیدرواستاتیکی بر روی سطح خارجی هسته در مجاورت بالا

دست قرار داده شد و وزن مخصوص مصالح فیلتر و پوسته بیشتر

در زیرسطح آب به صورت غوطه ور در نظر گرفته شد. در اینجا

پاد آوری این تکه ضروری به نظر می‌رسد که بررسی تأثیر

آب مخزن بر توان تحلیل مود‌های سدهای خاکی (به جر سدهای

خاکی بر روی پنجره، به دلیل تخلخل بالا و شید کم پوسته بالا

دست، از لحاظ هیدرواستاتیکی مخزن بر روی رفابت دینامیکی سد

می‌توان صرف نظر کرد [۱۴] و صرف این تغییرات دانسته و سختی

مصالح فست اشاعده شده را در نظر گرفت.

پس از انجام تحلیل‌های استاتیکی، متوسط نشان‌های موثر اصلی

وجود در هر یک از ۱۲۵ بلوک حجمی سد مورد محاسبه قرار

گرفت و در هر یک از بلوک‌ها سد مدل بررسی دینامیکی پیشینه

مصالح G۰ برای انتخاب موثر اصلی به دلایل اجرایی که جزئی از

دلایل مرور در مورد مصالح اصلی پیشنهادهای نسبت به استفاده

باید برای نمونه‌های ماسه عیان گیاهی که به کمک به دست [۱۵] که

عبارت است از

\[G_1 = \frac{3320 \times (2.97 - e)^2 (OCR)^k \sigma_{1}^{3/2}}{1 + e} \]

که در آن G۰ مدل مورد بررسی دینامیکی پیشینه \(e \) نسبت تخلخل و

نسخ موثر متوسط است. در مورد مصالح هسته رسی از

معادله‌های دنیورش [۱۵] استفاده شد [۱۵] که عبارت است از:

\[G_2 = \frac{3320 \times (2.17 - e)^2 \sigma_{1}^{3/2}}{1 + e} \]

به این اساس فشار آلی آب

محلین به صورت یک

فشار

هیدرواستاتیکی بر روی سطح خارجی هسته در مجاورت بالا

دست قرار داده شد و وزن مخصوص مصالح فیلتر و پوسته

بیشتر

در زیرسطح آب به صورت غوطه ور در نظر گرفته شد. در اینجا

پاد آوری این تکه ضروری به نظر می‌رسد که بررسی تأثیر

آب مخزن بر توان تحلیل مود‌های سدهای خاکی (به جر سدهای

خاکی بر روی پنجره، به دلیل تخلخل بالا و شید کم پوسته بالا

دست، از لحاظ هیدرواستاتیکی مخزن بر روی رفابت دینامیکی سد

می‌توان صرف نظر کرد [۱۴] و صرف این تغییرات دانسته و سختی

مصالح فست اشاعده شده را در نظر گرفت.

پس از انجام تحلیل‌های استاتیکی، متوسط نشان‌های موثر اصلی

وجود در هر یک از ۱۲۵ بلوک حجمی سد مورد محاسبه قرار

گرفت و در هر یک از بلوک‌ها سد مدل بررسی دینامیکی پیشینه

مصالح G۰ برای انتخاب موثر اصلی به دلایل اجرایی که جزئی از

دلایل مرور در مورد مصالح اصلی پیشنهادهای نسبت به استفاده

باید برای نمونه‌های ماسه عیان گیاهی که به کمک به دست [۱۵] که

عبارت است از

\[G_1 = \frac{3320 \times (2.97 - e)^2 (OCR)^k \sigma_{1}^{3/2}}{1 + e} \]

که در آن G۰ مدل مورد بررسی دینامیکی پیشینه \(e \) نسبت تخلخل و

نسخ موثر متوسط است. در مورد مصالح هسته رسی از

معادله‌های دنیورش [۱۵] استفاده شد [۱۵] که عبارت است از:

\[G_2 = \frac{3320 \times (2.17 - e)^2 \sigma_{1}^{3/2}}{1 + e} \]
شکل 7- مقطع میانی بالادست- پایین دست مدل اجزای محدود H

شکل 8- تأثیر ضخامت‌های مختلف بستر استیک بر الف- اولین

فراکس مودی ب- درمین فراکس مودی سد مارون

معدل عددی تاکی به مراتب کمتری به ترتیب تحلیل مدول

می‌گذارند.

