رفتار دنیا میکی، اسکله‌ها تحت اثر مواضع زلزله

امیرسعودمنکا* و امیرسعودکی‌میا**

چکیده
هدف مقایسه درفرموله‌گردیدن معا دلات حاکم بر اثرات دنیا میکی متقابل بین آب و اعضا یک طرفه رگرفته درآن، و نیز راه روش مداخله‌های مباین برای حل این معا دلات می‌باشد. مدل تحلیلی یک رفتار بصری پایه‌ای در تهیه‌گردش همه یک زمان درخاک و به‌خیال درآمدهای رگرفته است. درصد موجودی یا به‌جرم متمرکز قرار رگرفته وا زیرخاکی درآن نتایج به‌کار مل جل‌گویی‌های شده است تا بدن تحقیق اثرات مربوط یا دسردهای دنیا به‌منظور نگرد. با به‌میهن شکل‌های از مجموعه‌ای از اکتی‌ها و اثرات نموداری خاک اثرات متقابل بین قسمت مدفون یا میخاکی با در تهیه‌گردش‌ها می‌باشد. دنیا میکی برای پایه‌هایه منابع دلات و ارائه‌های است. نیروی هیدرودینامیکی ناشی از امواج و منیز‌های‌زاگ‌های درآمدهای از طریق معا دلات مویسون تخلیه‌های زده‌شده است. با توجه به یکه معا دلات مویسون‌ها با یک کتاب نمی‌باشد. برای حل معا دلات زاگ‌های‌زاگ‌های علی‌العیوب ارائه‌های استفاده‌یا سرعت زده در همه‌سرعت دم‌درجه فیل تخلیه‌های زده‌شده می‌باشد. دقیقاً این تقسیم با مطالعات برای مدرک موردبررسی قرار رگرفته است.

با استفاده از مدل مربوط به منابع اسکله‌ها در دفاع از امواج وریز و اکتشاف در مدل زلزله موادربررسی قرار رگرفته. با استفاده از مطالعه یک یا اکتشاف اسکله تحت اثر امواج هنگا می‌باشد

مریبه دانشکده عمران دانشگاه صنعتی اصفهان

استاد دانشکده عمران دانشگاه صنعتی اصفهان

37
مقدمه

درس‌های اخیر، مطالعات زیادی در زمینه‌های مختلف مربوط به سازه‌های دریابی مورد گرفتگی است. به‌دنبال ارائه‌ی درمانی‌های زمینه‌تعمیق در راه‌هایی که برای این سازه‌ها در ارائه‌گرایش‌های طبیعی ویژه ارائه شده‌اند، روش‌هایی برای تحلیل آن‌ها بوده است.

از جمله سازه‌های دریابی، سازه‌های استوار بر قطبهای متفاوت به‌طور معمول، سازه‌های دریابی می‌باشند که در آن‌ها می‌توانیم با سطح‌های دریا به‌طور عمده، سازه‌ها و سازه‌های دریابی زمینه‌شده، در اندازه‌های زیادی و تحلیل‌های زمینه‌برای آن‌ها انجام داد. با آن در محور چهارم، بررسی مسیره‌ای اثرات متقابل آن و سازه‌ها می‌باشد.

در سال 1951، موریسون و همکارانش [1] معادله‌ای برای شده‌ای نیروهای وارد را به‌طور عمده به‌طور عمده که قطرات را کهدرکنده خودبزرگ بیان‌ی مطالعات بیشتری از رگرفته‌ای می‌باشد. این معادله برای طراحی تجزیه‌ی سازه‌ای است و نشان‌دهنده‌ی یا فرضیه موثری تحقیق سبک‌های ارائه‌ی دیگری که طبقه‌بندی و کلیک [2] و سرب راب [3] قرار گرفته‌است، بررسی معاونه‌ای نشان می‌دهد که این‌ها به‌طور عمده‌ای در روش‌های شده‌ای جویدنی‌اند [5].

برای استفاده از معادله موریسون با پیاده‌بردن باستفاده از تکنیک‌های مناسب جهت پیاده‌بردن می‌تواند در سطح آب راه‌گیری آورد. تکنیک‌های مناسب جهت اولین بار رتوسط ابری در مقاله‌ای با کشودوسیونتوسط 1. Fluid-Structure Interaction
رافت رابینا میکی اسکله‌ها ...
مطالعات خاصی بررسی موردبررسی فرا راد.

