رفتار دینی میکی‌اسکله‌های تحت اثر مواضع زلزله

امیر سعودی‌مکا* و امیر سعودی‌مکا**

چکیده
هدف مقاله ضرورت مطالعه‌کردن معا دلات حاکم بر ایلات دینا میکی متقابل بین آب و آفتاب کمتر قرار رگرفته در آن و نیاز راه روش عدیدی مربوط به حل این معا دلات میباشد. مدل تحلیلی سه رفتار موتوری به‌یاد دو رفتار رگرفته که قسمتی از آن در خاک و بخشی در آب تراکم رگرفته است، در مدل‌های فوتوانی به‌یاد بر می‌گردد یک رفتار مرکزی قرار رگرفته و دو رفتار جنگلی در آن نقطه بطور کل جلوگیری شده است تا بین‌دردها اثرات طبیعت زیا در مسیر راه‌پیمایی منظور گردد. با یاد نشان‌گذاری خاک اثرات متقابل بین قسمت ماهیگیر در خاک و در آب بر رفتار منظور گردد. نمایش دهنده میکی در خاک و در آب رفتار مانند نشان‌گذاری یک اثرات متقابل بین قسمت ماهیگیر در خاک و در آب بر رفتار منظور گردد. نمایش دهنده میکی در خاک و در آب رفتار مانند نشان‌گذاری یک

نیروی هیدرودینامیکی ناشی از موج‌های نیروز و شکل‌پذیری‌ها،
از طریق معا دلات میکی ناشی از موج‌های نیروز و شکل‌پذیری‌ها،
با توجه به یک‌پاره معا دلات
مزودن را می‌توانیم با ضرورت‌هایی پایه پایه می‌شود
برای حل معا دلات زیرکانه که عطایی روی‌های استفاده‌ده‌دست، که در آن
سرعت‌ها در هر راه‌برد با ضرورت در مرحله‌های متعادل زدن می‌باید.
دقت
این تحقیق با مطالعات یک‌پاره میکی میکی‌میکی زیستی قرار رگرفته است.
با استفاده از مدل‌های هیدرودینامیکی، نوسانات دینا در موج‌های نیروز
و اکنون آن در مقاله پژوهش‌های مورد بررسی قرار رگرفته. با استفاده از
مطالعه سطحی شکل‌پذیری‌ها اکنون می‌توانند تحت آثار موج‌های منطقه‌ای

*مربي دانشگاه عمان دانشگاه صنعتي اصفهان
**استاد دانشگاه عمان دانشگاه صنعتي اصفهان
مقدمه
درس‌های اخیر مطالعات زیادی در زمینه‌های مختلف مربوط به سازه‌های دریایی مورت گرفته است. بخش‌هایی از این مطالعات در زمینه تعیین فشاری وارد‌پراین سازه‌ها در شرایط عمومی، ویژه‌ای را که روشنایی برای تحلیل آن‌ها بوده است.
ازجمله سازه‌های دریایی، سازه‌های استوایی‌ربافی یا صفحه‌ای یا پلاک‌های میکاپلاکه‌های آب‌آلود می‌توان به اسکلیپه‌ها ی یا کلیپه‌ها دو نام‌های دیگری کرد. آن‌ها در رابطه با آن‌الیر این سازه‌ها هستند خاص دارند و تعیین بارهای ناشی از موج و تحلیل سازه‌های آن بارهای‌ها، با بهبود و دیگر بررسی مفاهیم اثرات متقابل آب و سازه‌ها می‌باشد.
درس‌های ۱۹۵۰، موریسون و همکاران راش [۱] مطالعه برای تعیین نیروهای وارد‌پراین سازه‌های دریایی به‌معنای کم‌قطار را راه‌کردند که خود در این مطالعات بعدی قرار گرفت. این مطالعه برای پی‌بری‌ی استوار است که نخستین‌ین فراپاب موضوع تحقیق بسیاری از مشکلات دیگر، کلیپه‌گون و کاپ‌پریز [۲] و سپس کاپا [۳] قرار گرفته است. بررسی مطالعه در جلکی موارد خود را به‌یک‌دری‌شونتر فرودگاه افزوده‌ی چون نیومن [۵] دنبال شده است.
برای استفاده از مطالعه موریسون با ابتدای با استفاده از تکنیک موج مناسب مشخصات هیدرودینامیکی ذرات آب رابدست آورد. تکنیک موج خلی اولین با روش ابی‌ای درسال ۱۸۴۵ را راه‌کشیده‌بود.

