تمرکز سیلان به واسطه نرم شدن ناپاسی از تغییر شکل در فشردن جانبی استوانه

اصغر شیروائی، کرچگانی و محمود فرزین

استاد مکانیک، مرکز آموزش فنی شهید مهاری اصفهان

دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان

دریافت: مقاله 18/11/1787 - دریافت نهایی 18/11/1787

چکیده - در این مقاله تمرکز سیلان به واسطه نرم شدن (کار نرمی) ناپاسی از تغییر شکل در فشردن جانبی استوانه مورد بررسی قرار گرفته است. تمرکز سیلان سریع به تشکیل نوارهای برخی ریخته قابل روبیم با جسم می‌شود که می‌توان آنها را یک خط منفی از سطح مقطع یکدستی در بافت نرم دانست. در این مقاله به‌ویژه برای استفاده از عمل مکان‌سازی، نوارهای برخی ریخته در بافت نرم دانسته شده و با استفاده از نوارهای طراحی شده و با تجزیه‌گر در سطح موجود برای نوارهای طراحی شده و با استفاده از Nlar Schraade: تمرکز سیلان، نوارهای برخی، مدل دو پیست، آلیاژ Ti-624Si

Shear Localization due to Strain Softening in Side Pressed Cylinders

A. Shirvani and M. Farzin

Institute of mechanic of Engineering, Isfahan Molaei Technical College
Department of Mechanical Engineering, Isfahan University of Technology

Abstract: In this paper, shear localization due to strain softening in sidepressed cylinders, is investigated. Shear localization causes formation of microscopic shear bands which can be observed in the metallographic cross-section. In this paper, for the first time a method is presented in which a simple two-slice model is used to study the formation of shear bands. The results obtained from this model are in perfect agreement with the results obtained from experimental works for α and β microstructures in Ti-624Si alloy.

Keywords: shear Localization, shear Bands, Two Slice Model, Titanium Alloy Ti-624Si

* " frase مربی ** دانشیار

استقلال، سال 1382، شهریور 1382
در طی شکل دهم جسم تحت تراست قرنط پرچم‌های تراست قرنط صفحه‌ای،
تمکین سیلان بر این با تغییر شکل ترانس محرزی که در ناحیه
کوچکی به شکل مشکل‌های تراست پیامده در مای، از آن است و
دهبود به تغییر شکل نوارهای البرش قابل روبی با چنین می‌شود این
نوارهای البرش در واقع نواحی بارانیک در درون فلز و در
استقلال، سال 23، شماره 1، شهریور 1382
جدول 1- نتایج حاصل از آزمایش فشردن جانی استوانه با دمای نابت برای [4] T1-62428

<table>
<thead>
<tr>
<th>ساعت‌های</th>
<th>دمای</th>
<th>نرخ کونش</th>
<th>ضخامت</th>
<th>درجه بندی تمرکز خطوط برش</th>
<th>درصد کاملاً در مابقی‌ها ضعف‌دوم که در آن خطوط برش مشاهده شده است</th>
</tr>
</thead>
<tbody>
<tr>
<td>α + β</td>
<td>843</td>
<td>0/10</td>
<td>خطوط برش مشاهده نشد</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α + β</td>
<td>844</td>
<td>10/01</td>
<td>خطوط برش مشاهده نشد</td>
<td>-</td>
<td>28/2</td>
</tr>
<tr>
<td>α + β</td>
<td>913</td>
<td>0/01</td>
<td>خطوط برش مشاهده نشد</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>α + β</td>
<td>913</td>
<td>10/01</td>
<td>خطوط برش مشاهده نشد</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>α + β</td>
<td>982</td>
<td>0/01</td>
<td>خطوط برش مشاهده نشد</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>α + β</td>
<td>982</td>
<td>10/01</td>
<td>خطوط برش مشاهده نشد</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>843</td>
<td>0/01</td>
<td>به طور برابر مشاهده شد</td>
<td>39/4</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>843</td>
<td>0/01</td>
<td>به طور متوسط تمرکز بالاتر مشاهده شد</td>
<td>39/2</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>912</td>
<td>0/01</td>
<td>به طور برابر مشاهده شد</td>
<td>39/4</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>912</td>
<td>10/01</td>
<td>به طور متوسط تمرکز بالاتر مشاهده شد</td>
<td>39/2</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>912</td>
<td>0/01</td>
<td>به طور متوسط تمرکز بالاتر مشاهده شد</td>
<td>39/2</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>912</td>
<td>0/01</td>
<td>خطوط برش مشاهده نشد</td>
<td>-</td>
<td>4/0/8</td>
</tr>
<tr>
<td>β</td>
<td>982</td>
<td>10/01</td>
<td>به طور برابر مشاهده شد</td>
<td>-</td>
<td>4/0/8</td>
</tr>
<tr>
<td>β</td>
<td>982</td>
<td>10/01</td>
<td>به طور برابر مشاهده شد</td>
<td>-</td>
<td>4/0/8</td>
</tr>
</tbody>
</table>

