الگوی دگرگشتی‌های خاک بر اثر احداث تونل دایره‌ای در آن

محمود وفانیان
عضو هیئت علمی دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان

چکیده - در این مقاله، با اشاره به بعضی از رابطه‌های اخیر در مورد نشست زمین حاصل از حفر تونل‌های گمعمق و با استفاده از نتایج حاصل از انداده‌گیری‌های واقعی در تونل‌های اجرایی، رابطه‌های موجود در این زمینه با هم مقایسه و ارزیابی می‌شود. همچنین نتایج محاسباتی بر ارزیابی دمای داخل تونل در شرایط معادل تونل‌های اجرایی نشان می‌دهد. از طرفی تأثیر تغییر میزان مؤثر بر رفتار خاک و نیز اثر پلاستیکی در داخل تونل در تولید نیروی برشی و قرار فشار می‌گیرد. از این روش تخمینی می‌توان نتیجه‌گیری کرد که در حفر بهترین روش‌های حفر از نظر نفوذ نیروی برشی و برنامه‌ریزی بهتر را نشان می‌دهد.

واژگان کلیدی: تونل، زمین‌های سست، دگرگشتی، حل استیک، اجزای محدود

The Pattern of Ground Deformations due to Circular Tunneling

M. Vafaeian
Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract: This paper presents the results of a recent study about the following aspects relevant to tunneling in soft grounds:
1) The domain of deformations due to tunneling in soft ground can be specified within a boundary of a parabolic shape. This boundary is defined by a parabolic formula as a function of a central angle (θ) which depends on the soil type; i.e., either cohesive or cohesionless. This parabolic shape can also be verified by a finite element computation.
2) A finite element program has been applied to investigate the deformation characteristics around and above circular tunnels and to find the settlement ratio (λ) as a function of known variables such as, depth ratio, modulus of elasticity, and the thickness of soil layer beneath the tunnel. The finite element computations were carried out by assuming a given distribution of displacements around the tunnel perimeter, for which reason the method may be called “compulsory displacements”. It was found that although all the variables mentioned affect both the settlement ratio and the type of soil deformations, changing the values of modulus of elasticity affects only on the amount of deformation components, but not the settlement ratio.
3) The results of finite element computations for the settlement ratio have been compared to other analytical curves and empirical data from some available case studies; from which excellent agreements were found. Also the contours of

- دانشیر

استقلال، سال ۱۳۸۲، شماره ۲، اسفند ۱۳۸۲
توسط این پژوهشگران ارائه شد. همچنین معادله (1) که برای سطح خاک مطرح شده بود، در مورد تعیین داده شد و کارتی بر اساس توزیع "مایور" و همکاران [9] برای عمق x، با تغییر طول، نقطة عطف به صورت زیر مطرح شد:

\[i = \frac{a(z_0,2a)^{0.8}}{1 - 0.175(1 - \frac{a}{2a})} \]

در معادله بالا، Z نقطه از نقطه اولیه در طول جدید گذشته، زمین است همانطور که اشاره شد در طول چند دهه گذشته، معادلههای متنوعی برای مقادیر ارائه شده است که

بعضی از آنها عبارت است از:

\[i = a(z_0,2a)^{0.8}, \text{ (Peck,1969)} \]

\[i = kx_0, \text{ (O'Reilly & New,1982)} \]

\[i = \frac{kZ}{x_0}, \text{ (Ravikrishnan, 1987)} \]

\[i = \frac{\xi(2a)(0.52z_0,2a)^{0.21}}{1} \]

\[s_{\text{max}} = 0.0126V_{\text{a}}^2-i \]

1- مقدمه و سوابق پژوهشی

راهبردی‌های تحلیل متندهای مورد کاربرد صورت گرفته در این مقاله مبتنی بر اصول محاسباتی بر اساس خواص خاک است و تعادل مبتنی بر مشاهدات تجربی است. به علاوه بعضی از این رابطه‌ها فقط برای سطح خاک در نظر گرفته شده است. در صورتی که در رابطه‌ها پیشرفت نتوانسته باشد و نیز چاپ‌های افی خاک نیز مورد ارزیابی واقع شده است. بنابراین، این رابطه‌ها در مورد توزیع نشست سطح زمین در اثر حفر تونل، توسط "یک" [1971] ارائه شده است. سطح زمین که در آن مطابق شکل (1) چگونگی توزیع نشست سطح زمین نسبت به مقدار بیشینه \[s_{\text{max}} \] به صورت معادله زیر است:

\[s = s_{\text{max}} + \exp(x^2 - 2ix) \]

در این معادله، s نشست سطح زمین در نقطه به فاصله x از انتهای حفر تونل و i نقطه عطف مشاهده‌ای است. آن پس کوشش‌های بسیاری برای ارزیابی و تعیین مقدار گرفت و نیز برای ارتباط دادن تغییر شکل دهانه تونل با مقدار حجم کود نشست (در سطح زمین) تعدادی رابطه‌های رایجی و تجربی پیشنهاد شده است که به بعضی از آنها اشاره کردند.