1. Fluid-Structure Interaction
رفتا ردینامیکی اسکله‌ها...

استوکس [4] نشوری دقیق تری بیشتری درگیری آن تاریخی بیان می‌کند. این آزمایشات بهبود محققان، بسیاری در زمینه نوروزی در این مدت را پیش‌بینی کرده که آن‌ها جمعه می‌توانند با کارهای یک‌پاره و یک گل استوکس آن را کرد.[4]

بدلیل وجود نافذیه نیروی دراک در هم‌دومه مورسیون، رفتا ردینامیکی این نوع سازه‌ها تحت اثر امواج نوروزی است. بهبود
دلیل حل سلسله دینا میکی آنانی که بهبود در زمینه محدودیتی است.
محققین زیادی در مهمانی این روش‌ها برای حل مسائل نوروزی به‌کار رفتن
معادلات حرکت بوده‌اند که آن جمله می‌توان به روش‌های ارائه‌شده توسط

استفاده از روش‌های مضاد برای حل معادلات ارتباط‌پیمانه‌های دودی
موضوع تحقیقات انجام شده توسط افرادی نظیر دنیاندرسون و ماتسون [9]
برخی از این محققین از روش‌های آنانز در بخشی از دادرس این مقاله برخی‌گرایز
آنالیز در حالی که آنانز درحالی که نگرانی استفاده‌گرایانه در
دراین مقاله، اثرات هیدرودینامیکی امواج بر ازه‌های
استوکسی برای برخی از واقع درآم، مودیسی قرار می‌گیرد. هدف اصلی
از این مقاله را یک مدل مناسب، برای مدل کردن معادلات حرکت و
متفاوت می‌دانند. در این مورد، برای مساحت جبهه‌های
کاربردی تحقیق، جنبه‌های مدل برای آنانز دینامیکی اسکله تحت
اثرات چرخ‌ارزه‌های در حالی می‌شود. همچنین برای استفاده از
مترود ارجام شکست امواج طرح‌هایی با دو کاهش در داخلی و
نحوه انتخاب موج با چرخ‌ارزه‌های طراحی، تعیین‌های دارد که پیش‌بینی آن‌ها بر
یک یک، طرح این [13] کمی استفاده از متدولوژی که اساس
екسکله‌ها دراین مقاله ارائه می‌شود.

1. Time Domain 2. Frequency Domain
استقلال مطالعات خاصی هریک مورسی بررسی می‌کند. برای بررسی یک عضو فک می‌تواند در نظر گرفته شود و با استفاده از تکنیک‌های روش‌های مورد بررسی قرار گیرند. توسعه یافته سال‌ها مورد بررسی قرار گرفتار شده است. این سمت می‌تواند برای اجرای تکنیک‌های مختلف مورد بررسی قرار گیرد. به طور کلی، مدل نمایشگر مدیران و بررسی‌های گروه‌بندی با استفاده از تحلیل‌های داده‌های استقلال می‌تواند نتایج بهتری را فرآیندهای محاسباتی به دست آورد.

نیروهای هیدرودینامیکی و ارتباط‌های به‌های اسکله

نیروهایی که بر روی اسکله اثر می‌کنند، وجود دارند و در آن‌ها تبدیل به‌های اسکله می‌شود. و ارتباط‌های به‌هایی هیدرودینامیکی ناشی از افزایش رابطه به‌های می‌شود. برای بررسی این امر، مدل‌های دیگری نیز می‌تواند به‌کار گرفته شود.

برای تعیین نیروهای هیدرودینامیکی و ارتباط‌های به‌هم داده می‌تواند، این مدل‌ها برای مواردی که نتیجه قطع یا به‌طور مداوم از مدل‌ها در بررسی‌های دیگری نیز نظیر زیرنویس می‌شود:

\[\mathbf{f} = \frac{1}{2} \rho C_D \mathbf{D} [\mathbf{U} - \mathbf{U}_w] + \rho C_M \frac{AD^2}{4} U_w - \rho (C_M - 1) \frac{AD^2}{4} U_w \]

که در آن:

\[\mathbf{f} \] نیرویی که بر روی اسکله طولانی‌ترین باید به‌شمار شود.

\[\rho \] جرم مخصوص

\[D \] قطر اسکله
رفتار دیماهی‌ها اسکله‌ها...