برای نابی‌داری نگیر شکل در فشار، شرط نابی‌داری به صورت است. است. نابی‌داری در آن A سطح منفی لحظه‌ای دو مولکول از طرف دیگر، برای تمرکز در طول بک اتماد برخ خالص است. می‌شود که شرط لازم برای

\[dA = 0 \]

\[\sigma = \sigma_0 \]

\[dF - \sigma dA + Ad\sigma = 0 \]

قرار سلسله \(T\) خارج کردن \(T\) دما \(T\) در نظر گرفته شود، شرط نابی‌داری به صورت زیر می‌شود:

استثبات، سال 23، شماره 1، شهریور 1382

178
شكل ۲- مترالگرافی سطح مقطع استوانتهای Si نسبت به ساختار میکروسکوپی

در شرایط گازی به طور دما ثابت در 1800°C و در دمای (a) 843°C و (b) 913°C [3]

الف

ب

شکل ۳- مترالگرافی سطح مقطع استوانتهای Si نسبت به ساختار میکروسکوپی

در شرایط گازی به طور دما ثابت در 1050°C و در دمای çالف

1382

استقلال، سال ۲۲، شماره ۱، شهریور
شکل 4- مدل وریش در فشردن جاذبه استوانه‌ای

شامل عیب مکانیکی (عیب ناشی از تغییر شکل) است و یکی نبوده که بدن عیب است به‌وجود می‌دهد.

برای بردن چنین عیبی، باید شرایط لوله و مزرع مطابق با شکل (4) باشد. به همین دلیل، نمودار شکل (4) را باید در هم بین یک لوله سطحی دو رنگ (ماده و سازه) چاپ کنیم.

5. نحوه ایجاد ترکیب سیلان در فشردن جاذبه‌ای

استوانه و مدل دو برش

شکل 4- مدل وریش در فشردن جاذبه‌ای

استوانه و مدل دو برش
بعد از یک نمودار زمان به فاصله کوچکی با استفاده از بررسی
تئوری، کرنالی در دو ناحیه از ترخیچی کرنالی در زمان $t=0$
محاسبه می‌شود.

\[\epsilon(t + \Delta t) = \epsilon(t = 0) + \epsilon'\epsilon(t = 0) \Delta t + \frac{\Delta t^2}{2} \epsilon''\epsilon(t = 0) + \ldots\]

(1)