بر اساس آن اثبات شد که

\[s_{\text{max}} = 0.0126V_{\text{a}}^2-i \]

در این معادله

\[s_{\text{max}} = 0.0126V_{\text{a}}^2 \]

در صورتی که در معادله (1) به عنوان است. \[s_{\text{max}} = 0.0126V_{\text{a}}^2 \]

چاپ‌های شدید، معادله زیر حاصل می‌شود:

\[s_{\text{max}} = 0.0126V_{\text{a}}^2 \]

استلال، سال 2، شماره 14، 1382
در این رابطه، a شعاع تونل، Z_0 عمق نقطه زمین و Z عمق نقطه ی بررسی گردیده است.

از طرفی، می‌توانیم برای تحلیل ساده (11) معادله نشست نسبت زمین به وسیله تونل از (11) معادله زیر را با معادله زیر بیان کرد:

$$S = S_{\text{max}} \cos 2\beta \cos(90\beta / \eta)$$

در معادله بالا β تونل در داخل پرانتز بر حسب درجه است.

بر طوری که در شکل (1) مشخص شده است برای هر تونل و حجم داده تونل از معادله زیر حساب می‌شود:

$$V_t = \Delta A / A_0 \times 100 = \left[1 - \left(1 - S_c / D^2\right)^2\right] \times 100 = \left[2S_c / D - (S_c / D)^2\right] \times 100$$

$$\Delta A = \text{مقطع و}$$

$$A$$

$$\text{کاهش سطح مقطع است.}$$

اگر جمله درجه دوم صفر نظر شود، از معادله بالا به دست می‌آید و آنگاه:

$$V_t = 100 \times S_c / a$$

$$\text{به شرح زیر به دست می‌آید:}$$

$$S_{\text{max}} = 1.26(S_c)(z_0/2a)^{-0.8}$$

$$\lambda = S_{\text{max}} / S_c$$

$$\text{با توجه به اینکه مشاهدات تجربی اند، به عنوان نمونه، این مقدار مناسب است.}$$

$$\lambda = \text{همسایگی زمین به سطح زمین معمول با داده‌های این رابطه در صورتی که جای یابی خاک در اطراف و بالای تونل در یک محدوده سهمی شکل رخ می‌دهد، از این رو بر اساس این نشان داده شده در شکل (2)، معادله این سهمی مفروض عبارت است از:

$$x = b \sqrt{1 - z/(z_0 + a)}$$

$$\text{شکل 1- نمایش توسعه نشست در سطح زمین براساس متقابلی آنوری گوس (پیپ)، 1999}$$
کاراکتر معادله‌های (۴) تا (۸) بر اساس نتایج آنها با مقادیر اندک‌تری شده و بعضی تغییرات در مرجع [۱۱] نشان داده شده است.

از طرفی تعداد معادله‌های تحلیلی مفصل برای محاسبه نشسته‌ها و جابجایی افقی خاک در دهه اخیر توسط پژوهشگران مختلفی بسته داده شده است. نمودن‌های این مقادیر، معادله‌های ارائه شده توسط "ویریت" و "پوکر" [۱۲] است که بعداً توسط "گاناتان" و "پولس" (۱۹۹۹و ۱۹۹۸) تکامل یافته و به صورت اصلاح شده زیر پیام شده است:

\[
\frac{u_x}{v} = R^2 x \left[\frac{1}{z_0^2 + (z_0 - z)^2} \right] + \left(\frac{3 - 4v}{z_0^2 + (z_0 + z)^2} \right) \times 4R g z_0^2 \cdot \frac{1.38x^2}{(z_0 + R)^2} \left(\frac{1 + 0.692x^2}{z_0^2} \right) \exp \left[- \left(\frac{1.38x^2}{(z_0 + R)^2} \left(\frac{1 + 0.692x^2}{z_0^2} \right) \right) \right] \quad (9)
\]

\[
\frac{u_z}{v} = -R^2 x \left[\frac{1}{z_0^2 + (z_0 - z)^2} \right] - \left(\frac{3 - 4v}{z_0^2 + (z_0 + z)^2} \right) \times 4R g z_0^2 \cdot \frac{1.38x^2}{(z_0 + R)^2} \left(\frac{1 + 0.692x^2}{z_0^2} \right) \exp \left[- \left(\frac{1.38x^2}{(z_0 + R)^2} \left(\frac{1 + 0.692x^2}{z_0^2} \right) \right) \right] \quad (10)
\]

در معادله‌های بالا، با و \(u_x \) به ترتیب دگر شکلی خاک است.
خانه‌هاي چسبنده است. از این رو قاعده‌ی زاوية \(\eta \) که در شکل 2 نشان داده شده است به‌طور نسبی برای خانه‌های متفاوت انتشای ایجاد می‌گردد. اما برای این تصورات رابطه مربوط به گزارش‌های