برای بررسی رفتار دینامیکی اسکله، هریک از پیام‌های بصری یک عضویکی عمودی در نظر گرفته می‌شود و با استفاده از روش‌های مختلف مدل می‌شود. برای تعیین نیروهای هیدرودینامیکی وارای این شکل توسعه‌ای فناوری مورد رونده‌ای منظورداشت حرکات پایه استفاده می‌شود. بعلت فیزیکی بودن این معادله، معادله دیفرانسیل حرکت نیز بصورت فیزیکی درمی‌آیدکه برای حل آن از روش‌های متعدد شناخته‌شده روش مناسب برای جایگذاری قسمت فیزیکی استفاده می‌شود. به‌کمک این مدل تاثیر بی‌بودن موج بررختان را به‌بررسی خواهدهد.

برای ارزیابی آن در رفتار پایه بررختاران تحت انرژی مقدار مطالعه قرار گرفته و نتیجه گیری های عملی صورت گرفته‌اند.

نیروهای هیدرودینامیکی وارای این اسکله ممکن است به‌کمک دینامیکی اسکله را بازه‌های متداول متمایزی کند، وجود آن در اطراف پایه می‌باشد. وجود آن در انتهای نشان از افزایش تریتوهای دیگر (مثلاً نیروهای دیگر از ارتفاع لوله) نیز تحت‌دریغ می‌گردد.

برای تعیین نیروهای هیدرودینامیکی وارای این اسکله، مدل می‌شود. این مدل برای موادی که نسبت قطر به طول موج از 10/1 تجاوز کننده می‌باشد، استفاده می‌شود و در موارد کلی بصورت زیرنوشتی می‌شود:

\[f = \frac{1}{2} \rho C_D D \left| \vec{U} - \bar{U} \right| (\vec{U} - \bar{U}) + \rho C_M \frac{\pi D^2}{4} \left(\vec{U} - \bar{U} - \rho(C_M - 1) \frac{\pi D^2}{4} \bar{U} \right) \]

که در آن:

- \(\vec{U} \) نیروهای دقیقی وارای این اسکله
- \(\bar{U} \) خمیر مخصوص
- \(D \) قطر اسکله
رفتار دینامیکی اسکله‌ها ...

\[C_D = \frac{F_D}{\frac{1}{2} \rho V^2 A} \]

سرعت رشته‌ای افقی ذرات آب در محل محاسبه نیروها = \(u_1, u_2 \)

سرعت رشته‌ای افقی پایین‌تر در محل محاسبه نیروها = \(u_1, u_2 \)

لازم به تذکر آوردن که در این فرمول (\(C_D, C_m \)) از وابستگی به عوامل متعددی نظیر اعداد رینولدز و عدد کوئلیگان

جریب می‌باشد که این مدل از تحقیقات بیشتری نیاز دارد. در این مقاله مقدار این شاخص در طول یک درد و ثابت گزارش شده است.

همان‌طوری که یک فیزیک است، می‌خواهد ما در حال مطالعه مورسیون استخوان استاد می‌توانیم در حال حاضر حرکت دومشکل امیلی برزی، کنند: اولاً، نیروی وارده به دی‌پایی در بالا حرکت می‌کند تا آب و پایین‌تر شکل را به سمت پایین حرکت نسبی قبل از هنگام مصالح مبهم است، پدیده تریبی مسئله فوق از زنده می‌گردد. بنابراین، نمایش داده شده دریافت محدودیت ارتباط با وابستگی کننده بعلاوه نیروها وارد در بالا حرکت می‌گردد. در این مقاله، از این روستا که ممکن است برای حالت حرکت بلند مدت این نوع سازه‌ها زره‌پوشانی عدد استفاده می‌شود.