بنابراین با معادله $\Delta \epsilon = \epsilon_{\text{unif}} - \epsilon_{\text{def}}$ و با داشتن
پارامترهای m و γ' و شرط مورد بررسی کرنالی در ناحیه
یکتوان معلول، می‌توان با استفاده از معادله (9) رابط کرنالی
ناحیه معوب نوا دو زمان $\epsilon_{\text{def}}(t = \Delta t)$ $t = \Delta t$
به دست آورد و به همین صورت این روند ادامه می‌دهد و در نتیجه
کرنالی در ناحیه معوب نوا در ناحیه معوب و
یکتوان معوب نوا در ناحیه معوب بر حسب کرنالی در
налایی ناحیه معوب نوا به نظر می‌رسد که توسط مدل دو بررسی
تغییر می‌کند. به علت الکت و همین صورت، کرنالی در ناحیه
مورد بررسی کرنالی در ناحیه معوب نوا به دست آمده در ناحیه
یکتوان معوب در ناحیه معوب نوا باعث خودکار شدن
کرنالی در ناحیه معوب نوا به ناحیه معوب و
یکتوان معوب نوا در ناحیه معوب و
یکتوان معوب نوا در ناحیه معوب و

با رسم معکوس کرنالی در ناحیه معوب نوا بر حسب کرنالی در
налایی ناحیه معوب نوا به نظر می‌رسد که توسط مدل دو بررسی
تغییر می‌کند. به علت الکت و همین صورت، کرنالی در ناحیه
مورد بررسی کرنالی در ناحیه معوب نوا به دست آمده در ناحیه
یکتوان معوب در ناحیه معوب نوا باعث خودکار شدن
کرنالی در ناحیه معوب نوا به ناحیه معوب و

\[m \log \epsilon_{\text{def}} + \gamma' \epsilon_{\text{def}} = 0\]

(4)

بنابراین:

\[m(\log \epsilon_{\text{unif}} - \log \epsilon_{\text{def}}) + \gamma'(\epsilon_{\text{unif}} - \epsilon_{\text{def}}) = 0\]

(5)

(2) و یا به صورت زیر:

\[m \log \epsilon_{\text{def}} + \gamma'(\epsilon_{\text{unif}} - \epsilon_{\text{def}}) = \frac{1}{m} \ln \epsilon_{\text{unif}}\]

(1)

\[\frac{1}{m} \ln \epsilon_{\text{def}} = \gamma'(\epsilon_{\text{unif}} - \epsilon_{\text{def}})\]

(6)

\[\frac{1}{m} \ln \epsilon_{\text{unif}} = \gamma'(\epsilon_{\text{unif}} - \epsilon_{\text{def}})\]

(7)

\[\frac{1}{m} \ln \epsilon_{\text{unif}} = \exp[-\gamma'(\epsilon_{\text{unif}} - \epsilon_{\text{def}})/m]\]

(8)

که پس از ساده کردن به صورت زیر خلاصه می‌شود:

\[\epsilon_{\text{def}} = \epsilon_{\text{unif}} - \exp[\gamma'(\epsilon_{\text{unif}} - \epsilon_{\text{def}})/m]\]

(9)

در سطح زمان، این $m = 0$ (و آغاز تغییر شکل) با وسطه داشتن
عیب ناشی از تغییر شکل در زمان $\epsilon_{\text{def}} - \epsilon_{\text{unif}} = \epsilon_{\text{def}} - \epsilon_{\text{def}}$ هست و
مقدار آن تغییر مکانیکی اولیه است که می‌تواند با افزایش
مقدار اولیه برای m می‌شود. جهت $m = 0$، کرنالی در ناحیه
یکتوان معوب نوا به دست آمده در ناحیه

\[\epsilon_{\text{def}}(t = 0) = \epsilon_{\text{unif}} - \exp[-\gamma'\epsilon_{\text{def}}/m]\]

(10)
شکل ۵ متغیرهای نش حقيقة-کرنش حقيقة آلیاژ Ti-6242 Si

قیمت کاوش ارتفاع در فضای جدید اسوانت به صورت

\[R = 1 - \frac{h}{d} \]

و ضریب \(\varepsilon_{\text{def}} \) به صورت

\[\varepsilon_{\text{def}} = \left(\frac{h}{d} \right) \ln \frac{1}{\varepsilon_{\text{def}}} \]

در اینجا \(h \) کاوش به جمعیت اسوانته و \(d \) به ضریب ارتفاع در فضای جدید اسوانته، این‌ها به صورت دستگاه می‌باشند. در نهایت مقدار \(h/d \) به دست می‌آید.