ضریب ایستارسیزی \(C_M \)
ضریب دراک \(C_D \)
سرعت یا فشار فلکی ذرات آب در محل معیار ثابت
سرعت بلندفشار فلکی ذرات آب در محل معیار ثابت

لازم به ذکر است که ضرایب دراک و ایستارسیزی \(C_D, C_M \) تجربی می‌باشند و به‌عمل‌گیری متعددی نظری عدد‌بنیان و عددکلی‌گان کا ریکتر و شرایط فیزیکی و ایستارسیزی ذرات دارد. در این مقاله مقدار این ضرایب در طول پایه ثابت می‌شود.

به‌منظور کاهش کلی میزان میزان استفاده می‌شود در حل معادلات حرکت دو مشکل اصلی بررسی می‌کنند: اولاً، نیروی دردنبال‌بر یا به‌منظور ثابت نشان‌دهنده یا تحمیل نشان‌دهنده سرعت نسبی قبل ازعل می‌باشد حرکت مجهز است، به‌دیدن ترتیب مسئله فوق از نوع مسئله عمل متقابل یک‌مانند. همان‌طور که می‌توهیم خاصیت قدر برای نیروی دردنبال‌بر را خاص‌تر از مسئله قدر مطلق جهت بی‌بی‌یا به‌منظور بررسی مسئله ناپایی غیرخلطی می‌باشد. از این روست که معمولاً برای حل معادلات حرکت این نوع سازه‌ها استفاده می‌شود.

همان‌طور که در مورد (1) مشاهده می‌شود، برای استفاده از معادله میوسکلی‌ها استفاده می‌شود. معادله‌ی میوسکلین است که در تابع یا در تابع مختلفی به‌منظور شونده‌ی این منظوری‌ها یا یکی از تغییری‌ها موجب استفاده می‌شود. تغییری‌های مختلفی برای امکان‌ها را ایده‌سازی کرده‌است که آن جمله می‌توان تغییری‌ها در نظر گرفت. چون امکان‌ها استوک و تغییری موج نیز روی‌کننده‌ی را برمی‌آورد.

استقلال

خطی به‌اشکال دارای ایستفاده می‌تواند در یک مقایسه نسبتاً رحمت‌اند

درکردن موج‌های خطی، که نرخی موج‌های یک نیرنامیده می‌شود، برای موج بوسیله‌کمپین آزمایشگر می‌شود (شکل 1): همان‌طور که مشخص شده است، مدت موج، طول موج، کریستالزا و بازی موج و کمیت‌ها بوسیله روابط زیر با یکدیگر مرتبطند:

\[\omega = \frac{2\pi}{T}, \quad k = \frac{2\pi}{L}, \quad C = \frac{\omega}{k} \]

شکل 1. سطح آب در راه‌های مختلف موج

علاوه بر این، مطالعه نرخ خطي سرعت موج و طول موج نیز از خاندام است. برای به‌کارگیری مقیاس زیرکه رارابط با آن را از چنین رابط وابسته (2) استفاده می‌شود:

\[\omega^2 = g k t g h (kd) \]

1. Airy, 2. Wave Number, 3. Linear Dispersion Relation,
رفتار دی‌ماکی اسکله‌ها...

\[c = \frac{g}{k} \tgh (kd) \] (3)

\[\eta = \frac{H}{2} \cos (kx - \omega t) \] (4)

\[\hat{U}_w = \frac{\pi H}{T} \frac{\cosh(k(z+d))}{\sinh(kd)} \cos(kx - \omega t) \] (5)

\[\ddot{U}_w = \frac{2\pi H}{T^2} \frac{\cosh(k(z+d))}{\sinh(kd)} \sin(kx - \omega t) \] (6)

توضیحات

پایه‌های اسکله‌ها علی‌الخصوص با یکدیگر

همچنین گاهی از نوع‌های دیگری به کار می‌رود.

با یکدیگر ساخته می‌شود.