همان‌طوری که در مطالعه (۱) مصوبه می‌تواند برای استفاده از مدل ارائه گردد. می‌تواند در مورد شمای این وابستگی، چنین طراحی‌هایی با کمک این مدل ایجاد شود.

\[\text{Inertial Coefficient, 2. Drag Coefficient, 3. Reynolds Number} \]

\[4. Keulegan-Carpenter Number, 5. Interaction \]
استقلال

خطی بیش از پرتوکوربایا استفاده می‌کند که در این مقاله نیز تا زمانی که تکثیر موج‌پرتوکوربایا برگرداننده می‌باشد،

برای می‌باشد (شکل 1):

\[\omega = \frac{\pi}{T}, \quad K = \frac{\pi}{L}, \quad C = \frac{\omega}{K} \]

که این کمیت‌ها بوسیله روابط زیر به یکدیگر متغیرند:

شکل 1- سطح آب در حالت توده‌زده موردی کمیتها ی مختلف موج

علاوه بر روابط فوق، مطالب تکثیر موج خطی سرعت موج و طول موج نیز با روابط مستقل نیز بوده و روابط زیر را به در جایه‌ای نامیده می‌شود (آیفا بر قرار رست [4], [12]):

\[\omega^2 = g k \tgh (kd) \] (2)

1. Airy, 2. Wave Number, 3. Linear Dispersion Relation,
رفتار دینامیکی اسکلدها ...

\[c^2 = \frac{g}{k} \text{tgh} (kd) \]

(3)

بنابراین برای مشخص کردن یک موج باصوصی میتوان از (\(I_0, d, \beta\)) استفاده کردن. هرگاه محورها \(x\) و مطالب مکل \(1\) در نظر گرفته شوند، معادله سطح آپ مطالب تکمیلی موج علی بسیار زیر نوشته می‌شود:

\[\eta = \frac{H}{2} \text{Cos}(kx - \omega t) \]

(4)

همچنین سرعت و شتاب افقي ذرات آپ در نظر گرفته شده با یا زروابط زیر تعیین می‌شوند:

\[\ddot{u}_w = \frac{\pi H}{T} \frac{\text{Cosh}(k(z+d))}{\text{Sinh}(kd)} \text{Cos}(kx - \omega t) \]

(5)

\[\ddot{u}_w = \frac{2\pi H}{T^2} \frac{\text{Cosh}(k(z+d))}{\text{Sinh}(kd)} \text{Sin}(kx - \omega t) \]

(6)

تاثیر استفاده یکدیگر در اکتش با یا بدون یکدیگر

پایه‌ها اسکله‌ها نیازهای آزمایش‌های فولادی توخالی است که به‌دست آمده، برای استفاده بهتر از ساختار و اینگونه آزمایش‌ها نیازهای آزمایش‌های فولادی توخالی است که به‌دست آمده، برای استفاده بهتر از ساختار و اینگونه آزمایش‌ها نیازهای آزمایش‌های فولادی توخالی است که به‌دست آمده، برای استفاده بهتر از ساختار و اینگونه آزمایش‌ها نیازهای آزمایش‌های فولادی توخالی است که به‌جای مجزات در نظر گرفته شود.

برای این منظور می‌توان از روابط تقیبی بست‌آمده به‌رای ساختن و استفاده در این استفاده کردن در مقاله زروابط بیشتر

منشا استفاده در ارتعاش ساخته‌ها، وجود استفاده‌ی داخلی در جسم...
استقلال

شمع وخمک ونیزیشمنشان از روی حامل آزار اندازه شمع است. معمولاً، سهم عامل اخیراً زیاد مربوط به استخلاک داخلی بیشتر است ولذا در این مقاله از استخلاک داخلی شمع مصرف حذف شده است. در بینورت می‌توان یک استفاده از رویا بی‌پیش‌بینی شده توسط بوس ماتریس‌های سخت‌السیس و استخلاک شمع متناصر باد‌پرده آزادی انتقال و دورانی رابطه‌بندی نوشته:

\[K = \begin{bmatrix} k_{xx} & k_{x\theta} \\ k_{x\theta} & k_{\theta\theta} \end{bmatrix} \]

\[C = \begin{bmatrix} c_{xx} & c_{x\theta} \\ c_{x\theta} & c_{\theta\theta} \end{bmatrix} \]

که در این:

\[k_{xx} = 2 \frac{EI}{R^3} \left(\frac{S_{.75}}{E_p} \right) \]

\[k_{x\theta} = -1.2 \frac{EI}{R^2} \left(\frac{S_{.5}}{E_p} \right) \]

\[k_{\theta\theta} = 1.6 \frac{EI}{R} \left(\frac{S_{.25}}{E_p} \right) \]

\[c_{xx} = \frac{2R}{V_s} k_{xx} \]

\[c_{x\theta} = \frac{1.5R}{V_s} k_{x\theta} \]

\[c_{\theta\theta} = \frac{5R}{2V_s} k_{\theta\theta} \]
رفتا رديمايي اسکلهها...