\[R = 1 - \frac{\exp(\varepsilon_{\text{def}}) + \exp(\varepsilon_{\text{exp}})}{2} \]

از شکل (۷) به‌طور مشخص می‌شوید که این برابری کرنش برای \(\alpha + \beta \) ساختار میکروسکوپی \(\beta \) به مراتب بیشتر از ساختار\(\alpha + \beta \) ساختار میکروسکوپی \(\beta \) به‌طور مشخص می‌باشد. در نهایت مقدار ویژه \(\varepsilon_{\text{def}} \) به‌طور مشخص می‌باشد.

\[\varepsilon_{\text{exp}} = \frac{\ln(\varepsilon_{\text{def}} + \varepsilon_{\text{exp}})}{2} \]

بنابراین مقدار \(\varepsilon_{\text{exp}} \) می‌باشد. برای بکارگاه مشخص و

\[\frac{\varepsilon_{\text{def}}}{\varepsilon_{\text{exp}}} \]

می‌توان تمرکز سیال انرژی با تمرکز کرنش دوم تغییر شکل کرنش صفحه‌ای را برای ماده فضای بر اساس مدل ساده دو برخی به دست آورده.

برای پایان نظریه مدل دو برخی را با تابع تجربی مقایسه کرد، نظریه مدل در برخی برای آلیاژ Ti-6242 Si با دو ساختار میکروسکوپی \(\alpha + \beta \) و \(\beta \) به کار برده می‌شود که برای آن‌ها همان شکل که قرار دارند به‌طور شرایط زیادی توسط میکروسکوپی و لاژوئی انجام شده است. برای

\[\varepsilon_{\text{def}} \]

دهیم آن‌ها نشان داده است که برای محاسبه

\[\varepsilon_{\text{def}} \]

برای مثل آلیاژ Ti-6242 Si در نرخ کرنش \(10^{-1} \) و دمای \(913 \) درجه سانتی‌گراد با دو ساختار میکروسکوپی \(\alpha + \beta \) و \(\beta \) به طور گرفته شود. شکل‌های (۷) و (۸) به نظریه نشان می‌دهند که

\[\alpha + \beta \]

شرایط فوق برای آلیاژ فوق با ساختار میکروسکوپی

\[\alpha + \beta \]

هیچ گونه نواحی برای مشاهده نمی‌شود. در حالت که در

\[\alpha + \beta \]

ساختار میکروسکوپی \(\beta \) نواحی برای مشاهده نمی‌شود.

\[\alpha + \beta \]

ساختار میکروسکوپی \(\beta \) و نواحی برای مشاهده نمی‌شود. در نهایت مقدار ویژه \(\varepsilon_{\text{def}} \) به مراتب بیشتر از ساختار

\[\alpha + \beta \]

نشان داده شده است. در این‌جا مشخص \(\varepsilon_{\text{def}} \) به‌طور مشخص می‌باشد.

\[\varepsilon_{\text{def}} \]

تارکینگی برای \(\varepsilon_{\text{def}} \) برای ناحیه غیر معیوب

\[\varepsilon_{\text{def}} \]

نشان داده شده است و تناوب‌های نقطه‌ای مشخص کاوش

\[\varepsilon_{\text{def}} \]

ارتقا‌های مشخص نشان دهنده نقطه‌ای است که باید
شکل 7 - کرش در ناحیه معوب بر حسب کرش در ناحیه مغناطیسی آلزایر Ti 6242 S1 با در ساختار میکروسکوپی