۱) اطلاعات جدید در نظر گرفته چون \(T \) و \(D \) در وضعیت و کمیت چاپ‌چسبی نقاط مختلف خاک اطراف تونل ضرورت قابل توجه و در مقدار مقاومت خاک چون \(\phi \) به دویوری می‌توان دیفرنت است ولی \(\phi \) در مقدار جابجایی با توزیع آنها مؤثر باشد. زیرا این دو کمیت از عوامل مقاومت خاک و همگامی می‌توان آنها را مشاهده کرد که باعثی به گزارش‌های در حد دقت‌سنجی خاک برخی اتفاق افتد. ولی از آن‌ها بهتر است که در محاسبه‌ی استدلایی جمع‌آوری تجربی آن‌ها به‌عنوان نیز داشته باشد. این عهدها و برای توضیح

۱) تخمین محدوده‌ی نشست در خانه‌ها چسبنده و

c) فاقد چسبنده

به‌طوری که از معادله (5) و شکل (2) دیده می‌شود محدوده سه‌ست در خاک، تابع زاوية \(\eta \) (یعنی زاوية حد نهایی گود نشست) است. اما مقدار این زاوية برای خاک

\[0.4 < \eta < 0.6 \]

مختلف مشخص نیست. \n
بر اساس بارای آزمایشگاه آزمایشگاه و مشاهدات آزمایشها در دستگاه "سنتریولو" و نیز اندوز گیری‌های در مقایسه‌ی مشخصات شده است که نشان‌های اصلی بالا تونل در محدوده‌ی با عرض کوچکتر از مقدار نشست در

\[\eta > 0.6 \]

استدلایال. سال 22 فروردین 1382
شکل 3- تخمین زاویه گسترش گی نشست سطح زمین در انواع خاک‌های مختلف بر اساس اندازه‌گیری‌های واقعی

۳- ارزیابی معادله‌های (5) تا (8) بر اساس اطلاعات تجربی اخیر

در مقایسه حاضر، معادله‌های ساده (5)، (6) و (8) با نتایج اندازه‌گیری‌های در تونلهای واقعی (اقتباس از مراکز مربوط به آنها) مقایسه شده است. برای این مقایسه‌ها، نشست دهانه تونل در تجspr (S) از موارد مسئله است و سایر اطلاعات مربوط به

می‌باشد. در نمونه از چچگونگی افراش نشست سطح زمین در زمان‌های طولانی در شکل (4) مشاهده می‌شود [17]. در این شکل افراش مقدار نشست و گستره شدن آن برای تونل و چهارگوش (زمانه‌های 2 روز و 500 روز) و تونل گردینه‌ای (زمانه‌های 4 روز و 1000 روز) و مشخصات حاکی در هر کدام نشان داده شده است.
تیز از مقابل مربوط به آن‌ها اتخاذ شده است. گرچه اصل اطلاعات از ماده‌‌های ذیل‌گری است. با استفاده از اطلاعات مسئله در مورد قطع تونل و عمق آن و مشاهده وضعیت توزیع نشست مقطع شکاف بر اساس نقاط تجربی نشان داده شد. به‌سیاهه نقاط صفر نشست قالب پیش‌گیری است که فاصله‌اش تا اتماد محور تونل b نامیده می‌شود. شکل (2). و نسبت این فاصله به عمق تونل همان‌که $\tan(\theta)$. tan(\theta). اینها گونه‌ای از معادله (5) منحنی S_{max} توزیع نشست در سطح زمین مشخص شده است. S_{max} می‌تواند در معادله معمول‌های همان مقدار انداده گیردی شده.
نمودار حاصل از مهابطه معادلة (5) نیز در کار این نتایج نشان داده شده است. به طوری که ملایمه‌های محدود و نرمال‌های حاصل از معادله (6) در مورد این نتایج حاصل از مهابطه‌های و نمودارهای مشابه برای نتایج معادله "تاندزی" "کریپن پارک" "بارسولا" و "بینکو" نباید در مرجع شماره (15) ارائه شده است که در تکرار آنها در مقاله حاضر صرف نظر می‌گردد.

مشخصات کامل این نتایج در جدول شماره (1) ملاحظه می‌شود. از طرفی در این مهابطه‌ها، نشان داده شده است. تغییر نسبی بین محدوده معادله (3) به محدوده معادله (5) مقدار این نشانه به عنوان همچنین مهابطه معادله (11) از مهابطه تجربه به عنوان در شکل (7) نشان داده شده است. وظیفه که از این شکل دیده می‌شود، مقدار مربوط به نقطه تجربه در محدوده نمودار بیشتر به شده در این شکل قرار می‌گیرد. جز مقدار مربوط به نقطه تجربه "تاندزی" که مشخصه آن در شکل (7) بالای محدوده معادله (11) قرار داشته است. علت این بدیهی قابل پیش‌بینی است زیرا اطلاعات متعدد بیشتر هم نشان داده بود که خاک‌های بسیار نرم می‌شوند و مخصوصاً در سطح آب ویرایشی، فاصله قابل توجهی نسبت به این منحنی‌ها دارند. ارائه این محدوده این نتایج نیز از کل محدوده بیشتر به شده است. وظیفه که از این نتایج در محدوده (4) مشخص شده‌اند. نقاط فاقد شماره در این نمودار،
جدول ۱- محاسبه مشخصات نشست زمین و مختصات تونل‌ها

