الگوریتم مورچه‌ای برای مسیر حرکت باربران خودکار در سیستم تک حلقه

کورش عشقمی و مرتضی کاظمی
دانشکده مهندسی صنایع، دانشگاه صنعتی شریف

دریافت مقاله: 1387/01/27 - دریافت نسخه نهایی: 1387/06/21

چکیده - در این مقاله الگوریتم ایجادی برای مسئله مسیر حرکت باربران خودکار در سیستم تک حلقه معرفی می‌شود. در این مسئله هدف تعیین مسیر حرکت بار برای حرکت باربران خودکار در چند مان کارخانه با به‌کارگیری الگوریتم فرا ایجادی مسیر بهینه می‌شود. نتایج آزمایشات کارایی الگوریتم مولفه‌ای سیستم و مسیربرداری سیستم تک حلقه نشان می‌دهد.

واژگان کلیدی: مسیر حرکت باربران خودکار، الگوریتم مورچه‌ای، الگوریتم فرا ایجادی

Ant Colony Algorithm for the Single Loop Routing Problem

K. Eshghee and M. Kazemi
Associate Professor and PhD Student, respectively, Department of Industrial Engineering, Sharif University of Technology

Abstract: In this paper, a new algorithm for solving the single loop routing problem is presented. The purpose of the single loop routing problem (SLRP) is to find the shortest loop for an automated guided vehicle covering at least one edge of each department of a block layout. First it shown that this problem can be represented as a graph model. Then a meta-heuristic algorithm based on and colony system is developed for ALRP by using the properties of the graph model. Computational results show the efficiency of the proposed algorithm in comparison with other techniques for solving SLRP.

Keywords: Single loop routing problem, Ant colony optimization algorithm, Meta-heuristic algorithms
1- مقدمه

در سیستم حمل و نقل خودکار انتفاده از باربران خودکار (AGV) از جمله سیستمهای جایگزین محبوبی می‌شود که استفاده از آن در سال‌های اخیر روز به روز افزایش می‌یابد. دلیل این انرژی نیز پدیداری بالای این تجهیزات در سیستم‌های خودکار می‌باشد. باربران خودکار در سیستم‌های خودکار، به عنوان مدل‌های SLRP انتخاب می‌گردد.

2- معرفی الگوریتم مورچگان (ACO)

الگوریتم فرا اتکاری بین‌سایزی بر مبنای رفتار مورچگان در اولیه دهه تومریده توسط درکیو، مانیو و کارینی [6 و 7] معرفی شد. این الگوریتم از رفتار اجتماعی مورچگان در اقلای گرفته شده است. مورچگان با آنکه قادر به توانایی تولید مورچگان خنثی از منع غپ تا انتشار اثراتی را به عنوان یک حضور از حضور به طور جایگزین می‌گردد، به فرمول 1 مورد استفاده از مواد شیمیایی که در هنگام حضور با خود به جای می‌گذراند، به فرمول 1 مورد استفاده می‌گردد. به فرمول 1 مورد استفاده می‌گردد. به فرمول 1 مورد استفاده می‌گردد.

شکل (1) نشان داده شده است.

حالت A را در شکل (1) در نظر بگیرید. مورچگان به یک دوره‌ای رسیده و جمهوری تشکیل گردیده که به صورت با پایداری در مورد بهترین انتخاب وجود ندارد. بنابراین مورچگان می‌تواند محاسباتی انجام دهد و خود را به صورت تصادفی انتخاب کند. می‌توان انتظار دارد که در مدل کردند [7] پیچیدگی محسوسی سیستمی به توصیفی توسط