yal + \beta

در شرایط نقطه داده شده

مدل دو پرشه در تغییر شکل کرش صفحاتی است. و با فرض

یک مدار مستقل برای یک طبقه مکانیکی آلزایر و با داشتن نرخ

کرش تغییر شکل (E_d) برای نویسندگان در دو ناحیه

معوب و غیر معوب (بکثواج) را به دقت ارورد به عبارت

۲. دیگری می‌توان نحوه ایجاد تمرکز سیل‌گیری با نرم‌کننده کرش برای

همه ماده‌های ورودی و با تغییر مدل دو پرشه تخمین‌زنده در مورد

این کار هستند. (E_d) بر حسب

به دقت سیمادنی به نموده شده. عوامل ماده

به مقدار

با توجه به آنکه برای این تخمین نیاز به داشتن خواص ماده

بعدهای

این مقدار می‌باشد. (m = \frac{\delta \ln \sigma}{\delta \ln T})(m = \frac{\delta \ln \sigma}{\delta \ln T})

موئر بر حسب کرش موئر و

\begin{align}
\frac{\delta \sigma}{\delta \cdot \delta \sigma} = \frac{\delta \ln \sigma}{\delta \ln T}
\end{align}

می‌توان نشان داد که بر حسب کرش موئر در نرخ کرش ناپذیر

در دامنه مختلف به دقت می‌آید.

همان‌طور که یک نیز ذکر شد میکانیکی آلزایر در واقع

تمركز کرش آلزایر و با تغییر این دو کشیدگی مشکل است. کنون

ماده (E_d) برای T مدل از تغییر شکل است. کنون

\begin{align}
E_{\text{mod}} = \text{است. در نهایت فیل از شروع تغییر شکل سکت}
\end{align}

اختلاف کرش آلزایر (اختلاف کرش بین دو ناحیه معوب و

183

ب) ساختار میکروسکوپی

است چکه بعد از کاهش ارتقاع‌های پیش‌تر از ۲۰ درصد این تمرکز

کرش به دو بیشتر می‌شود.

بنابراین براساس این مدل می‌توان گفت امکان تشکیل

نوارهای برنجی در ساختار میکروسکوپی (E_d) وجود دارد در

حال که این امکان برای ساختار میکروسکوپی (E_d) وجود

ندارد.

۶ - تخمین نوارهای بررسی توسط مدل دو پرشه با

روش پیشنهادی

با در نظر گرفتن معادلات (۱۴) که مربوط به تغییرهای

استقلال سال ۴۲. شماره ۱. شماره ۱۳۸۱
شکل 9- کرنش در ناحیه معبر برش کرنش در ناحیه
بعض می‌تواند با افزایش θ افزایش یابد.

\[\theta = 10^4 \text{ برای } \theta \leq \theta_{\text{مناسب}} \]

یک ع.Thread یک تغییر شکل

شکل 8- رولند تمرکز کرنش در ناحیه تغییر شکل کرنش

پیشنهاد کرنش در ناحیه معبر برش کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش

شکل 7- ناحیه تغییر شکل کرنش

می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش

شکل 6- ویلر کرنش

می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش

شکل 5- کرنش در ناحیه معبر برش کرنش

می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش

شکل 4- طول تمرکز کرنش

می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش

شکل 3- طول تمرکز کرنش

می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش

شکل 2- طول تمرکز کرنش

می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش

شکل 1- طول تمرکز کرنش

می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
دندانی کرنش در بخش می‌تواند با دندانی کرنش
شکل 11- اهمیت شب و \(d_e \) در تیم معمول برای تحمیل شرایط ظاهر شدن خشک شدن در هلول نام داده شده

زاویه شب از 15 درجه به سمت 90 درجه می‌کند. به‌طور مشابه، شب در نواحی برخی می‌تواند یک می‌باشد.

شکل (11) نشان می‌دهد که شب تنها عمود برای شب هم یکی نیست. فاصله گذاری بین شرایط شب در این شکل نشان داده شده است که برای یک شب معمول و شب نواحی برخی است که شب در این شکل نشان داده شده است که شب معمول و شب نواحی برخی است که شب در این شکل نشان داده شده است که شب در این شکل نشان داده شده است که شب در این شکل نشان داده شده است که شب

برای یک ماده در نواحی شب به سمت آورده می‌گردد.