با استفاده از این نوع‌های مشتاق درکاک فشای ساخته می‌شود.

لازم است مرحله‌ای از رایگان‌سازی و ایجاد انرژی برای این جهت باشند.

به‌طوری‌که در هر حالت مناسب

از این نوع‌ها در کنار گذشته شود.

برای این منظور می‌توان از روابط تقریبی استفاده گذاشته شد.

استفاده شده است.

منشاء استیلک در ارتعاش شمعها، وجود استیلک‌های داخلی در جسم...
شمع و خاک یونیتد شرکت انرژی حامل از ارتقاء شمع است. معمولاً سهم عامل اخیراً زیادی مربوط به استحکام داخلی بخش صف و نیز دراین مقاله استحکام داخلی شمع مطرح شده است. در این مقاله، در سه انتقال بهترین روش برای استفاده در روش متفاوت هیچ یک است. استحکام شمع در یک طرف جهان از طریق آزادی انتقال و دو طرف را از طریق انتقال

\[K = \begin{bmatrix} k_{xx} & k_{x\theta} \\ k_{\theta x} & k_{\theta \theta} \end{bmatrix} \]

(7)

\[C = \begin{bmatrix} c_{xx} & c_{x\theta} \\ c_{\theta x} & c_{\theta \theta} \end{bmatrix} \]

(8)

که در آن:

\[k_{xx} = 2 \frac{EI}{R^3} \left(\frac{S}{E} \right)^{0.75} \]

(9)

\[k_{x\theta} = -1.2 \frac{EI}{R^2} \left(\frac{S}{E} \right)^{0.5} \]

(10)

\[k_{\theta \theta} = 1.6 \frac{EI}{R} \left(\frac{S}{E} \right)^{0.25} \]

(11)

\[c_{xx} = \frac{2R}{v_s} k_{xx} \]

(12)

\[c_{x\theta} = \frac{1.5R}{v_s} k_{x\theta} \]

(13)

\[c_{\theta \theta} = \frac{5R}{v_s} k_{\theta \theta} \]

(14)
دراین روابط G_{S}، مدل استیسه‌برداری، E_{S}، مدل استیسه‌برداری P_{S}، یک دراین روانی متغیر شیعه و یک دراین روانی مناجمی شیعه و یک دراین روانی اجزای لازم در این روابط به‌کار می‌رود.

اکنون v_{S}، P_{S}، G_{S}، E_{S}، v_{S}، P_{S}، G_{S}، E_{S} را برای این داده‌ها استفاده خواهیم کرد.

$$v_{S} = \sqrt{\frac{G_{S}}{P_{S}}}$$

$$G_{S} = \frac{E_{S}}{2(1 + v_{S})}$$

در این روابط P_{S}، G_{S} و E_{S} به‌کار می‌رود. به‌طور کلی، این روابط به‌عنوان یک مثال مشخص می‌شوند (شکل 2).

فرمول‌های مشاهده‌های حکمت و هنر آنها

هدف اصلی دراین مقاله بررسی ارتصاوات اسکله‌های استوار بر شمع است. برای این منظور، بسیاری از هم‌سازان، یک محسوس زن و تک‌پیکر از این اسکله‌های برتر متمرکز درانتهای آن، که از نظر سیم‌ها با توجه به ترکیب ورودی شده، در نظر گرفته شده است. این با پایه‌برداری فنرها، که در آن رفحان روانگی در مهارت و در نیروگرفتن ارتباطات، به دست می‌آید. قدیمی به شکل 2 در مدل تحلیلی روانگی می‌دهد. این مدل با استفاده از روش اجزای محورهای مجموعه‌ای از یک ترکیب برای استر، فنی گسترده ترقی، و ترقی مدل شکل مدل ایجاد می‌کند.

1. Mode Superposition
با این ترتیب استثبات کلی سبب بود که دراین مقاله برای تکیه‌گاه‌های درونی از روش ری Stories استفاده شده است. [17] استفاده شده است.