دراین روابط \(E_p \) و \(E_s \) نمودار بازیت، دینامیک و ضریب یا خاک است.

بنابر این برای واردات اثرات دینامیکی شمع و خاک اطراف آن در ارتعاش نیز به گاهی مقادیر مختلف به آن میان در مراتب هر سختی و استحکام یا با فضه دسته‌بندی می‌شوند (شکل ۲).

فرمول کردن معادلات حرکت و حل آنها

هدف اصلی دراین مقاله بررسی ارتعاشات اسکله‌ها است. برای این منظور ویژه‌ریزی گونه‌های فراهم‌کننده محاسبات نمایان که از بهره‌های اسکله‌ها برای اجرای بزرگ‌ترین درمان‌هایی که نیازمند بسیاری از جهات مختلفی است، بدون گرفتن دشواری بوده در طول روند درمان‌گذاری از آن بهتر است.

بنابراینکه مدل تحلیل راهان‌هایی از مدل استفاده

از روش اجزای محوری مجموعه‌ای از اجزای هر تیرباج جرم و سختی خاصی

تقسیم شده می‌باشد که در داده‌های آن را داشته‌است.

1. Mode Superposition
با یادداشتهای استحکام کلی زمینه‌خاک، دراین مقاله برای تحقیق‌

نکته ۲ - مدل تحلیل پرایررسی ارتباط اتصال

همان‌طوریکه قبل آمده، برای حل معادلات حركة‌ای
روش گیتارهای هرمی وارد از رابطه استفاده شده است. برای حذف عبارت غیرخطی
درنیروها وارد از رابطه است خصوصاً زمینه‌ای زرعت دستگاه در قسمت‌های
گرفته شود. دراین مقاله برای تخمین این مقدار زرعت دستگاه در لحاظ
قبل استفاده‌های بیشتر به کوتاه‌کننده‌های فواصل زمانی بین لحظه‌های
مختلف که معادلات در آن زمانها حل می‌شود با تطبیق با دقت مناسب
جواب‌گیری می‌شود و نتایج بدست آمده (که در آنها باره‌ها به‌دست‌آید) این موضوع
رادر به‌تدریج است.

معادله ما تریس حركة برای دستگاه چنددرجه‌آزاد (مدل نسان
داده شده در شکل ۲) به صورت زیر نوشته می‌شود:

\[M\dddot{U} + C\dot{U} + KU = R(t) \] (17)
رفتار وینا میکی اسکله‌ها...

که در آن \(\mathbb{R}_0 \) و \(\mathbb{C}_0 \) به ترتیب ماتریس‌های سختی، جرم و استحکام پایه، و
\(\mathbb{U}_0 \) و \(\mathbb{U}_1 \) به ترتیب برداشته راهی تغییر مکان، سرعت و شتاب در درجه‌اندازی دستگاه ارتعاشی است.

برای تعیین برداشته راهی تغییر مکان \(\mathbb{R}_0 \) لازم است نیروهای وارد بر الکتریکی باشد. برای تعیین نیروها و واردشده
در الکتریکی \(\mathbb{U}_0 \) و \(\mathbb{U}_1 \) روی الکتریکی سمتین بخواهیم \(\mathbb{F}_0 \) طول الکتریکی
از اولین نقطه (زاویه‌دار) درون مکان‌ها و با استفاده از معادله ارتعاشی می‌باشد.

مقدار نیروی‌های وارد بر اولین نقطه بسیار کم است. برای چنین مناسب‌های نیاز به سرعت و شتاب نقاط مکور
می‌باشد. درصورتی که \(\mathbb{U}_0 \) و \(\mathbb{U}_1 \) به ترتیب برداشته راهی تغییر مکان،
سرعت و شتاب این نقاط باشند، معادن دوست [18]:

\[
\mathbb{U}_d = \mathbb{T}_d \mathbb{U}_d \\
\mathbb{U}_1 = \mathbb{T}_1 \mathbb{U}_d \\
\mathbb{U}_i = \mathbb{T}_i \mathbb{U}_1
\]

که در آن:

\[
\mathbb{T}_d = \begin{bmatrix}
25/27 & 25L/216 & 2/27 & -5L/216 \\
1/2 & 1/6 & 1/2 & -L/8 \\
2/27 & 5L/216 & 25/27 & -25L/216
\end{bmatrix}
\]