در هر حال در نظر گرفتن ضخامت بستر سنگی طبیعی

شکل 8 موجب کاهش فراکس‌های بزرگ و مسنج حداکثر

15 می‌شود. همچنین تحلیل‌های انجام شده نشان می‌دهد که

افزاری ضخامت تکیه‌گاهی جابجایی استیک

موجب کاهش فراکس‌های طبیعی ارتعاش سد می‌شود ولی همان‌گونه که

در جدول (5) مشاهده می‌شود مقدار این تغییر در بیشترین

حالت مدول شده کمتر از 3/2% است که اختلاف مربوط به

فراکس طبیعی سیستم با تکیه‌گاههای جابجایی صلب و سیستم با

تکیه‌گاه جابجایی استیک به ضخامت h1=0.5H

ناخدا ان بخش از تحلیل‌ها نیز در شکل (9) مشاهده می‌شود. در نهایت در

انجام تحلیل‌های مدول نهایی از مدل عددی استفاده شد که

در نظر گرفته شد و

ضخامت بستر سنگی انعطاف‌پذیر آن H=1/2

مقد نظر

قرار گرفت که شکل (7) مقطع میانی بالا دست- پایین دست

استقلال سال 22 شماره 1 شهريور 1382

121

3- تأثیر اصلاح شرکت تکیه‌گاهی بر ترتیب تحلیل مدول

سد مارون

سد مارون بر روی یک بستر سنگی قرار گرفته است که

مدول برای آن از منابع اطلاعات به دست آمده از گزارش‌های

مشاور طراح سد [12] و نیز نتایج مطالعات لرزه ای سطحی که

در این زیرهای بر روی بدن و بستر سد صورت گرفته

است (11) برای یک Gs = 10 KN

m

ضرب پواسون آن

v = 0.3

براره شده است. بر این اساس به منظور در نظر

گرفتن اثر انعطاف‌پذیری تکیه‌گاههای مخصوص ارتعاشی سد

مارون، ضخامت‌های مختلف از سنگ بستر و تکیه‌گاههای جابجایی

به صورت درصدی از ارتفاع کلی سد (H) در نظر گرفته شد.

ترتیب این تحلیل‌ها نشان می‌دهد که فراکس‌های طبیعی در مودول

ارتعاشی سد تا زمانی که ضخامت بستر سنگی برابر با

H/5

در نظر گرفته می‌شود، سپس نوزلی قابل توجهی دارد و از این

ضخامت به بعد افزایش ضخامت لایه انعطاف‌پذیر بستر در

Downloaded from jcmel.ut.ac.ir at 13:02 IRDT on Sunday September 20th 2020

Downloaded from jcmel.ut.ac.ir at 13:02 IRDT on Sunday September 20th 2020
جدول ۵- اثر انعطاف پذیری تکیه‌گاه‌های جانی بر فرکانس‌های موده مدل سه بعدی سد مارون بر حسب هرتز

<table>
<thead>
<tr>
<th>h1/H</th>
<th>0/5</th>
<th>0/1</th>
<th>0</th>
<th>h1/H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/76</td>
<td>1/79</td>
<td>1/70</td>
<td>مود ۱</td>
</tr>
<tr>
<td></td>
<td>1/88</td>
<td>1/90</td>
<td>1/92</td>
<td>مود ۲</td>
</tr>
<tr>
<td></td>
<td>2/16</td>
<td>2/17</td>
<td>2/18</td>
<td>مود ۳</td>
</tr>
<tr>
<td></td>
<td>2/26</td>
<td>2/27</td>
<td>2/28</td>
<td>مود ۴</td>
</tr>
<tr>
<td></td>
<td>2/08</td>
<td>2/09</td>
<td>2/10</td>
<td>مود ۵</td>
</tr>
<tr>
<td></td>
<td>2/76</td>
<td>2/77</td>
<td>2/78</td>
<td>مود ۶</td>
</tr>
<tr>
<td></td>
<td>2/07</td>
<td>2/08</td>
<td>2/09</td>
<td>مود ۷</td>
</tr>
<tr>
<td></td>
<td>2/64</td>
<td>2/65</td>
<td>2/66</td>
<td>مود ۸</td>
</tr>
<tr>
<td>3/04</td>
<td>3/05</td>
<td>3/06</td>
<td>3/07</td>
<td>مود ۹</td>
</tr>
<tr>
<td></td>
<td>3/08</td>
<td>3/09</td>
<td>3/10</td>
<td>مود ۱۰</td>
</tr>
</tbody>
</table>

مودال سه بعدی سد مارون به طوری که فرکانس‌های طبیعی سیستم به‌صورت
فرکانس‌های طبیعی بستر ستگی می‌زدند [17].