نکته ۲ - مدل تحلیل پرایمرسی ارتباط با مدلی هم نظریه‌ای قبلاً توضیح داده شده، برای حل معادلات حرکتی از روش غیر منتشر ثابت استفاده شده است. برای حفظ میزان غیرمنتشر در درون‌های وارد از لحاظ تکمیلی سرعت دستگاه در بررسی هر نقطه گرفته شود. در این مقاله برای تخمین این مقدار سرعت دستگاه در بررسی قبل استفاده شده و با توجه به سلسله‌ای بودن فواصل زمانی بین لحظات مختلف که معادلات در آن زمان نیاز حل می‌شود، به تطبیق با دقت مناسب جواب‌گیرنده و نتایج بست‌آمده (که در ادامه به‌روایت‌ها و نتایج) این موضوع را نداشته‌کرده است.

معادله‌ای تریکی برای دستگاه‌های دندرود (مدل نیسان داده شده در شکل ۲) به صورت زیر نوشته می‌شود:

\[M \ddot{u} + C \dot{u} + K u = R(t) \] \hspace{1cm} (17)
در فنا ردنی میکی اسکله‌ها

که در آن x_i و y_i به ترتیب ماتریس‌های سختی، جرم‌واسته‌کننده با یک و \ddot{y}_i به ترتیب بردار رهای تغییر مکان، سرعت و شتاب در دیدار آزادی دستگاه ارتعا است.

برای تعیین بردار نیروهای گره‌های (x_i,y_i)، لازم است نیروهای \mathbf{F}_i وارد بر بالانس‌های پایه‌ها آید به همراه تعیین نیروهای \mathbf{W}_i وارد بر بالانس‌های پایه‌ها را را بیان می‌کند (قانون دقیقه‌بندی) در نظر گرفته‌شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-زین ازابتا (پایان‌های) در نظر گرفته شده با استفاده از معادله موربست-ز

سرعت و شتاب این نقاط با \dot{y}_i و \ddot{y}_i به ترتیب بردار رهای تغییر مکان،

$$\ddot{y}_i = T_{y_i} \ddot{y}_i$$

$$\dot{y}_i = T_{y_i} \dot{y}_i$$

$$\ddot{y}_i = T_{y_i} \ddot{y}_i$$

که در آن:

$$T_{y_i} = \begin{bmatrix}
\frac{25}{27} & \frac{25L}{216} & \frac{2}{27} & -\frac{5L}{216} \\
\frac{1}{2} & \frac{L}{6} & \frac{1}{2} & -\frac{L}{8} \\
\frac{2}{27} & \frac{5L}{216} & \frac{25}{27} & -\frac{25L}{216}
\end{bmatrix}$$

و در صورتی که، بردازش روی هیدرودینامیک زنده نظرت گرفته شده به‌رامایزر میکی اسکله‌ها آزادی را با استفاده از رابطه زیر می‌تواند بیشتر

$$\mathbf{R}_i = T_{y_i} \mathbf{F}_i$$
با توجه به معادله موریسون (رابطه ۱) و روابط روبرو، برای تمامی درجات کلی بطور زیربرده می‌آید [۱۸]:
\[
 R_i = R_{IN} - R_{AD} + R_{DR}
 \] \hspace{1cm} (21)

کد رایان:\n
\[
 R_{IN} = \frac{L}{3} \cdot \frac{\rho D^2}{4} \cdot C_M \cdot T \cdot \frac{\ddot{w}_i}{T_{wi}} \] \hspace{1cm} (22)

\[
 R_{AD} = (C_M - 1) \cdot \frac{\rho D^2}{4} \cdot \frac{L}{3} \cdot T \cdot T \cdot \dot{w}_i \] \hspace{1cm} (23)

\[
 R_{DR} = \frac{\rho D C_D}{2} \cdot \frac{L}{3} \cdot T \cdot (\ddot{w}_{wi} - \ddot{w}_i) \] \hspace{1cm} (24)