و در صورتی که \(\mathbb{R}_0 \) و \(\mathbb{R}_1 \) به ترتیب برداشته هیدرودینامیکی الکتریکی می‌باشد، معادن می‌باشد:

\[
\mathbb{R}_1 = \mathbb{T}_1 \mathbb{R}_1
\]
استقلال

بنابراین با استفاده از معادله موریسون (رابطه 1) و روابط فوق بردار نیروهای R_i برای i در حالت کلی بهصورت زیر بدست می‌آید:

$$R_i = R_{IN} - R_{AD} + R_{DR}$$

کدردان:

$$R_{IN} = \frac{\rho \pi D^2}{3} C_M \frac{\sum C}{2 \sum \nu_i}$$

$$R_{AD} = (C_M - 1) \frac{\rho \pi D^2}{4} \frac{L}{3} \sum C T \sum \nu_i$$

$$R_{DR} = \frac{\rho D C_D}{2} \frac{L}{3} \sum C T \left(\sum \nu_i - \sum \nu_i \right)$$

در روابط فوق بردارهای $\sum \nu_i$, $\sum \nu_i$, و $\sum \nu_i$ سرعت و شتاب ذرات آب در سطح فوایم کریمی باشند که مقدار آنها با استفاده از تفاضل مویعی تعیین می‌شود (رابطه 9). بردار R_i از واکنش بردارهای R_{IN} و R_{AD} و R_{DR} به‌صورت متفاوت در هر نقطه به‌وجود می‌آید.

با استفاده از روش شتاب ثابت متوسط، معادله بازگشتی زیر برای جواب بهای لحظهای (t_{i+1}) برحسب لحظه قبلی (t_i) در معادله 17 حاصل می‌شود:

$$\ddot{U}(t_{i+1}) = (k C M)^{-1} \left[\ddot{U}(t_i) + (\frac{1}{2} C M + k) \dot{U}(t_i) \Delta t - \frac{\Delta t}{2} F(t_i) + \frac{\Delta t}{2} FM R(t_{i+1}) \right]$$

$$\ddot{U}(t_{i+1}) = (i + C M)^{-1} \left[\ddot{U}(t_i) + i F(t_i) + FM R(t_{i+1}) - i M U(t_{i+1}) \right]$$

ماتریس‌های سکارزده در روابط فوق عبارتند از:
رفتار دینامیکی اسکله‌ها...

\[\begin{align*}
Q_M &= \frac{1}{2} M_M^{-1} \ddot{\epsilon} \Delta t \\
K_M &= \frac{1}{2} M_M^{-1} K \Delta t \\
F_M &= \frac{1}{2} M_M^{-1} F \Delta t \\
F_F &= \frac{1}{2} M_M^{-1} (\ddot{U}_{\text{a}} + \ddot{U}_{\text{b}} - \ddot{R}) \Delta t \\
K_C M &= \frac{K_M \Delta t}{2} + \ddot{U}_{\text{a}} + \ddot{U}_{\text{b}}.
\end{align*} \] (27)

که در آنها ما تریس مجموعاً تریس جرم (\(M_M\)) و جرم افزوده‌شده به‌وده‌از رابطه‌برنامه‌بندی می‌شوند:

\[\dot{\tilde{Y}}_a = M_M^{-1} \begin{bmatrix} P_1^2 & P_2^2 & \ldots & P_n^2 \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_n \end{bmatrix} \] (28)

در مواردی که برجسته‌تر اثرات زلزله مورد نظر بسیار کم داشته باشند، که فیکت در هر لحظه برای پیش‌بینی‌برداری راهروگری وارد پرداز و آزادی مورد نظر (\(R\)) اضافه شود [18]:

\[\dot{F} = C \cdot \dot{U} + K \cdot \dot{U} \] (29)

که در آن (\(t\) و (\(t\) به ترتیب تغییر مکان و سرعت زمین است و بردا و (\(t\) به ترتیب تغییر مکان و سرعت زمین است.

\[\ddot{L}_a = [1, 0, 1, 0, \ldots, 1, 0]^T \] (30)

نتایج حاصل از تحلیل این مکی براساس مطالعه توربکک فوق‌بند این برنا می‌تواند تغییرات شدوبای استفاده از زمان‌بندی که اسکله مشخص تحت اثرات مختلف زلزله مورد بررسی قرار گرفت. در این بخش نتایج حاصل را به‌کار می‌دهد. اسکله تحت تغییرات زیر است:

پایه‌ها زلزله‌های توده‌ای تغییرات دارند ولی بقیه‌ها رنج 25 میلی‌متر و بیش‌تر می‌شود.
استقلال

چگونه وقتی، طول پایه ۱۵ متر، ارتفاع ۳ متر، جرمی زعفران که توسط هیدرولیک زبا به‌خاک تحرک می‌شود (۳۲۹۵ کیلوگرم، ضریب ایبرسی (\(\rho\)) برای دوپا، ضریب دراک (\(\rho_D\)) برای براد، ضریب استحکام داخلی ساژدر گام‌های اول و دوم مساوی با ۵٪ بوده‌است.

مشخصات خاک برای این مثال به‌صورت زیردر نظر گرفته شدند:

- سرعت امواج برشی در خاک (\(v_g\)) برای دوپا ۵۰۰ متر بر ثانیه، دانسته شده و همچنین برای خاک (\(v_g\)) برای دوپا ۱۷۲۵ کیلوگرم بر متر مکعب و ضریب پواسون خاک (\(\nabla\)) مساوی ۰.۳ بوده‌است.

چون دراین مطالعه، از محدوده‌های معادله استفاده شده است، لازم بود که ابتدا همگرایی جویابهای واژنی و تعداد دامان‌هاکنترل شود. این موضوع در مثال‌های متعددی بررسی شد. مثال "برای حالتی که بیروپودوج وارد شده و صورتی به‌خاک برای اسکله و خاک بی‌شکل، نتایج حاصل در جدول ۱ آورده شده است. همانطور که در ستون‌های جهای رونده‌نرمی جدول مشاهده می‌شود، همگرایی جویابهای واژنی تعداد دامان‌هاکنترل مخص است.

جدول ۱ - کنترل همگرايی جویابه‌ها با واژنی تعداد دامان‌هاکنترل بکار رفته

<table>
<thead>
<tr>
<th>حالت</th>
<th>تعداد دامان‌هاکنترل</th>
<th>طول (سانتی‌متر)</th>
<th>عرض (سانتی‌متر)</th>
<th>جدای کردن‌پیمان</th>
<th>جدای کردن‌پیمان (درصدی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>۲</td>
<td>۵۸۹</td>
<td>۳/۴۷۱</td>
<td>۲/۳۳۲</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>۲</td>
<td>۶۵۴</td>
<td>۳/۵۳۱</td>
<td>۲/۳۶۴</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>۳</td>
<td>۶۶۴</td>
<td>۳/۵۴۴</td>
<td>۳/۴۳۲</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>۵</td>
<td>۶۷۰</td>
<td>۳/۰۴۷</td>
<td>۴/۰۴۷</td>
<td></td>
</tr>
</tbody>
</table>
هدف کنترل همگرایی جواب‌ها با کاهش فواصل زمانی

<table>
<thead>
<tr>
<th>فواصل زمانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/08</td>
</tr>
<tr>
<td>0/04</td>
</tr>
<tr>
<td>0/02</td>
</tr>
<tr>
<td>0/01</td>
</tr>
<tr>
<td>0/05</td>
</tr>
</tbody>
</table>

همانطور که از جدول فوق مشاهده می‌شود بازی مقادیر $T < 55/05$ جواب‌ها تقریباً همگرا می‌شود و مستقل از فاصله زمانی است. به این صورت $T = 55/05$ خطای در حدود 4% وجود دارد که قابل اغتنام است.
بنا بر روی شرط $T_{1/2} < \frac{5\text{ یلم}}{\text{ساعت}}$ که برای تضمین دقت کافی در روش شتاینکت، متوسط ذکر شده است، برای نمونه مطالعات هم مناسب بیان می‌شود. بررسی نتایج رفتار میکروکوزمیکی اسکله تحت ترازوی با پروپه‌ای مختلف بخشی از این مطالعات بوده است. با مشخص نمودن که خلاصه‌ای که گفته‌ایم که کشف شده‌ایم که چهارین فرکانس زاوازی ای سمایی برای مدل برای رفتاری مساوی $\frac{446}{7}$ رادیان بر ثانیه بوده است. برای بررسی اثرات پروپه‌ای چرخش، برای برای دانه‌ای موج از متروپروپه‌ای چرخشی این طرح شانشه‌های اجرا شد. شکل تغییرات این که اکثری بی‌پیتیره را بررسی نسبت فرکانس زاوازی ای موج به $\frac{1}{7}$ نشان می‌دهد. هنگام تنورنگاره دارای تغییرات می‌شود این تغییرات دارای مقدار مکثکی در محدوده نسبت واحدها می‌باشد (حالات تشدید).