شکل (12) می‌تواند فاصله گذاری برای شب به سمت آورده می‌گردد.

شکل (12) می‌تواند فاصله گذاری برای شب به سمت آورده می‌گردد.

شکل (12) می‌تواند فاصله گذاری برای شب به سمت آورده می‌گردد.

شکل (12) می‌تواند فاصله گذاری برای شب به سمت آورده می‌گردد.

شکل (12) می‌تواند فاصله گذاری برای شب به سمت آورده می‌گردد.
افزایش می‌یابد تا اینکه این دو شرط هم‌سان با همیشه برقرار شوند، در این صورت در کاهش ارتفاعی که این دو شرط برقرار می‌شود شروع اشکار شدن توارهای برخی تخمین‌رده می‌شود dey 0.25 × 0.25 = 0.0625 برقرار نشد و این صورت این مدل باید حذف شود و با توجه به تابع حاصل از آزمایش جدول (۱) که مدل X صورت زیر به دست می‌آید:

\[X = \frac{\text{v}_{\text{unit}} \times \text{d}_{\text{ref}}}{\text{SL}} \]

در این فرمول X معنی قابل فاصله مخلوط مقدمات بررسی و سیمرون افقی ta می‌باشد و C از طبقات احتمالی مشخصات (قابل‌توجه یا مخصص) سی‌ویل نشان می‌دهد. می‌توان به هر قابل‌توجه سی‌ویل X در کاهش ارتفاع‌هایی که توسط آزمایش شروع اشکار شدن توارهای برخی در آنها ثابت شده است برای حالات مورد نظر (۱) مورد نظر شده‌اند که در جدول (۱) می‌شود که وقتی شیب منحنی در محدوده ۶۰ مدار رد است. R از رکورد کاهش ارتفاعی است. در کاهشی که توارهای برخی ظاهر می‌شود در محدوده ۶۰ قرار می‌گیرد.

پنیرایین این دو شرط برای دو شرطی جمع و ضدد \(\sqrt{\text{R} \times \text{SL}} \) مناسب است. و برای مردم بالای این است. این نظریه برای این دو مدل برای برقراری نهایی از مدل نهایی X در جدول (۱) می‌شود و با توجه حاصل از آزمایش جدول (۱) مقابله می‌شود و حاصل تخمین این دو برای حاصل مناسب می‌شود که نتیجه این مقاله در جدول (۱) ارائه شده است.

\[\text{R} \leq 0.93 \times \sqrt{\text{R} \times \text{SL}} \leq 6.8 \leq 6.6 \leq \text{SL} \leq 6.8 \]

برای تعیین شروع اشکار شدن توارهای برخی در تغییر شکل کرنش می‌توان به کار برده می‌شود. ولی این مدل برای می‌شود، که با توجه به بینمود ((۶) (۶) می‌باشد.) در آن ترکیب کرنش دشوار کرچکی است شروع می‌شود و ممکن Qایعد (۶) می‌باشد. این نتیجه نیازی کرچکی.
| ماده دوم
ماده دوم	ماده دوم	
α + β	883	5/35
α + β	913	-
α + β	982	-
β	883	0
β	913	1/4

در این جدول نتایج حاصل از تغییر ماده دو برای شرایت $\alpha + \beta$ در پیامدهای مختلف β و $\alpha + \beta$، نتایج حاصل در مقایسه با α تهیه شدند. در حالی که نتایج حاصل در برابر شرایت β و $\alpha + \beta$ تهیه شدند.

نتیجه‌گیری

میزان نتایج به‌عنوان تغییرات در شرایط مختلف α و β وجود دارد. نتایج حاصل از تغییر ماده دو برای شرایت $\alpha + \beta$ در مقایسه با α و β تهیه شدند. در حالی که نتایج حاصل در برابر شرایت β و $\alpha + \beta$ تهیه شدند.

187

استقلال مال 22، شماره 1 شهریور 1382

Downloaded from jcme.iut.ac.ir at 12:46 IRST on Tuesday September 24th 2019