در روابط فوق بردارهای \(\ddot{w}_i \) و \(\ddot{w}_{wi} \) دردست‌آمده. درخور فرآیند مشابه، سرعت و فشار ذرات آب در نقطه نقطه فرآیند مشابه، مقدار آنها با استفاده از تفاضلات زمان‌یابی متغیر بردارهای \(R_i \) و ارسال کردن بردارهای \(R_i \) برای آن‌ها می‌باشد. با استفاده از شرایط مبتنی بر معادلهٔ دومدیده، جواب‌های لحظه‌ای (\(t_{i+1} \)) برحسب لحظه‌قبلی (\(t_i \)) در معادله ۱۷ حاصل می‌شود:
\[
 U(t_{i+1}) = (k_C M)^{-1} [U(t_i) + (\frac{1}{2} C_M + k_C) U(t_i) \Delta t - \frac{\Delta t}{2} F(t_i) + \frac{\Delta t}{2} F(t_{i+1})]
 \] \hspace{1cm} (25)

\[
 \dot{U}(t_{i+1}) = (C_M + k_C)^{-1} [\dot{U}(t_i) - k_C U(t_i) + F M R(t_{i+1}) - k_M U(t_{i+1})]
 \] \hspace{1cm} (26)

ماتریس‌های بکاررفته در روابط فوق عبارتند از:
رفتار دینامیکی اسکله‌ها...

$$C_M = \frac{1}{2} M' \left(\frac{\Delta t}{C} \right)$$
$$K_M = \frac{1}{2} M' \left(\frac{\Delta t}{K} \right)$$
$$F_M = \frac{1}{2} M' \left(\frac{\Delta t}{C} \right)$$
$$F_F = \frac{1}{2} M' \left(\frac{\Delta t}{C} \right) \left(C_M + K_M - R \right)$$
$$K_C = \frac{K_M \Delta t}{2} + C_M + C_F$$

که در آن m مجموعه مانند جرم (m) و جرم افزوده شده به وسیله رابطه زیر تعیین می‌شود:

$$m' = m + (CM-2) \frac{\partial P^2}{\partial t} + \frac{1}{\gamma} \frac{\partial T}{\partial t}$$

در مواردی که بررسی اثرات زلزله مورد نظر باشد، می‌توان نشان داد که کافیست در ترکیب دردآورانه بردا رژیم‌برداران و بهبود از سطح منحنی مورد نظر (R) از طریق تغییر کارایی و سرعت زمین است γ و در نیزعبارت γ از z به ترتیب تغییر می‌کند و γ به ترتیب تغییر می‌کند و γ به ترتیب تغییر می‌کند.

$$I = C_L U_L (t) + K_L U_L (t)$$

که در آن (t) و (t) به ترتیب تغییر کارایی و سرعت زمین است و γ به ترتیب تغییر می‌کند.

$$I = [1, 0, 1, 0, 1, 0, 1, 0]$$

نتایج حاصل از تحلیل دینامیک

براساس مطالب تئوریک فوق، یک برنا می‌تواند تئوریکش دوبیان استفاده کند. اکتشیک اسکله مناسب تحت استوا از نظر مختلف زلزله سوره بررسی شود. در این بخش نتایج حاصل می‌باشد. اسکله انتخاب شده دارای مشخصات زیر است:

پایه‌های زلزله‌ای گرلادی تغییر اطراف راه‌های گسترده گزارشی می‌باشد.
استقلال

چاپ ۲۵ میلیمتر، طول با یک‌سی‌های ۲۵ میلیمتر، جرمی زعرور
که توسط هر کی‌‌ا به یکی تحمل می‌شود (۲۵۰ کیلوگرم، ضریب این‌رسی (p)
برای با ۲، ضریب دراک (C_D) برای واحد، ضریب استخلاک داخلی سازه در
گام‌های اول ودوم مسایل با ۵%.

مشخصات خاک برای این مثال بطور زیر در نظر گرفته شده:
سرعت امواج برخی در خاک (v) برای با ۵۰ مترا وارد نشته، دانسته‌
خاک (ρ) برای با ۲۵۰ کیلوگرم بر متر مکعب و ضریب یواسون خاک (γ) می‌باشد.

چون دراین مطالعه اجرایی محور استفاده شده است، لازم
بوده است این همگرایی جواب‌های افزایش تعداد درمان‌ها کنترل شود. این
موضوع در مقاله‌های متعددی بررسی شده است. مثلاً برای حالتی که برای
تنابنده و سرعت نوشتاری مشخصات که قبل برای اسکله و خاک
بیش از نتایج حاصل در تدریج ۱ آوردیه است. همان‌طور که در
سنجش جایگاه روند نمایند جدول مشاهده شود، همگرایی جواب‌ها با افزایش
تعداد درمان‌ها کنترل می‌باشد.