<table>
<thead>
<tr>
<th>محاسبه شده در مطالعه حاضر</th>
<th>اطلاعات از مرجع [۱۳] و [۱۴]</th>
<th>نام تونل (اسبیت‌های بلند و پایین، معادله ۸ است)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta_{(v)}$</td>
<td>$\lambda_{(d)}$</td>
<td>$\lambda_{(u)}$</td>
</tr>
<tr>
<td>۵۸</td>
<td>۶۳</td>
<td>۶۹</td>
</tr>
<tr>
<td>۵۳</td>
<td>۴۵</td>
<td>۴۴</td>
</tr>
<tr>
<td>۴۷</td>
<td>۷۶</td>
<td>۷۲</td>
</tr>
<tr>
<td>۶۰</td>
<td>۸۷</td>
<td>۷۶</td>
</tr>
<tr>
<td>۵۸</td>
<td>۱۳۳</td>
<td>۱۴۸</td>
</tr>
<tr>
<td>۵۱</td>
<td>۵۵</td>
<td>۵۸</td>
</tr>
</tbody>
</table>

$\text{d}_h = S_{max}.\sin编剧.\cos编剧.\cos(90\beta/\eta)$

$= \frac{1}{2}.S_{max}.\sin 2编剧.\cos(90\beta/\eta)$

این معادله، مانند معادله (۵) برای هر ترکیز از سطح زمین (تا سقف تونل) قابل استفاده است و حداکثر نشست خاک در همان ترکیز معین، مقدار η نیز در هر ترکیز از معادله محاسبه می‌شود.

۵- توسعة جابه‌جایی‌ها به کف تونل

به منظور تعیین این بحث و توسعة محدوده جابه‌جایی‌ها در شکل (۱) باید به نقطه‌ای که جابه‌جایی خاک به برون تونل از طرفین و از کف تونل نیز انجم می‌شود، می‌توان محدوده سهمی‌شناسی داده شده در شکل (۱) را به نقاط عمیر و زیر تونل کمتری داد.

تنویین از این وضعیت در شکل (۸-الف) نشان داده شده است. رأس میحدود محدوده جابه‌جایی در این کف تونل قرار دارد و معادله این سهمی به طور عمومی بر حسب مقدار انتخابی (m) به اساس تجربی، چنین است:

$x = h.\sqrt{1 - \frac{z}{z_0 + a(1 + m)}}$

(۱۴)

فاصله کانونی این سهمی از معادله زیر قابل محاسبه است:

$f = b.\sqrt{4[z_0 + a(1 + m)]}$

(۱۵)

فاصله ممکن است از صفر تا ۳/۲ به میزان a متغیر باشد.

س نREDIT on Tuesday September 24th 2019
نمودار توزیع جایگاه‌های قائم و افقی در شکل (8 - ب) نشان داده شده است. برای مقایسه مقدار جایگاه‌ها در هر نقطه کافی است توجه شود که در S_{max} در حالت افق و عبارت است از S_{min} که در آن قرار در محدوده 26 برای این نشان که همگرایی خاطئ است. نسبت به نشان داده توزیع نشان آن بر اساس معادله‌های (7 و 8) بیشتر برای مقدار نشان نشان داده شده است. در این نمودار، بر اساس فرض حد بالایی، معادله S_{e} برای $6/0.5$ گرفته شده است و نشان داده شده و جایگاه‌های افقی بر اساس $S_{e} = 0.1$ محاسبه شده است.

- استفاده از کاربرد اجزای محدود

با مکانیزه بررسی چهار اطراف تونل به کمک نرم‌افزار اجزای محدود، مدل انعطاف پذیر (10) نمایش داده می‌شود. در انعطاف $D = 2a = 6m$ و دانه‌ای با قطر Z_{b} که به اختلاف مقدار مختلف (پردازش لایه زیرین تونل) می‌توان تأثیر تغییر کمیتی نشان داده شده است. در این شرایط، شبکه‌بندی به صورت چهار ضلعی 8 گرهی است مدل کردن محیط تونل روی گره‌های انجام شد که مجموعه آنها با توجه به تغییرات انجام شد. در مدل این مدل 32 رفتاری موجود در آن مدل "الاسبیک"- پلاستیکی شامل با معیار موردکلیب "است" [19] بنا استفاده از این نرم‌افزار و با کاربرد روش جایگاه‌های اجباری در دهانه تونل، دگر شکل‌هایی به وجود آمدند در نقاط مختلف مقطع قائم خاک تعیین شده و از نتایج آنها نمودارهای و شکل‌های مناسب ترسیم شد.

در شکل (11-الف)، موضعیت و شماره‌گر نتایج انجام شده است به عنوان میانه دهانه تونل دایره‌ای مشخص شده است ضمن اینکه در جدول چهار همین شکل، مقدار درگرنشکل‌ها در فرض اجباری دهانه تونل شده است. این نوع توزیع درگرنشکل‌ها با مقياس مناسب دیده می‌شود. شکل (11-ب و ح)، وضعیت جمع شدگی دهانه تونل را در در حال معمول نشان می‌دهد.

مقدار میانه بی‌انتها توزیع جایگاه‌های قائم و افقی در شکل (8 - ب) انجام شده است. برای مقایسه مقدار جایگاه‌ها در هر نقطه کافی است توجه شود که در S_{max} در حالت افق و عبارت است از S_{min} که در آن قرار در محدوده 26 برای این نشان که همگرایی خاطئ است. نسبت به نشان داده توزیع نشان آن بر اساس معادله‌های (7 و 8) بیشتر برای مقدار نشان نشان داده شده است. در این نمودار، بر اساس فرض حد بالایی، معادله S_{e} برای $6/0.5$ گرفته شده است و نشان داده شده و جایگاه‌های افقی بر اساس $S_{e} = 0.1$ محاسبه شده است.

- استفاده از کاربرد اجزای محدود

با مکانیزه بررسی چهار اطراف تونل به کمک نرم‌افزار اجزای محدود، مدل انعطاف پذیر (10) نمایش داده می‌شود. در انعطاف $D = 2a = 6m$ و دانه‌ای با قطر Z_{b} که به اختلاف مقدار مختلف (پردازش لایه زیرین تونل) می‌توان تأثیر تغییر کمیتی نشان داده شده است. در این شرایط، شبکه‌بندی به صورت چهار ضلعی 8 گرهی است مدل کردن محیط تونل روی گره‌های انجام شد که مجموعه آنها با توجه به تغییرات انجام شد. در مدل این مدل 32 رفتاری موجود در آن مدل "الاسبیک"- پلاستیکی شامل با معیار موردکلیب "است" [19] بنا استفاده از این نرم‌افزار و با کاربرد روش جایگاه‌های اجباری در دهانه تونل، دگر شکل‌هایی به وجود آمدند در نقاط مختلف مقطع قائم خاک تعیین شده و از نتایج آنها نمودارهای و شکل‌های مناسب ترسیم شد.

در شکل (11-الف)، موضعیت و شماره‌گر نتایج انجام شده است به عنوان میانه دهانه تونل دایره‌ای مشخص شده است ضمن اینکه در جدول چهار همین شکل، مقدار درگرنشکل‌ها در فرض اجباری دهانه تونل شده است. این نوع توزیع درگرنشکل‌ها با مقياس مناسب دیده می‌شود. شکل (11-ب و ح)، وضعیت جمع شدگی دهانه تونل را در در حال معمول نشان می‌دهد.
شکل 8- انگوری جابه‌چی‌های قائم و افقی اطراف و بالای تونل (نسخ مقطع) بر اساس رابطه‌های ۵ و ۱۲
شکل 9- خطوط تراز جایگاه‌های قائم حاصل از حفر تونل (نصف مقطع قائم)

شکل 10- ابعاد و شبکه اجزای محصور برای محاسبه جایگاه‌ها (نصف مقطع)
شکل ۱۱- (الف) موقعیت و شماره گره‌های در دهانه تونل، (ب) تقسیم‌بندی جابه‌جایی دهانه تونل بدون تورم کف، (ج) مشاهده وضعیت بولی با تورم کف تونل

\[K_0 = 0.5, \quad E = 5 - 100 \text{MPa}, \quad \phi = 30^\circ - 45^\circ, \quad v = 0.49 \]
\[\gamma = 18 \text{kN/m}^3, \quad c = 100 - 200 \text{kPa} \]
\[z_0, \quad H = 10,16,22,40,60,76,99 \text{m}, \quad D = 2a = 6 \text{m} \]

بررسی‌های محاسباتی نشان می‌دهد که برای محیط همگن و همسان فرضی، تغییر مدول الاستیسیتی E، ج به صورت یک‌واخت با متغیر در راستای قائم، روی مقدار نسبت نشست

\[\lambda = \frac{S_{\text{max}}}{S_c} \]

برای یک‌واخت به دست آمده بر مدیریت به دست آمده در گذشته‌های افقی تأثیر وسیع است. بنابراین، به بکری پر مقدار نسبت نشست نیز مطرح است. چگونگی تأثیر این کمیتهای در نمونه‌های مربوط به آنها و درجه است. نتایج به دست آمده از این محاسبات را می‌توان در چند کمیته مطلوب با نسبت در مقطع قائم خاک به شریک زیر مورد بررسی و مقایسه با سایر تحلیل‌ها و نتایج تجربی حاصل گردید:

۱- خطوط تراز دگر شکل‌های قائم، ۲- خطوط تراز دگر شکل‌های افقی، ۳- رصدیده‌های جابه‌جایی دهانه خاک به سمت تونل، ۴- درک منحنی توزیع نسبت در سطح زمین، ۵- رصد منحنی تغییرات نسبت از تاج تونل تا سطح زمین و محاسبه نسبت نشست (λ)، ۶- چگونگی تغییرات (λ) بر حسب

با توجه به اینکه کمیته‌های هندسی و فیزیکی متعددی در رفتار خاک مؤثر است در اینجا لازم بود که تأثیر تغییر کمیته‌های هندسی و فیزیکی مورد نظر در محاسبه‌های و متغیرهای مورد بررسی قرار گیرد و بر این اساس محاسبات متعددی صورت گرفت. همچنین با توجه به اینکه این کمیته‌ها ممکن است شرایط و فنون‌های را از حالت الکتربیک به الکتریکی تبدیل کند انتخاب مقادیر فرضی آنها نسبت به روش‌گری از این دیدگاه نیز اهمیت می‌باشد. بهترین است در صورتی که مقادیر مقاومتی خاک نسبتاً زیادی انتخاب شود و مقدار مدل دگر شکل‌های انتخاب شود وضعیت خاک به صورت الکتریکی باید مانند و در صورتی که مقادیر مقاومتی خاک نسبتاً کم با با شدت و مدول الاستیسیتی نسبتاً در حد زیادی در نظر گرفته شود، تغییر شکل‌های اجباری منظور شده در دهانه تونل موجب الکتریکی شدن دهانه تونل می‌شود. مثالی چنین است:

\[\text{E} = 5 \text{MPa} \]

در نظر گرفت، وضعیت دهانه تونل در اثر مقادیر نشان داده شده در گذشته‌های اجباری همچنان الکتریکی باقی می‌ماند و به وضعیت الکتریکی منجر می‌شود. در این محاسبات حدود کمیته‌های به گذشته شده معمولاً به شرح زیر

در نظر گرفته شده است:
لازم به تذکر است که منحنی "لو" و همکاران برای رسهای سفت و منحنیهای "لافولون" و "لانا" برای حل الاستیک برای دو حالت $v = 0.2$ و $v = 0.3$ تا دست آمده است و شکل S_c/S_{max} (krist A) است و در روز امین نمونه دقیق در نمودار شکل (16) منتقل شده است. در نمودار شکل (16) نقاط مربوط به اندازهگیری تیز دیده می‌شوند که این نقاط مربوط به اندازهگیری مستند به اطلاعاتی است که از مقاولات متعدد به دست آمده و در مرجع (11) به گزارش آنها ارجاع داده شده است.

برای بررسی این برآمگی کف توان از یک عامل محاسبه شده مقدار تغییر حسک‌های نشان داده شده در شکل (11-ج) محاسبه شد و تأثیر این شرایط بر کمیته و نمودارهای مورد مطالعه مشخص شد. زیرا واکنش‌های شد که در صورتی که کف توان دریای این مقدار باشند مقدار مبرای شرایط $v = 0$ اندکی کاهش می‌یابد. در حالی که برای مقادیر بزرگتر ضرب پواسون این تأثیر تاجی می‌شود. همچنین ضخامت لایه زیرین توان بر مقدار محاسبه شده A تأثیرگذار است. تاثیر عددی این محاسبات در جدول (3) ذکر می‌شود. این مقایسه‌ها نشان می‌دهد که مجموعه متغیرهایی که در حل الاستیک مؤثر می‌شود می‌توانند تاثیر رفتاری را در محدوده قابل قبولی گسترش دهند به طوری که می‌توان اطمینان نمود که اثر وارد اجرا در می‌توان به کم حل الاستیک مورد بررسی قرار داد.

به منظور بررسی پلاستیک شدید خاک، مقادیر ϕ در برآمگی‌های محاسباتی کاهش داده شد و مشاهده گردید که بدیده پلاستیک شدید خاک از دهانه توان شروع می‌شود و در دو سمت بالای توان گسترش می‌یابد. نمودارهای از این شرایط در شکل 17 نشان داده شده است. شرایط مرفوض برای این وضعیت محاسبه شرایط برآمگی5 در جدول 5 یک به یک یا $\phi = 0$ و اینگونه مقادیر پارامترهای مقاومت در این برآمگی 20 = ϕ و عمق نسبی تونل در شرایط مختلف الاستیک و پلاستیک، تأثیر ضخامت لایه خاکی زیر کف توان تا سنگ بست پیوست و تأثیر بر مقدار جاه‌زابی و بر پدیده توان نسبت نشست، و 8- تأثیر برآمگی کف تونل بر کلیه مقادیر ذکر شده در بالا.

در گروهی از محاسبات، در فرض نابت بودن ضخامت لایه زیر کف توان و بر اساس توزیع دیگری‌که‌های نشان داده شده در شکل (11-ب)، در شرایط الاستیک، کمک‌های مورد نظر محاسبه شده و نمودارهای مربوط به آنها به دست آمده و ترسیم شد. در گروهی دیگری از محاسبات، تأثیر اندازه‌گیری ضخامت لایه زیرین توان مورد محاسبه قرار گرفت و در بعضی گروه‌ها به مطالعه، تأثیر برآمگی در تونل و توان بررسی شد.

در جدول شماره (2) و وضعیت گره‌های دهانه توان نشان داده شده و در شکل 11 تک شکل‌های نمونه‌ای از وضعیت دگر شکل‌ها در بعضی از حالتان در نظر گرفته شده این مشاهده است.

از آنجا که کیک از کمک‌های مورد به دست گونه مطالعات، مقدار نسبت نشست (λ) است. این مقدار برای حالت‌های مختص مورد مطالعه، مقدار این کمک محاسبه شده و در نمودارهای مورد مطالعه نشان می‌دهد. بهترین مقدار مناسب آن که مقدار آن را تابعی از z_0/a نمودار تغییرات λ بر ترسیم شده است. در شکل (15-الف) نمودار تغییرات λ حسب z_0/a و z_0 و برای وضعیت $z_0/a = 0$ به دیده می‌شود. می‌توان پذیرفت که گرهی ضخامت لایه زیرین کف توان بر مقدار A مؤثر است و لی به نظر می‌رسد که این تأثیر به مقدار حداً آن محدود نمی‌شود. به منظور مقایسه نتایج به دست آمده در مورد λ با نتایج تجربی و یافته‌های قبلی می‌توان به ساختار "له" و همکاران [20] و منحنیهای "لافولونه" و "لانا" اقتباس از مرجع [7] و نیز مدل‌های جداگانه و پایین‌مد نمونه λ (مقدارهای (7) و (8)) از مرجع [11] مجدداً در نمودار شکل (16) نشان داده شده است. استقلال، سال 29، شماره 3، اسفند 1382
جدول ۲- مشخصات ابعادی تونل‌های محاسبه شده و تعین λ در حالت $\nu = 0.39$ و $\nu = 0.49$

<table>
<thead>
<tr>
<th>نام برنامه</th>
<th>λ</th>
<th>λ</th>
<th>Z_0</th>
<th>Z_0/a</th>
<th>Z_0</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tune8</td>
<td>0.136</td>
<td>0.016</td>
<td>34</td>
<td>76</td>
<td>1</td>
<td>Tune8</td>
</tr>
<tr>
<td>Tune4</td>
<td>0.173</td>
<td>0.019</td>
<td>56</td>
<td>60</td>
<td>1</td>
<td>Tune4</td>
</tr>
<tr>
<td>tune2</td>
<td>0.266</td>
<td>0.019</td>
<td>33</td>
<td>40</td>
<td>1</td>
<td>tune2</td>
</tr>
<tr>
<td>tune5</td>
<td>0.185</td>
<td>0.016</td>
<td>12</td>
<td>22</td>
<td>1</td>
<td>tune5</td>
</tr>
<tr>
<td>tune6</td>
<td>0.211</td>
<td>0.019</td>
<td>44</td>
<td>36</td>
<td>1</td>
<td>tune6</td>
</tr>
<tr>
<td>tune7</td>
<td>0.323</td>
<td>0.016</td>
<td>14</td>
<td>89</td>
<td>1</td>
<td>tune7</td>
</tr>
<tr>
<td>tune10</td>
<td>0.322</td>
<td>0.016</td>
<td>24</td>
<td>49</td>
<td>1</td>
<td>tune10</td>
</tr>
<tr>
<td>tune11</td>
<td>0.368</td>
<td>0.016</td>
<td>16</td>
<td>53</td>
<td>1</td>
<td>tune11</td>
</tr>
<tr>
<td>tune9</td>
<td>0.343</td>
<td>0.016</td>
<td>14</td>
<td>43</td>
<td>1</td>
<td>tune9</td>
</tr>
<tr>
<td>tune13</td>
<td>0.358</td>
<td>0.019</td>
<td>14</td>
<td>32</td>
<td>1</td>
<td>tune13</td>
</tr>
<tr>
<td>Tune14</td>
<td>0.405</td>
<td>0.016</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>Tune14</td>
</tr>
</tbody>
</table>

در تمام موارد، نقطه تونل ۲ متر و تستجیب نتایج تونل ۱۰ سانتی‌متر بوده است.

برنامه اجرایی محدود قادره به نشان داده مانعی برای تاثیر شدگی و کسترش آن در خاک‌های سخت می‌باشد ولی می‌تواند به‌دست آورد شرایط مناسب همچون محدوده ای که در موارد معمولی عمل می‌کند شرایط زمین در محدوده ای که باقی ماند، به همراه حال جاریه به لاحقی در داده شده می‌باشد. این تأثیر محاسباتی از مشابه تأثیر افزایش قطر تونل است (زیرا به‌صورت پلاستیک شده دیگر می‌باشد). از این رو تأثیر پلاستیک شده داده‌های تونل مشابه کاهش مقدار Z_0 می‌باشد که نتیجه آن افزایش در مقدار Z_0 می‌باشد. ولی مقدار این تغییر برابر نیست. با وجود این اظهارنظر در مورد وضعیت پلاستیک شدگی خاک و تأثیر آن در شرایط حفر تونل‌ها نیاز به بررسی نمودن مفیدانه و بسیار حساس دارد زیرا در میان انواع مدل‌های رفتار خاک در شرایط پلاستیسیس می‌باشد. این نتایج بررسی داده‌های شرایط شدگی عمیق در این آزمایش‌ها. است که پلاستیسیس شدگی است.

از آنجا که پلاستیسیس شدن خاک به معنی عادی شدن مقاومت برخی است و این بی‌رخی باید همراه با چگالی جابه‌جایی برشی وضعیت قبلی توجه باشد ولی عمل این چگالی جابه‌جایی درون خاک در اثر حفر تونل در خاک‌های معمولی (و هنوز در این شرایط به خاصیت ریزشی) به حضارت جابه‌جایی برشی نمی‌رسد. این رو گره‌
شکل 12- نمونه‌ای از خطوط هموتراکس جابجایی قائم در مقطع قائم اطراف و بالای تونل (محاسبات حاضر)

شکل 13- نمونه‌ای از خطوط هموتراکس جابجایی افقی در مقطع قائم اطراف و بالای تونل (محاسبات حاضر)
شکل 14- وضعیت شبکه اجزای محدود تغییر شکل پایه و مرز دگر شکل‌ها (نصف مقطع قائم)

شکل 15- تغییرات (λ) بر حسب z_s/a در محاسبات حاضر

فرض اینکه منطقه تأثیر حفر تونل در زمینهای خاکی را می‌توان در یک سه‌بعدی مشخص در نظر گرفت، مجدداً مورد ارزیابی قرار گرفت و بازیابی شدگان دهانه این سه‌بعدی می‌باشد.

نتیجه‌گیری

بر اساس آنچه در این مقاله مورد بحث قرار گرفت نتایج زیر را می‌توان پذیرفته:

استقلال، سال 22، شماره 2، اسفند 1382

17
شکل 17- چگونگی گسترش ناحیه پلاستیک مرتبط با مراحل تغییر شکل دهانه تونل (شرايط رديف 4 در جدول 2)

شاكره، گریه‌های تجربی مشخص شد. مقدار این زاوه در هر طرف برای خاک‌های چسبندگی در محدوده 40° تا 60° و برای خاک‌های غیر چسبندگی در محدوده 25° تا 40° بوده است. معادله ساده توزیع نشست در خاک بالایی تونل، معادله (45) چنین باشد:

معادله مناسب برای این منظور است و نسبت به معادله‌های

شاكره، گریه‌های تجربی مشخص شد. مقدار این زاوه در هر طرف برای خاک‌های چسبندگی در محدوده 40° تا 60° و برای خاک‌های غیر چسبندگی در محدوده 25° تا 40° بوده است. معادله ساده توزیع نشست در خاک بالایی تونل، معادله (45) چنین باشد:

معادله مناسب برای این منظور است و نسبت به معادله‌های
می توان پارامترهای مؤثر بر رفتار خاک را در سمت هماهنگ بیان ناپیوسته نمود. مراحل (البته در محدوده ی پایه‌ای) انتخاب کرد. وضعیت پلاستیکی شدگی خاک و کسرش آن از دهانه تونل به اطراف آن می‌تواند با نسبت میزان فاصله میانی رفتن غیر معمولی در پلاستیکی شدگی هست و کنار گرفت و نتیجه‌گیری شد که به تهیه مدل معمولی محاسباتی و نتیجه‌گیری از آن در بعضی شرایط مثل تأخیر افزایش قطع تونل و با افزایش اندازه در مقادیر نباید است. ضمن اینکه باید توجه داشت که بررسی وضعیت رفتاری خاک می‌تواند بر شرایط فرآیند اشتیکا تیاز به تحلیل‌های مفصل تر داد.

قدرتانی این مقاطع از گزارش نتایج طرح تحقیقات مصوب دانشگاه صنعتی اصفهان (کد ۷۹۱۷) است. این رویکرد از این بیان می‌شود: این طرح نتایج گردیده‌ای که انجام طرح را توصیف کرده سیاست‌گذاری شود.

مراجع

18. وفايان، م.، بازیلهای نشست سطح زمین در اثر حفر تونل‌های کم عمق، مجموعه مقالات پنجمین کنفرانس تونل ایران، دانشگاه فنی دانشگاه تهران، ص 313تا 321، آبان 80.