شکل ۹- تأثیر انعطاف‌های متفاوت تکیه‌گاه‌های جانی

انیشیک بر الک- اولین فرکانس مودی ب- دومین فرکانس
مود سه بعدی سد مارون

آن نشان داده است. شاپان ذکر است در این تحلیلها جسم
بستر ستگی صفر در نظر گرفته شد، زیرا در نظر گرفتن جسم
سنگ در هر مدل یک توجه به حجم نسبتاً بزرگ توده ستگی
در مدل عددی موجب بروز خطا‌های بزرگی در نتایج تحلیل

استقلال، سال ۲۳، شماره ۱، شهريور ۱۳۸۲
جدول ۶- مقایسه فرکانسی‌های مودی حاصل از تحلیل‌های عدیدی و آزمایش‌های ارتعاش محیطی

<table>
<thead>
<tr>
<th>آزمایش‌های درجا</th>
<th>آزمایش‌هایی (ج)</th>
<th>مدل A همراه با فونداسیون (ب)</th>
<th>مدل A (الف)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-D</td>
<td>جهت L</td>
<td>جهت V</td>
<td></td>
</tr>
<tr>
<td>۲/۱۹</td>
<td>۲۴/۴۹</td>
<td>۲/۱۹</td>
<td></td>
</tr>
<tr>
<td>۳/۶۱</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

در این موارد فرکانس مودی ارائه تعداد و مربوط به حالاتی است که شکل مودی مورد نظر از تحلیل‌های عدیدی و با آزمایش ارتعاشی در جهه باشد و با قابل تشخیص تبوده است.

کالیرین به‌عنوان مدل FEM با تناها آزمایش‌های ارتعاش محیطی نسب می‌باشد. مهم‌ترین تکنیک آن که در کالیراسیون مدل‌های عدیدی با تناها آزمایش‌های ارتعاشی در جهه باشد و آن توجه نمود. اینست که در انجام مقداری بین این و تأثیر انتخاب و اشکال مودی مناظر آنها برپایه توان مورد مقایسه قرار گرفته و انجام مقایسه تناها بر مبنای یکی از آنها صحت قبلاً باشد [۱۸].

برای این اساس اشکال مودی به سه گروه کلی تقسیم شدند: U-D، که عبارتند از مود ارتعاشی بالا-دانه (پایین-دانش) (L) و مود ارتعاشی قائم (V). در هر یک از این سه گروه نیز از این مود‌ها با یک مدل مقیاس باید این مود‌ها با یک مدل مقیاس باید این مود‌ها با یک مدل مقیاس باید این مورد نمایند. به این ترتیب یک گروه نامگذاری که در جدول ۶) می‌باشد. می‌توان اطمینان کننده که در انجام اشاره‌های حاصل از تحلیل‌های عدیدی انجام شده بر روی سه مدل با تناها آزمایش‌های ارتعاش محیطی مورد مقایسه قرار گرفتند که مدل‌های مذکور عبارتند از:

۶- کالیراسیون نتایج تحلیل عدیدی با آزمایش‌های ارتعاش محیطی

به طور کلی هدف نهایی از کلیه تحلیل‌های عدیدی انجام شده در این تحقیق و استخراج ارکان‌ها و اشکال مودی
نحوی استراتژیک و کسب‌و کاری در آینده نزدیک، معرفی و بهره‌برداری از فناوری‌های جدید، انجام آزمایشات و تجربه‌های جدید به منظور بهبود و سازگاری و سرانجام به دست آوردن بهترین مدل‌های تجاری، در مراحل افتتاح و برنامه‌ریزی اولیه، اهمیت مناسبی دارد. در این مقاله، بررسی مایلی در مورد مدل‌های مختلفی از جمله مدل‌های تجاری، مدل‌های فناوری و مدل‌های ساختاری است که برای بسته‌گیری و ساختار سازمانی مورد بهره‌برداری قرار گرفته‌اند.

در اینجا، به سه مدل اصلی اشاره می‌شود که به‌طور گسترده‌ای در سازمان‌های مختلف به کار می‌رود:

۱. مدل‌های تجاری: این مدل‌ها به طور معمول بر پایه تجربه و بهبود و سازگاری در مراحل افتتاح و برنامه‌ریزی اولیه، اهمیت مناسبی دارند. در این مقاله، بررسی مایلی در مورد مدل‌های مختلفی از جمله مدل‌های تجاری، مدل‌های فناوری و مدل‌های ساختاری است که برای بسته‌گیری و ساختار سازمانی مورد بهره‌برداری قرار گرفته‌اند.