جدول ۱ - کنترل همگرایی جواب‌ها با افزایش تعداد درمان‌ها به‌کار رفته

<table>
<thead>
<tr>
<th>حاداً کترُتغییرمکان بایه</th>
<th>طول (سانتی‌متر)</th>
<th>تعداد (سانتی‌متر)</th>
<th>حالت</th>
</tr>
</thead>
<tbody>
<tr>
<td>حاداً کترُتغییرمکان بایه</td>
<td>3/471</td>
<td>3/579</td>
<td>2</td>
</tr>
<tr>
<td>طول (سانتی‌متر)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد (سانتی‌متر)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>حالت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ⅰ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ⅱ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ⅲ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ⅳ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
رفتار دینامیکی اسکله‌ها

همچنین به دلیل استفاده از روش مدیت و نیز تقریبات بکار رفته در این روش، به‌عنوان یک روش سرعت هر‌حظه با سرعت لحظه‌ای (پیش‌رای حذف جمله غیر خطي)، لازم است به‌دقت و همگرا بی‌جواب‌ها با بازی کاهش فواصل زمانی (Δτ) نیز بررسی شود. مشخصات اصلی سازه و موانع نظر بحث‌های قبل در نظر گرفته شده و برای فواصل زمانی متغییرت (Δτ) آنالیز دینامیکی انجام گرفته. درک منحنی نوسان حاصل در دقتی از حالات تقریباً "پکسنت و مقدار تغییر مکان حاصل نمایش مطابق جدول 2/28/28 برای دکست نیز بوده است.

جدول 2- کنترل همگرا بی‌جواب‌ها با کاهش فواصل زمانی Δτ

<table>
<thead>
<tr>
<th>حداکثر تغییر مکان (مرعه/سانتی‌متر)</th>
<th>فواصل زمانی (Δτ) به‌دقت اولین ارتباط بازی (τ/سانتی‌متر)</th>
<th>حالت</th>
<th>فواصل زمانی (Δτ) به‌دقت دومین ارتباط بازی (τ/سانتی‌متر)</th>
<th>حالت</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/927</td>
<td>0/2</td>
<td>I</td>
<td>0/8</td>
<td></td>
</tr>
<tr>
<td>3/230</td>
<td>0/1</td>
<td>II</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td>3/598</td>
<td>0/7</td>
<td>III</td>
<td>0/2</td>
<td></td>
</tr>
<tr>
<td>3/592</td>
<td>0/12</td>
<td>IV</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>3/593</td>
<td>0/125</td>
<td>V</td>
<td>0/5</td>
<td></td>
</tr>
</tbody>
</table>

همان‌طور که از جدول فوق مشاهده می‌شود، تعدادهای مقادیر (Δτ/τ) مثل 0/55 و 0/70 جواب‌ها تقیبی همگرا نه و مستقل ازفاصله زمانی است. به‌خاطر اینکه در حدود 20% وجود دارد، راهکار قابل اطمینان است.
بنا برای نشانه‌های موجود و گزارش‌های مختلف، برجای بمانند دقت کافی در روش شناسایی نتایج متوسط عکس‌های مختلف، رنگ‌آمیزی مشابهی نشانده و اaviors جهت استفاده می‌باشد. با افتخاری که قبلاً ذکر شدگه‌ی کوچکترین فرکانس زاویه‌ای طبیعی برای مدل بکا رفت‌های مساوی‌ی ۱۰۴۶۲ رادیان بر تنیده به‌دست آمد. برای مواردی اثرات برای موج‌های واکنش برای موج دامنه‌ای متوسط برای موج‌های مختلف بین انا ۲۳ تنی به‌دست آمده. شکل ۳ تغییرات حداکثری به‌بی‌بی عرفای یا برحسربرب نسبت فرکانس‌ی زاویه‌ای موج به یک ناپدید می‌باشد. همه نمودارگرهای دراین تعیین مشاهده نمود این تغییرات دارای مقدار حداکثری در حوالی نسبت وسایلای بامداد (حال تشدید).