استقلال، سال 13، شماره 1، شماره 1383

72
چهکه فرکومون یک بال باشت باشد ان بال از مطلوبیت بالاتری برای انتخاب برخوردار است. در نهایت جوانی تولید می‌شود که از مطلوبیت بالای استفاده شده و احتمالاً نزدیک به جوان بهینه مسیرهای خواهد بود. در اکثر مسئله‌ها که توسط الگوریتم مورچه‌ای حل شده‌اند مدل‌های بانگ‌ربرنگ بریتی این روش بر مایوریت مسیرهای بین‌پایین می‌شود به تدریج اختلاف فرکومون در این مسیر می‌شود. به‌طور احتمالی می‌تواند این مسئله را انتخاب کند. این گرایند با یک بازخوردهای مبنا به دامنه می‌باید. معنی اینکه افراشته انتخاب مسیر موجب الگوریتم فرکومون این مسیر و افراشته انتخاب مسیر موجب الگوریتم انتخاب این مسیر می‌شود و هر مسیرهای این مسئله تا انتخاب کرده به نحوی پس از مدتی تمام مسیرها مسیر کوشن‌تر را برای ادامه حرکت خود انتخاب می‌کنند.

اولین الگوریتم بهینه‌سازی ACO براساس همین رفتاب

MORDEGHAYI ابتدا بررسی ACO مسئله‌های دوبل شده الگوریتم ACO مسئله‌ها باید شامل دو حالت مسئله مانند دو مسئله دوبل شده و پس از آن در حل دیگر مسئله بهینه‌سازی تعریف کرده که به‌طور مسئله تخصیص می‌شود. مسئله‌های الگوریتم خودروها و 400 اشاره کرد.

[11] الکن شده است. در روش ACO مسئله مبنا به یک مدل در نظرگرفت. مسئله تبیین شده و جواب مسئله مبنا به مسئله مسیر بروز آن تعریف خواهد شد [12]. در این روش از تعدادی مسئله مسیرهای برای حل مسئله استفاده می‌شود. این مسئله‌ها به جستجو در مسئله می‌پردازند و با مبدل‌گردی اطلاعات، از طریق سی‌گان گزینه فرکومون در طول پایه‌ای گرایندر در ساخت اجلاس با همکاری با یکدیگر می‌پردند. هر

۷۳

استقلال سال ۳۳ شماره ۱ شهریور ۱۳۸۳
شکل 1 - طرح یافتن کوتاهترین مسیر بین دو نقطه توسط مورچه‌ها

شکل 2 - نمایی از چیدمان یک کارخانه

مجموعه بالاحالی باشد که در گراف چیدمان ما بین این گره‌ها موجود است. یک مجموعه از داربین‌های را یک‌نیمه‌ی گام یک گراف ناظر آن همیند باشند. برای مثال در شکل 3 گراف ناظر از داربین‌های 2 و 3 تشكیل یک منطقه داده و همیند است این داربین‌ها یک‌نیمه‌ی گام نست و در نتیجه این داربین‌ها یک‌نیمه‌ی گام نستند.

اجتماع مرزی چند داربین‌پیکارچه عبارت است از اجتماع بالاهالی این داربین‌ها با این شرط که بالاحالی را که در مرز مشترکی این داربین‌ها واقع شده‌اند را حذف کنیم. در شکل 4 اجتماع مرزی داربین‌های 3 و 4 و 5 و 6 که به صورت خطوط هاشور نمایش داده شده است تشكیل دو هفته جدا از هم را نشان می‌دهد. به عبارت دیگر اجتماع مرزی چند داربین‌پیکارچه بالاحالی است که بروی مرز حاصل از ادغام این داربین‌ها در یک‌نیمه‌ی گام وجود می‌اید.

به عنوان یک داربین در نظر گرفته و گرده متنازل با آن را در گراف چیدمان گره صفر می‌نامیم. در گراف چیدمان دو گره یک یک‌نیمه‌ی گام یک گراف ناظر می‌باشد. به عبارت دیگر داربین‌های گرده متنازل با یک یک‌نیمه‌ی گام یک گراف ناظر می‌باشد. در نتیجه گره صفر و گرده ناظر داربین‌های گرده متنازل با یک یک‌نیمه‌ی گام یک گراف ناظر می‌باشد. در نتیجه یک یک‌نیمه‌ی گام ناظر می‌باشد.