![Graph](image-url)
همچنان جالب نیست که منحنی تغییر مکان عرضه در حال تشدید تاحدهی متفاوت ایرانی بر حالات است. در شکل‌های منحنی تغییر مکان عرضه برای پریود موج 16 ثانیه و در شکل ل 4/28 ثانیه (حال تشدید) نسبت های استحکام داخلی مفروض شده مساحت می‌شود تا پریود اینکه داخل سازه پرمنحنی نوسان در حال تشدید را استحکال مزبور دیده می‌شود.

![Diagram A](image1.png)

الف - پریود موج 16 ثانیه

![Diagram B](image2.png)

ب - پریود موج 28/6 ثانیه (5=5)
شکل ۴- منحنی تغییر مکان عرضه بر حسب زمان برای پریود‌‌های محسوب

برای رسیدن ریزک این می‌کنیم که سلوله تحت زلزله، فرض شده‌ایم در محل که بی‌پروازی گیرد و ریزک بی‌پروازی گیرد می‌باید ساخت و ساز از انتخابی ریزک بی‌پروازی گیرد زیر شرایط مربوط به زلزله‌ای

البته (ا. ل. ج. پ. استر) هم‌معنی [۱۹] که منحنی‌های شتاب، سرعت و تغییر...

مکان زمین برای این زلزله بخصوص در شکل ۴ نشان داده شده است.

انرژی در سال زلزله برای اسکله‌های زمین‌شناسی ارتفاع‌های ۱۵۰۰ متر بالا لازم است. مصارف با آب و برق وجود آماده‌های مصرف‌پذیر از زمین‌شناسی نیاز ندارد. در شکل ۴ وارد شده است. همین نظریه در منطقه وجود آماده‌های مصرف‌پذیر از زمین‌شناسی نیاز ندارد. پای به کنارها با شدت تأثیر و وجود آماده‌های اطراف یا به دلایل ارتفاع اسکله‌های نوسان عرضه در شکل ۴ وارد شده است. همین نظریه در منطقه وجود آماده‌های مصرف‌پذیر از زمین‌شناسی نیاز ندارد.

۱. Soil-Structure Interaction
شکل ۵ - منحنی‌های شتاب، سرعت و تعیین‌میکان زمین برای زلزله موردبیروسی
شکل 4: منحنی تغییر مکان مرجع در دو حالت با آب و بدون آب برای ارتفاعاتی مختلف با شکل
مکان عرضه نسبت به حالت بدون آب می‌شود. بنابراین می‌توان گفت برای بین اسکله‌های اثرات وجود آب اطراف یا به‌هم‌بودن کوتاه‌یا بلع، اگر در مواقعی سطحی گیری کلی در آینده موردبستگی به مشخصات اسکله‌دار بر اساس شیوه‌های توجیهی."}

خلاصه و نتیجه‌گیری:

همانطوریکه بیان کرده‌ام سیستم تحلیل دینا میکی سا زده‌ها واقع برای یک‌دیش مخصوص درآمیز کردن آسیب‌های میکی و ادمی یا یکی از میراث‌های را از راه‌حل‌های بهترین مدل‌های مختلف دیگر می‌باشد. در این مقاله، با استفاده از الگوریتم طراحی مجدد محدود در مدل‌های مختلف دیده‌شده، می‌توانیم از نتایج که در این مقاله توضیح داده شده است، به نتیجه‌گردی نیروها با وظایف شتاب زده و نیرو میکی این مسئله را در دنیای مهندسی معمولی جدا می‌ماند. در این مقاله، با استفاده از الگوریتم طراحی مجدد محدود، در مدل‌های مختلف دیده‌شده، می‌توانیم از نتایج که در این مقاله توضیح داده شده است، به نتیجه‌گردی نیروها با وظایف شتاب زده و نیرو میکی این مسئله را در دنیای مهندسی معمولی جدا می‌ماند.
استقلال

ارتعاش‌‌‌ʻ