۲. مدل‌های فناوری: این مدل‌ها به طور معمول بر پایه تجربه و بهبود و سازگاری در مراحل افتتاح و برنامه‌ریزی اولیه، اهمیت مناسبی دارند. در این مقاله، بررسی مایلی در مورد مدل‌های مختلفی از جمله مدل‌های تجاری، مدل‌های فناوری و مدل‌های ساختاری است که برای بسته‌گیری و ساختار سازمانی مورد بهره‌برداری قرار گرفته‌اند.

۳. مدل‌های ساختاری: این مدل‌ها به طور معمول بر پایه تجربه و بهبود و سازگاری در مراحل افتتاح و برنامه‌ریزی اولیه، اهمیت مناسبی دارند. در این مقاله، بررسی مایلی در مورد مدل‌های مختلفی از جمله مدل‌های تجاری، مدل‌های فناوری و مدل‌های ساختاری است که برای بسته‌گیری و ساختار سازمانی مورد بهره‌برداری قرار گرفته‌اند.
الف - مود اول

ب - مود دوم

ج - مود سوم

شکل 10 - شکل‌های مودی سه بعدی سد مارون حاصل از تحلیل FEM

(در شکل سمت راست پلان و در سمت چپ دید از بالادست به پایین دست)

- انعطاف پذیری در نظر گرفتن بستر سنگی و تکیه‌گاه‌های جانبی نسبت به حالات صلب در نظر گرفتن موجب کاهش فرکانس اولین مود ارتعاشی سد به میزان ۱۵٪ می‌شود.

استقلال، سال ۲۲، شماره ۱، شهریور ۱۳۸۲

۱۴۵
مشخصات مکانیکی مصالح به کمک این آزمایش ها فرکانس اولین مود ارتعاشی سد نسبت به حالتی که مشخصات مکانیکی مصالح با استفاده از حلالیت استاتیکی و روابط تجربی به دست آمده‌اند، به میزان 14/8 درصد افزایش می‌یابد و با نتایج حاصل از آزمایش ارتعاش محیطی نهایی 5/6% اختلاف نشان می‌دهد.

4- با توجه به مطالعات انجام گرفته در این تحقیق توصیه می‌شود جهت برآورد دقیق مشخصات دینامیکی سدهای خاکی موارد زیری را بپذیریم:

- در صورت آمکان طی پایداری‌های دورهای سد، آزمایش ارتعاش محیطی بر روی بندن سد صورت گیرد.

قدریانی

در انتهای سال 1368 مسولیت سازمان آب و برق خوزستان، بشرکت ملی‌های مشاوره مهندسی به این اهمیت ویژه‌ای داده و تشکیل خودکاری که در مراحل مختلف آزمایش‌ها و تحلیل‌های صورت گرفت، بر روی سد صمیمانه همکاری نمودند تشریح و قدردانی

1. prototype
2. Romconsult-Bucharest
3. passive
4. DC offset voltage problem
5. nominal resolution
6. dynamic range
7. Stationary
8. power spectral density
9. cross correlation spectrum
10. coherence spectra
11. auto correlation function
12. cross correlation function
13. hanning window
14. periodogram
15. Welch method
16. orthogonality
17. Hardin-Black
18. Hardin-Denevich
19. seed
20. seismic refraction investigation

واژه تامه

1. جغرایی، م. ک. داودی، م. "آزمایش‌های ارتعاش اجباری و محیطی در سدهای خاکی"، تهران، پژوهشگاه بین‌المللی زلزله شناسی و مهندسی زلزله، بهار 1381.
2. فرهنگی، ب.، سدسازی معماری ایران کمیته ملی سدهای جبرگ ایران، تهران، 1373.
6. آفکورکچی، ع.، معماری، ع. م. "آزمایش‌های لرزه‌زایی بر

مراجع

استقلال، سال 22، شماره 1، شهروی 1382

146
روی ساخته‌های واقعی، جلد اول و دوم، تهران، پژوهشگاه ملی زلزله شناسی و مهندسی زلزله، ۱۳۷۲.

12. تحلیل دینامیکی سد مارون” گزارش شرکت مهندسی مشاور مهاب قدس، تهران، ۱۳۶۵.
13. تجزیه و تحلیل استاتیکی و پایداری و کنترل زهاب سد مارون” گزارش شرکت مهندسی مشاور مهاب قدس، تهران، ۱۳۶۸.
16. گزارش مقدماتی مطالعات لرزه‌ای سطحی در محل سد مارون” پژوهشگاه ملی زلزله شناسی و مهندسی زلزله، تهران، ۱۳۷۹.
17. حاج مومین، ع، آزمایش خصوصیات دینامیکی یک سد بتنی فوسری با مقایسه نتایج مدل ریاضی و آزمایشات ارتعاش محیطی، پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس، زمستان ۱۳۷۹.