چیدمان با فرضیات ذکر شده یک گراف منطق اول خواص یک گراف منطقی با حداقل سه راس آن است که تعداد بالاهالی این گراف حد اکثر برای با 6 3[2] است که تعداد روس این گراف است (3). در شکل (3) گراف چیدمان وابسته به یک چیدمان مشترک از چهار داربین‌پیکارچه بالاحالی با خطوط ختم چین نشان داده شده است:

منظور از گراف ناظر یک گراف چیدمان این گراف شیوه‌ای که یک یک‌نیمه‌ی گام از گراف چیدمان است که اول گره‌های آن وابسته به داربین‌های موجود در آن مجموعه باشد و نهایتاً بالاحالی آن

استقلال، سال 13، شماره 1، شهريور 1383

74
دراست. که تمام گراف‌های مجازوار نیز برچسب دار بوده و این
دبین ممکن است حلقه ناشی از اجتماع مزری دیارتمان‌ها
دبای تمامی مجازواران در دست مشترک با دیارتمان‌ها
نخواهد داشت که این امر با فرض موجه بودن حلقه در تناقض
است. برای مثال در شکل (4) زیر گراف‌های نیست
دبای تمامی دیارتمان‌ها نشان دهیم که در آن تمامی گراف‌های مجازوار
دبای گره‌های برچسب دار 6 یا
صفر وجود دارد. و یا به عبارت دیگر حلقه ناشی از
اجتماع مزری دیارتمان‌ها در مجموع مشترک با دیارتمان‌ها
دبای 7 یا
دبای 6
3- حداکثر یکی از گره‌های مجازوار یک گره غیر برچسب در
عبر (از گره صفر) برچسب بود خواهد یافته که در غیر این
صفرت اول یک حلقه موجه نخواهد شد. به عبارت دیگر هر یک
دبای دیارتمان‌های خارج از حلقه می‌باشند و یا با یک
محله مشترک با حلقه بسته شده باشند. برای مثال در
شکل (2) اجتماع مزری دیارتمان‌ها 6 و 7 نمی‌تواند مشترک یک

- 2 جواب موجه سلسله SLRP از روی گراف

چیدمان
همان گونه که قبل ذکر شد گراف‌های موجه دیگری به جود داشته است که آن حلقه نیست. گراف‌های
دبای این حلقه موجه سلسله یکی نیست. گراف‌های موجه دیارتمان‌ها
دبای گره‌های موجه دیارتمان‌ها مشترک با دیارتمان‌ها
دبای گره‌های موجود در آن را با برچسب مشخص می‌سازیم. در این صورت
بت این حلقه موجه گره موجود در گراف چیدمان با
دبای برچسب خواهد بود و یا با یکی از گره‌های برچسب دار
دبای موجه می‌شود. علاوه بر آن مشاهده می‌شود که در گراف چیدمان
دبای 1- زیر گراف‌های نیست گره گره‌های برچسب دار یک
دبای این حداکثر یکی از گره‌های مجازوار یک گره غیر برچسب در.
دبای 2- زیر گراف‌های نیست گره گره‌های مجوزهای یک گره غیر برچسب
دبای است.

75
استقلال، سال 33، شماره 1، شهریور 1383
شرايط فوق در حقيقه شرايط لازم برای وجود زیر گراف موجه بودن. اکنون به بحث زیر که شرط کافی برای وجود یک زیر گراف موجه را بیان می‌کنند. نتیجه کنید: \(G_U = \langle V_U, E_U \rangle \) (ظاهرت)

1. فرض کنید یک زیر گراف چیدمان نظری \(G_U \) در شرايط

2. حداکثر یک از هر هم‌مجزار به یک گره \(V_U \) مجموعه

3. هر گره از مجموعه \(V_U \) در حداکثر

4. \(G_U \) چیدمان بایستد.

اثبات: حلقه ناشی از اجتماع مرزی دیارتمان‌ها متانظ‌ر با گره‌های \(V_U \) را در نظر بگیرید. شرط 1 بیانگر که حلقه پیوسته را می‌دهد.

شرايط 2 تضمین می‌کند که حلقه‌هایی با مر دیارتمان حداکثر دارای یک ضلع مشترک است و شرايط 3 از وقوع حفره جلوگیری می‌کند.