شکل ۳- منحنی تغییرات دامنه نوسان برحسربرب تغییرات برای موج
همچنین جالب است که منحنی تغییر مکان عضوه در حالت تشکید تا حدودی منتفی و از این برخالات است. در شکل گال فنجان تغییر مکان عرضه برای پرودوموجثانیه و دراکاک لی بوج برای پرودوموجی/۲ ثانیه (حالته تشکید) ونسبت های استحکام داخلی مفروض در ملاحظه می‌شود. تا این به پیش‌ها داخلی سازه برمنحنی نوسان در حالت تشکید در اشکال مزبور دیده می‌شود.

الف - پرودوموجثانیه

ب - پرودوموجی/۲ ثانیه (۵=۲)
شکل 4- منحنی تغییرات مکان درجه ریزش زمین برای یکی از روش‌های میکرو محسوب

برای بررسی وظایف میکرو، منحنی تحت این شکل به‌کار رفته است. در هر مرحله کف به‌صورت گیردار ریزش به یکی از این روش‌ها مشتق شده و سایر لرزه‌ها از نظر آزادی بر رفت و برگشت می‌باشد.

ج) بررسی اثرات زلزله زکرودکوه/ منحنی مربوط به زلزله

الاسام (الحجا هرا) استفاده [19] و منحنی های گزارش شده در بهترین مکان‌ها برای این زلزله بخصوص در شکل ۵ نشان داده شده است.

اگر زلزله برای یکی از منحنی‌های مشخص داده گزارش خود را داشته باشد، بررسی شده در منحنی‌های نوسان در ۱۵ متر به‌جای ۶ ورود شده است. همچنین نتیجه‌بری‌های در شکل ارائه داده شده است. در مورد زلزله، وجود آن با استفاده از این ابزار ارائه داده نشده است.

1. Soil-Structure Interaction
شکل ۵- منحنی‌های شتاب، سرعت و تغییر مکان زمین برای زلزله موردرسی
رفتار رده‌بندی میکروکلس‌ها ...

مکان عرضه‌نتیجه بین بافت بدند آب می‌گردند. بنابراین می‌توان گفست برای بین اسکله‌ها اثرات وجود آب اطراف با به‌خود با "نورا" رفتار میکروکلس‌ها کوشا نشود. اگر انجام شاید، بیشترین نتیجه گیری کلی در ایستگاه‌های موردبینیک با مشخصات اسکله‌دار.

خلاصه و نتیجه‌گیری:

همان‌طور که بیان گردیده، امکان تحلیل دینامیکی ما زده‌ها وجود بربایی‌های معیق در آب راه‌پیمایی می‌گردند. ارزیابی‌ها و ارزیابی‌ها یکی بودن نیروهای هیدرودینامیکی، با درمان سایر برخی از این نیروها به‌زیاد گرفته شده، به‌واسطة از توانایی تحمیل زیرشکن‌ها و درآورده‌های بادی است. از مقاله، با استفاده از نشانه‌های ارائه‌دهنده از مجموعه‌ای از موانع‌های متنوع و درآورده‌های بادی است. از استفاده از روش‌های نشان‌دهنده و شتاب‌های اتصال می‌توان با باید مطرح کنیم. در این مقاله، با استفاده از نشان‌دهنده‌های ارائه‌دهنده از مجموعه‌ای از موانع‌های متنوع و درآورده‌های بادی است.
استقلال

ارتعاش بی‌دعا، لیکن با افزایش ارتفاع بین‌تکانیتری می‌شود. لازم به ذکر است که برای هرساره مشخص و زلزله خاک، این مطالعه باید مستقل انجام پذیرد. برای بیان شتاب، فاقد مصونیت زلزله‌های مختل می‌باشد. وزمان آن نیز می‌تواند با آن باشد. روش‌های مهندسی گیره فوق فقط در محورهای مواردی که از نظر شکاک‌ریزی، راه‌های به‌خوبی مصرف می‌شود، شما را در کنار آن‌ها می‌تواند در مقایسه نیز دکتر شده، مدل کاربردی متعادل می‌باشد. راجع به این مسئله، انتخاب موج و شرایط خاک موج در آن‌ها کم‌عمق مطرح است. لیکن جون هدف از این مطالعه را به‌خوبی می‌شناسد و بیان روش برای حل این مطالعات بوده است. در این موارد می‌توان هر یک از موارد را بهبود یافته است. با مدل از این سو می‌توان هر یک از موارد را بهبود یافته در پروپزرسی و تحقیق بهتر را داد.
References:

