روشی جدید برای حل مسائل ارضای محدودیت

غلامرضا قاسم‌نژاد و مجید نامازی
دانشکده مهندسی کامپیوتر، دانشگاه صنعتی شریف
دانشگاه آزاد اسلامی(واحد خوی)

(دریافت مقاله: ۱۳۹۵/۸/۲۴ - دریافت نسخه نهایی: ۱۳۹۶/۵/۲۲)

چکیده - بسیاری از مسائل مطرح در زمینه هوش مصوبه را می‌توان به صورت مسائل ارضاي محدودیت تنظیم کرد. این مسائل با استفاده از مجموعه‌ای از متغیرها و محدودیت‌های بر روی متغیری که این متغیرها می‌توانند انتخاب کنند. تعریف می‌شود. در این نوع از مسائل از وارد برحسب نیروی اشتراک به‌عنوان اندازه‌گیری دیگر اثری از عوامل می‌دهند. در این مسائل مجموعه‌ای از محدودیت‌های منحصر به فرد برای متغیر‌های مورد نظر مسئله ارضا شده‌اند. تا به حال تعداد محدودیت‌ها کمتر از کنترل این مسائل ارراز می‌شود. با استفاده از الگوریتم‌های کنترل این مسائل از محدودیت‌های کمتری به‌عنوان اندازه‌گیری دیگر اثری از عوامل می‌دهند. با استفاده از الگوریتم‌های کنترل این مسائل ارراز می‌شود. با استفاده از الگوریتم‌های کنترل این مسائل ارراز می‌شود.

واژگان کلیدی: هوش مصوبه، جستجو، مسائل ارضاي محدودیت، مسائل برحسب دهی سازگار

A New Method for Solving Constraint Satisfaction Problems

G. Ghassem-Sani and M. Namazi
Assistant Professor Department of Computer Engineering, Shiraz University of Technology
Instructor, Islamic Azad University (Khoy Branch)

Abstract: Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling” means assigning a value to a variable.) Solution to these problems is a set of unique values for variables such that all the problem constraints are satisfied. Several search algorithms have been proposed for solving these problems, some of which reduce the need for backtracking by doing some sort of looking to future, and produce more efficient solutions. These are so-called Forward Checking (FC), Partially Lookahead (PL), and Fully Lookahead (FL) algorithms. They are different in terms of the amount of looking to the future, number of backtracks that are performed, and the quality of the solution that they find. In this paper, we propose a new search algorithm we call Modified Fully Lookahead (MFL) which is Shown to be more efficient than the original Fully Lookahead algorithm

Keywords: Artificial Intelligence, Search, Constraint Satisfaction Problems, consistent labeling problems
1- مقدمه

مثال‌های اصلی مسائل ارضایی محدودیت‌های محاسباتی، متغیرهای و محدودیت‌ها سپاس. هدف نهایی در حل این گونه مسائل، مقداردهی به متغیرهای سیستم، که جمله‌ها به مقدار متغیرهای مختلف مسئله ارضایی شوند. مقدار متغیر (در این نوع از مسائل وارد
برچسب*) هر آرا به مقدار یک متغیر استفاده می‌شود.

زمانی مقدار افزایش یافته می‌شود. انتخاب متغیر متغیرهای حساسیت به گونه‌ای صورت می‌گیرد که مقدار متغیرهای مختلف مسائل همداری بایستی به گونه‌ای تعریف شود. با یک گروه سازگاری بهترین دامنه مقدار متغیر به‌طور محدودیت‌های یک پارامتری، و شرایط ارزیابی آن مقدار متغیرهای مختلف نسبت به یک گروه اصلی Nاهیان.

2- مسائل ارضایی محدودیت

یک مسئله ارضایی محدودیت‌های محاسباتی، یکی از انتها مسائل محاسباتی محدودیت مسئله اکنون مورد بررسی می‌شود

[۱۷]

اعداد محدودیت "متغیر* (که هر یک دارای یک دامنه محدود

عبرت* است) و

1383/1/شماره 1/جلالی
جلفرو" را با "FL"، "اندیه نگر جزیی" را با "PL"، "اندیه نگر کامل" را با "MFL" و "اندیه نگر کامل بهبود یافته" را با "FL" می‌دهیم. در هر مرحله از حل مسئله مقدار یکی از متغیرها تعیین می‌شود که به آن "متغیر جاری" می‌گوییم. بی‌توجهی که در مراحل قبلی مقداری تعیین نشده، متغیرها گذشته و به آن‌های که در ادامه جستجو و پس از متغیر جاری مقدار خواهند گرفت، "متغیرهای آن" می‌گوییم. ضمناً الگویی که برای آن دسته از مسئله ارسال محدودیت قابل استفاده‌کردن دارد شرایط زیر باشد:
(۱) دامنه هر متغیر، محدود و شامل مقداری گسترش‌ناپذیر است که در هر مرحله تعریف شده بین دو متغیری انتخاب می‌گردد. اگر این امر را به عنوان اضافه کردن محدودیت جدید به مسئله در نظر بگیریم، الگویی که در ادامه جستجوی "اندیه نگر" گرفته می‌شود که هرین اعداد مقدار محدودیت و با توجه به مقدار انتخاب شده برای هر متغیر جاری، دامنه متغیرهای آن (آنهایی که هنوز مقداری برایشان تعیین نشده است) را با حد فرعی در از مقدار موجود در آنها قرار می‌دهد. در این مسئله اگر در این غیر از این عمل حدف رو به آنده، دامنه یکی از متغیرهای آنی تیم شود، عمل عمومی صورت می‌گیرد. به همین خاطر، همان که در شکل ۱ نشان داده شده، مقدار ۳ از دامنه این متغیر، علیرغم ناسازگار بودن با مقدار متغیر جاری Q2، حذف نشده است. اما اگر فرض این دامنه متغیرهای آن با متغیر Q3 تیم شود، بررسی جلوی آن می‌کرده و مقدار ۲ از دامنه Q4 نیز حذف می‌گردد.

۳- الگویی بررسی جلویی در الگویی بررسی جلویی، مقداری از دامنه متغیرهای آنی
که در مقدار انتخاب شده برای متغیر جاری ناسازگارند، حذف می‌شود: زیرا واقع است که این مقدار در آنده نمی‌تواند برای آن متغیرهای آنی تیم شود، بایستی عقب‌گردیده صورت گرفته و برای متغیر جاری و یا متغیرهای گذشته، مقدار دیگری انتخاب شود. در غیر این صورت جستجو با تعیین مقدار متغیر بعدی ادامه پیدا می‌کند. در ادامه توضیح مختصری درباره هریک از الگویی بررسی جستجوی آن‌ها نگر ارائه می‌شود.
مشاهده می‌شود که دسته‌گری آینده‌نگر جزیی در طی مراحل کمتری (نسبت به الگوریتم بررسی جمله) به حل مسئله رسیده است. علت این امر این است که در الگوریتم آینده‌نگر جزیی، با یک مدل آینده‌نگر بیشتر، محدودیت بیشتری بر روی مقدار موجود برای متغیرهای آنی اعمال شده است. همچنین، شبه کد در مرجع (7) ارائه شده است.

3-2- الگوریتم آینده‌نگر جزیی

در الگوریتم جستجوی آینده‌نگر جزیی، در هر مرحله اینکه (همانند روش بررسی جمله) سازگاری مقدار متغیر جاری با مقادیر موجود در دانه متغیرهای آنی بررسی شده و مقدار ناسازگاری با آن در دانه متغیرهای آنی حذف می‌شود. سپس دانه متغیرهای آنی نیز با یک‌پکی بررسی می‌شوند و اگر مقدار از دانه یکی متغیر آنی مثلاً 7، با تمامی مقادیر پارامترهای در دانه یکی از متغیرهای آنی پس از آن ناسازگار باشد، آن مقادیر نیز از دانه حذف می‌شود. در صورتی که دانه‌ای یکی از متغیرهای آنی به نه کشد شود، عامل عضوی صورت گرفته و برای متغیر جاری و با متغیرهای گذشته، مقدار دیگری انتخاب می‌شود. شکل (1) مراحل اجرای الگوریتم آینده‌نگر جزیی را در حل مسئله جامپ و شیر نشان می‌دهد. همان‌گونه که مشاهده می‌شود، در مرحله ششم اولین جواب مستلت به دست می‌آید. در این شکل، مقادیری که در بررسی مقدار متغیر جاری با متغیرهای آنی حذف شده است با علامت FC و مقادیری که در بررسی مقادیر متغیرهای آنی با یک‌پکی حذف شدیدند با علامت PL علائم معرفی شده است. با مقایسه مراحل سربوط به الگوریتم بررسی جمله، شکل (2) و مراحل سربوط به الگوریتم آینده‌نگر جزیی شکل (3)
الگوریتم دیگر نیست، به عبارت دیگر مزیت اصلی آن تعداد مرحله و عقد کمتر است.

۴- الگوریتم آینده‌نگر کامل به‌رمایه پایه الگوریتم MFL، با هدف اصلی افزایش کارایی الگوریتم آینده‌نگر کامل، از طریق کاهش تعداد برسی‌های سازگاری انجام شده در الگوریتم MFL، که عبارت می‌باشد که در ادامه خواهیم دید. الگوریتم MFL، می‌تواند سلسله ارسال محدودیت را با صرف ارزی کمترین از نظر تعداد برسی سازگاری انجام شده (در مقایسه با روش FL) و در غیر حال (FL: از نظر تعداد مرحله) با یکپارچه حداکثر به خوبی روش حل کند. در این الگوریتم، همانند الگوریتم آینده‌نگر جزئی، مقدار دامنه هریک از متغیرهای آتی تناها دامنه متغیرهای آتی پس از FL به‌روش‌های قبلی) این روش حذف شده‌اند، از علائم استفاده شده است. همان‌گونه در شکل (۳) دیده می‌شود، الگوریتم آینده‌نگر کامل در مراحل کمتری (نسبت به الگوریتم آینده‌نگر جزئی) به اولین حل مسائل دست یافته است و این به علت اعمال محدودیت بیشتر بر روی انتخاب‌های متغیرهای آتی است. برای دیدن الگوریتم FL به صورت شبه کد به مرجع [V] رجوع شود. همان‌گونه که توضیح داده شد، الگوریتم آینده‌نگر کامل به نسبت از الگوریتم آینده‌نگر جزئی و برسی جلوور، تعداد برسی‌های سازگاری بیشتری انجام داده و مسائل را در طی مراحل کمتری حل می‌کند. از طرفی تعداد عقیدره‌های انجام شده نیز در این روش کمتر است. این به پایین توجه شود که زمان کل حل مسائل در الگوریتم آینده‌نگر کامل به علت برسی‌های سازگاری بیشتری که انجام می‌دهد، لزوماً کمتر از دول
آن بررسی می‌شود. البته همان‌گونه که در بخش (۵) تشریح خوانده شد، در مقایسه با آن‌ها نگزدی، روش آینده‌گری (بررسی روش جلویی) بیشتر انجام می‌دهد. به عبارات دیگر از نظر تعداد بررسی‌های انجام شده در هر مرحله، روش مذکور در نظر گرفتار دارد. در حالی که انجام بررسی‌های انجام شده در مرحله MFL می‌باشد و در فلسفه برنامه‌ریزیی و فلسفه برنامه‌ریزیی انجام می‌دهد.

در شرایط بررسی‌هایی که متغیر آن مثال U، مقادیری از دامنه UI، مقادیری از دامنه UI آن از آن که به کلیه مقادیر باقی مانده در دامنه متغیر U، یعنی از دامنه UI بیشتر، مقادیری موجود در دامنه RE که از دامنه متغیری A نیز در زمان مناسب به صورتی که به مقداری بیشتر کم کنند. این به‌طور کلی می‌تواند به عبارتی در مسیری که انجام شده در مرحله انجام می‌دهد. به‌طور کلی در مسیری که انجام شده در مرحله انجام می‌دهد. به‌طور کلی در مسیری که انجام شده در مرحله انجام می‌دهد. به‌طور کلی در مسیری که انجام شده در مرحله انجام می‌دهد. به‌طور کلی در مسیری که انجام شده در مرحله انجام می‌دهد. به‌طور کلی در مسیری که انجام شده در مرحله انجام می‌دهد.
هومنگونه که در بخش قبل توضیح داده شد، کلیه الگوریتمهای جستجوی آینده نگر با حذف مقداری از دانه متغیرهای آنی که امکان انتخاب آنها در آینده وجود ندارد، انتخاب مقدار یک متغیر جایی را به صورت یک محدودیت ایجاد می‌کند. با این حال، میزان حذف و تاثیر که در قالب انجام بررسی‌های سازگاری صورت می‌گیرد، در الگوریتمهای مختلف آینده نگر متفاوت است. هر چه میزان حذف مقداری تامین شود از دانه متغیرهای آنی بیشتر باشد، انتخابهای کمتری در هنگام تعیین مقدار متغیرهای آنی باقی خواهد ماند و در نتیجه، با تعداد عقب‌گردن و مراحل کمتری به حالت مسئله (البته در صورتی که مسئله حل داشته باشد) دست می‌یابیم. اما حذف آینده نگر از دانه متغیرهای آنی نیاز به انجم بررسی‌های سازگاری بیشتری دارد.

زمانی که در کل تعداد بررسی‌های MFL و FL در کل عناوین PL و FC انجام سازگاری بیشتری نسبت به الگوریتم‌های PL و FC انجام می‌دهد، من برای انتخاب بررسی‌های کمتری است. در این هر مقدار نیز به سیاست سازگاری مقدار سازگاری تکراری انجام می‌دهد. به عنوان مثال، سازگاری مقدار L2 از دانه U1 و U2 در حالت L1 بررسی دانه 1 و (در صورت عدم حذف مقدار) بار دیگر در حین بررسی دانه U2 بررسی می‌شود. اما در الگوریتم MFL به خاطر سیاست بررسی‌های Sازگاری انجام شده در Hنگام بررسی دانه متغیرهای آنی پس از

1383
منابع‌کننده‌ی رابطه‌‌ی نسبی گروه‌های مورد بحث از نظر کلیّ زمان لازم برای یافتن هم‌هایی پاسخ‌های مسائل هشت و شانزده و بی‌ام‌تی است.

از آنجا که مسائل اراضی محدودیت‌های زیر را به عنوان محدودیت‌های اولین و دوم مطرح کرده‌ام،

از این قبیل مسائل نسبت به متغیر U1 می‌تواند در دامنه دانش‌آموزان ایفای نقش کند.

مقدار U1 از قبیل مشخص شده است که کدام یک از مقدار U1 موجود در دامنه متغیر U1، باهمانند در دامنه مشخص آن قبل از آن، با تمامی مقدار

به عنوان نمودار شانزده U1 نیز از دامنه متغیر U1 موجود در دامنه متغیر U1، تناها مقدار موجود در دامنه متغیر U1، بعد از

بنا برای هر مقدار به صورت نمایی افزایش می‌یابد. گروه MFL نیز از این قبیل مسائل توسط مشتبه است. نمودار

مقدار U1 در دامنه مشخص شده از این قبیل مسائل توسط مشتبه است. نمودار

با در شاخص هشت و بی‌ام‌تی است. تعداد بررسی‌های سازگاری لازم برای یافتن هم‌هایی پاسخ‌های مسائل هشت و بی‌ام‌تی است.

واقع می‌شود که از نظر تعداد قدره‌های لازم برای حل

MFL مشاهده گردیده‌اند. این گروه‌ها محدودیت‌های برجام به خوبی

مقدار بهتری از این گروه‌ها در مفاهیم مشابه شده است. به عنوان نمونه، نمودار

شکل (1) این که از این قبیل مسائل مشابه شده است. به عنوان نمونه، نمودار

MFL مشاهده گردیده‌اند. این گروه‌ها محدودیت‌های برجام به خوبی

به عنوان نمونه، نمودار

شکل (1) این که از این قبیل مسائل مشابه شده است. به عنوان نمونه، نمودار

MFL مشاهده گردیده‌اند. این گروه‌ها محدودیت‌های برجام به خوبی

به عنوان نمونه، نمودار

شکل (1) این که از این قبیل مسائل مشابه شده است. به عنوان نمونه، نمودار

MFL مشاهده گردیده‌اند. این گروه‌ها محدودیت‌های برجام به خوبی

به عنوان نمونه، نمودار

شکل (1) این که از این قبیل مسائل مشابه شده است. به عنوان نمونه، نمودار

MFL مشاهده گردیده‌اند. این گروه‌ها محدودیت‌های برجام به خوبی

به عنوان نمونه، نمودار

شکل (1) این که از این قبیل مسائل مشابه شده است. به عنوان نمونه، نمودار

MFL مشاهده گردیده‌اند. این گروه‌ها MFL مشاهده گردیده‌اند. این گروه‌ها

MFL مشاهده گردیده‌اند. این گروه‌ها

MFL مشاهده گردیده‌اند. این گروه‌ها

MFL مشاهده گردیده‌اند. این گروه‌ها

MFL مشاهده گردیده‌اند. این گروه‌ها

MFL مشاهده گردیده‌اند. این گروه‌ها
شکل 5 - تعداد بررسی‌های سازگاری انجام شده برای یافتن کلیه پاسخ‌های مسائل هشت و شانزده وزیر

شکل 6 - تعداد مراحل طی شده برای یافتن کلیه پاسخ‌های مسائل هشت و شانزده وزیر

تعداد قدم‌های بیشتری برای رسیدن به کلیه پاسخ‌های مسئله مرور نیاز خواهند داشت. اما همان‌گونه که نمودار شکل (6) نشان می‌دهد، تعداد مراحل کوریتیم MFL از کوریتیم FL اندکی بیشتر است. این امر بدان معنی است که در کوریتیم مقادیر بیشتری از دامنه مقادیر متغیرهای آنی حذف می‌شوند. نتیجه‌گیری‌های کوریتیم، به شرح این کوریتیم مقادیر موجود در دامنه پیک متغیر آنی مانند UI، با به خاطر می‌بایست

بررسی‌های انجام شده فنی، مشخص است که کدام یک از مقادیر موجود در دامنه UI و متغیرهای آنی بعد از UI تمامی مقادیر باید مانند شوند. این حذف این مقادیر باعث می‌شود که در طی بررسی سازگاری دامنه UI و دامنه متغیرهای آنی بعد از آن، نه تنها بررسی‌های سازگاری کمتری با مقادیر موجود در دامنه متغیرهای آنی بعد از آنی صورت گیرد، بلکه احتمال حذف

استقلال، سال 33، شماره 1، شهريور 1383
مدیریت موجود در دانشه 1 و متغیرهای آتی بعد از آن نیز
افزایش یافته. به عنوان مثال، اگر در دانشه یکی از متغیرهای آتی
بعد از U1 مقدار L2 و U2، در مقادیر ل2 و L2 وجود داشته باشد و
پس از این باید سازگاری مقادیر موجود در دانشه U1
مقدار L2 به دلیل عدم سازگاری با مقادیر اقیمانده در دانشه

حدی گردد، سازگاری مقادیر موجود در دانسه متغیرهای
آتی بین U1 و U2، نمی‌تواند با مقادیر L2 بررسی می‌شود. اما در
الگوریتم FL پس از این باید سازگاری دانشه U1
مقدار L2 از دانسه مقادیر متغیر آتی U1 و U2 که با مقادیر L1
سازگار ولی با مقادیر L2 ناسازگار باشد، نیاز حرف دارد
شد. برای توضیحات بیشتر و جزییات کلی الگوریتم‌ها مورد
بحث باید به مراجعه ۲۳ [۲۳] مراجعه شود.

۶- نتایج گیری

مسائل ارایش محدودیت، بخش نسبتاً وسیعی از مسائل
مطرح در زمینه هوش مصنوعی را در بر می‌گیرند. این مسائل با
استفاده از مجموعه‌ای از متغیرها و تعادلات محدودیت بر روی
مقداری که این متغیرها می‌توانند انتخاب کنند، تعرف می‌شوند.
پاسخ این مسائل مجموعه‌ای از مقادیر منحصر به فرد برای
متغیرهای است، به طوری که تمام محدودیت‌های موجود مسئله
ارضا شده باشد.

اگر پاسخ یافته در مسئله جستجوی آیده‌گری جدید با نام
آیده‌گری کامل به‌همراه نمایش که از الگوریتم اصلی
آیده‌گری کامل به‌همراه نمایش که از الگوریتم
سازگاری کاملاً انجام داده و در غیب حالتی، مقادیر ناسازگار
پیشتری از دانسه متغیرهای آتی حدیف می‌کند. در این
الگوریتم تعداد مراحل طی شده و همچنین تعداد عقب‌گیریهای
انجام شده با رساندن به پاسخ مسئله نیز کاملاً از الگوریتم
آیده‌گری کامل است.

واژه‌نامه

1. Constraint Satisfaction Problems
2. Consistent Labeling Problems
3. Backtracking
4. Consistency Checking
5. Crypt Arithmetic
6. Eight Queen
7. Map Coloring
8. Watz
9. Consistent
10. Unary Constraints
11. n-ary constraints
12. search space
13. Initial State
14. Goal State
15. Depth First Search
16. Breadth First Search
17. Iterative Deepening DFS
18. Forward Checking
19. Partially Lookahead
20. Fully Lookahead
21. Modified Fully Lookahead
22. Binary Constraints
23. Prune
24. Uninformed
25. Systematic

استقلال، دانشگاه شیراز، ۱۳۸۳ شمسی
1. فاسم ناشی، غ. و نمازی، م. "روشی برای حل مسائل بر جهش دهی سازگار". مجموعه مقالات پنجمین سمینار سالانه انجمن کامپیوتر ایران دانشگاه شهید بهشتی، ص. 226-2116، 1378.

2. نمازی، م. "طراحی و پیاده‌سازی کمک آموزشگر کوریسمهای جستجوی و ریزه حل مسائل ارائه‌ای محدودیت: پایان‌نامه کارشناسی دانشکده مهندسی کامپیوتر دانشگاه صنعتی شریف، ۱۳۸۴.

پوست

در این یخش کورتینمهای بررسی جلوه (FC)، آیندهگر کامل بهبودیانه و روانه‌ای به نام FC می‌شود. این FC در اینجا می‌شود که کلیه کورتینمهای آیندهگر MFL و FL پدیداری می‌شود. این FC تکمیل کورتینم MFL اجرا می‌شود. لذا در اینجا نیز برای تکمیل کورتینم FC این FC به (1 و 7) رجوع شود.

Recursive Procedure Forwardsearch (U, F, D);
For F(U)=each element of D(U) Begin
if U < Number_Of_Variables then Begin
New_D = Forward_Check (U, F(U), D);
if Not Empty_Domain_Flag then Call Modified_FL (U, New_D);
end if;
if Not Empty_Domain_Flag then Begin
Call Forwardsearch(U+1, F, New_D);
end if;
else
Output the Labeling F;
end for;
end Forwardsearch;

Function Forward_Check(U, L, D) : New Domain Table;
New_D : Empty Domain Table;
For U2=U+1 to Number_Of_Variables Begin
For L2=each element of D(U2)
if relation(U, L, U2, L2) then Begin
Enter L2 into New_D(U2);
Dellevel(U2, L2) = U+1;
end if;
if New_D(U2) is Empty then Begin
Empty_Domain_Flag = True;
return(New_D);
end if;
end for U2
return(New_D);
end Forward_Check;

شکل ۱ - روش جستجوی جلوه (رویه اصلی)

شکل ۲ - زیر روش مربوط به کورتینم بررسی جلوه (FC)
Procedure Modified_FL(U, New_D);
 For U1=U+1 to Number_Of_Variables Begin
 For L1=each element of New_D(U1) Begin
 if Dellevel(U1, L1) = U1-1 then Begin
 Delete L1 from List New_D(U1)
 end if;
 end For L1 Loop;
 end For U1 Loop;
 Consistent_Label_Found_Flag = False;
 For U2=U1+1 to Number_Of_Variables Begin
 For L2=each element of New_D(U2) Begin
 if Dellevel(U2, L2) = U1-1 then Begin
 Delete L2 from List New_D(U2);
 end if;
 end For L2 Loop;
 if Not Consistent_Label_Found_Flag then Begin
 Delete L1 from list New_D(U1);
 Break For U2 Loop;
 end if;
 end For U2 Loop;
 if Consistent_Label_Found_Flag then Begin
 For U2=U1+1 to Number_Of_Variables Begin
 Dellevel(U2, LastChecked(U2)) = U1+1;
 For L2 = each remained element of D(U2) that not checked Begin
 if Dellevel(U2, L2) = U1-1 then Begin
 Delete L1 from List New_D(U2);
 end if;
 end For L2 Loop;
 if Dellevel(U2, L2) = U1 then Begin
 if relation(U1, L1, U2, L2) then Begin
 Dellevel(U2, L2) = U1+1;
 end if;
 end if;
 end For U2 Loop;
 end if;
end Modified_FL;

شکل 3- زیر روبه ریز مربوط به الگوریتم آبندگر کامل بهبود یافته (MFL)