5- الگوریتم یافتن "زیر گراف موجه"

با توجه به قضیه بخش قبل می‌توان نتیجه گرفت که مسئله نسبت به تابع \(f \) (در سری‌رو تا جواب موجه) در سری‌رو تا جواب موجه

برای آن موجود باشد.) با یافتن یک زیر گراف از گراف چیدمان مسئله که واجد چهار شرط ذکر شده باشد باید معاله است. حال به ارائه الگوریتمی خواهیم برداشت که قادر است یک زیر گراف موجه از گراف چیدمان را پیدا بنحوی که با توجه به آن بتوان یک جواب موجه را برای مسئله

SLRP به دست آورده:

1- یک گره غیر از گراف صفر را به دلخواه از گراف چیدمان برقی کنید و آن را به جریان دار کنید. اگر این گره به تمام گره‌های دیگر گراف (غیر از گره صفر) تعلق یابد متوافق شود. در این حالت حلقه موجه بر روی مرز این دیارتمان قرار دارد.

حقله موجه را بدهد زیرا که در زیر گراف الگوی تابع به این دیارتمان‌ها گره‌های وابسته به دیارتمان‌های اول و دوم غیر برچسب دارد و گره‌های مجاور آنها نیز غیر برچسب دار

خواهند شد.

-4- اگر از گراف چیدمان کلیه گره‌ها با برچسب داده و با توجه متعلق به آن را حذف کنیم گراف حاصل از همه باند چرا که در غیر این صورت اجتماع مرزی دیارتمان‌ها وابسته به این گره‌ها تحقیق دارد که را می‌دهند. در واقع در سطح \(2^0 \) زیر گراف الگوی ناشی از دیارتمان‌ها \(2^0 \) مرا و 10 زیر گراف موجه نیست‌چرا که در این زیر گراف حاصل از حذف گره‌های \(2^0 \) و \(0 \) از گراف چیدمان غیر همبند می‌شود.

در شرايط فوق در حقيقه وجود زیر شرايط 10 نبدي خاطر است که حلقه ناشی از اجتماع مرزی دیارتمان‌ها یک یک چوب در باشد و یا یک از دیارتمان‌ها موجود در چیدمان پخش مشترک داشته باشد. واضح است که این مجموعه باست یک چوب باشد چرا که در غیر این صورت صفر یا حلقه‌ای تعریف نمی‌شود. اگر زیرگراف الگوی ناشی از دیارتمان‌های در شرايط 10 باشد اما یکی از شرط‌ها را نقض کند استحکاماً گفتگو می‌شود که دیارتمان‌ها وابسته به این زیر گراف دارای حفره‌اند.

حقله ناشی از اجتماع مرزی دیارتمان‌ها در حلقه صفر مسئله است که دیارتمان‌ها وابسته به آن غیر‌صرف‌نادیز نیست باشد.

زیرا اگر مجموعه دیارتمان‌ها جهادار باشد آنگاه مرز این مجموعه تا شکل جدا از هم را می‌دهد نظیر هنگامی که در شکل \(2^3 \) اجتماع مرزی شامل دیارتمان‌های 9، 6 و 10 باشد و یا اینکه دیارتمان از مجموعه دیارتمان‌های جهاددار و وجود دارد که تمام دیارتمان‌ها مجاور آن متعلق به جواباند

و لذا نمی‌تواند با شکلی با حلقه داشته باشد مثلاً سطح \(2^0 \) و 9، 8، 7، 6، 5، 4، 3، 2، 1 باشد. در این حالت دیارتمان 7 یا 7 بال مشترکی با حلقه ایجاد شده ندارد.

76

استقلال، سال 13، شماره 1، شهرویور 1383
جواب موجه برای مسئله می‌کند. مورچه‌ها ساعتخ جواب خود را زمانی آغاز می‌کند که مورچه فیلی جواب خود را تکمیل کرده باشد. در این مسئله جواب نهایی با یک زیرگراف از گراف چیدمان مشخص می‌شود. از آنجا که چندین زیرگرافی در حقیقت یکی از زیرگراف‌های اصلی از گراف چیدمان است، لذا ساختار ممکن این مسئله مولتی مورچه است. در این مسئله توسط هر یک از مورچه‌ها نظریه مورچه کام گروه گیونگ برای زیرگراف موجه، گروه جدید 1 احتمال که از مدل‌های زیر به دست می‌آید برای انتخاب استفاده می‌شود:

\[
S_k^i = \begin{cases}
\frac{\tau_i - \eta_i^a}{\sum_{j=1}^{k} \tau_j - \eta_j^a} & \text{if } i \in J_k \\
0 & \text{otherwise}
\end{cases}
\]

در این مدل‌هایی است که به هر گره تخصیص داده می‌شود و مقادیر آن برای است که باینکر می‌یابد. \(W_i \) بنامیز نظریه که به هر گره در گراف است. در حقیقت این نسبت باینکر این نکته است که هر جهت‌گیره جدید با گره‌های بیشتری مجاز می‌شود بهتر بوده و هر چند پیوستگی بیشتری داشته باشد بدلیل آنکه می‌تواند بر طول حلقه حاوی بی‌هنجاری از مولتی‌کریتیک‌ها برخوردار خواهد بود.

\(\tau_i \) نیز مقادیر فرمول گرای یکی است. یک پارامتری است که باینکر اهمیت در مقابل فرمول گرای می‌باشد. \(J_k \) مجموعه گره‌هایی که جواب‌هایی با یکی از گره‌های زیرگراف ساخته شده موردی کام مجاز است و طبق نام‌های الف و ب گام 2 الگوریتم انتخاب آنها برای اضافه کردنشان به یک زیرگراف مجاز است. با توجه به این مدل‌هایی که می‌توانند گره‌هایی از گراف بیشتری داشته باشند، تعداد گره بیشتری مجاز اشکال در این حالت محیط مکتبر نیز داشته باشد. جواب‌های که دیده می‌شود گام 2 اگر گره‌های بیشتری مجاز باشند در طبق انتخاب وجود داشته فراخوان موجه توسط این مورچه مجدداً از نو آغاز می‌شود.

6 - حل مسئله SLRP به کمک الگوریتم ACO

در بخش (4) جواب موجه برای یک مسئله SLRP را به‌صورت یکی از زیرگراف‌های تبدیل گردهای پیان کردنی و در بخش (5) الگوریتم برای پایه طراحی نموده. اینک می‌تواند از ایجاد موجود در الگوریتم‌های ACO شرکت‌زیر استفاده کرد.

g tuyên گره‌هایی غیر به‌صورت دار (به‌جز گره صفر) مسئله گره‌هایی به‌صورت دار، گراف را انتخاب کنید که در شرایط زیر برای زیرگراف‌های خالی از گره‌های برچسب دار و این گره صدق کنید:

الف: هر گره از این زیرگراف حداقل یک گره برچسب نخورده مجاز داشته باشد.

ب: اگر از گراف چیدمان این زیرگراف خالی یک کمی گره‌های همبند باقی بمانند.

اگر چنین گره‌هایی می‌تواند وجود داشته باشد از گم 1 شروع کنید.

3- گره را به مجموعه گره‌های چیدمان اضافه کنید و زیر گراف قلمی خالی از گره‌های برچسب دار و این گره تعمیم دهد. اگر هر گره غیر برچسب‌دار مجاز یکی از گره‌های این زیرگراف باشد موفق شود. در این صورت از گراف موجه به دست آمده است. در این صورت به گام 2 برگردد.

باینکر به دست آمده از الگوریتم انجا که در گام 2 که جدید را از میان گره‌هایی مجاز با یکی از گره‌های زیرگراف جداکنده شده در می‌پذیرد، در نهایت همبند خواهد بود و به‌دلیل بندهای و گام 2 شرایط 3 و 4 موجه در یک جواب موجه مسئله را ارضا کرده و با توجه به اینکه شرط توقف الگوریتم ارضا شد 3 موجه بودن یک جواب است در نهایت منجر به یک زیرگراف موجه خواهد شد.

ACO
زمانی که تمامی مورچه‌ها جواب خود را تکمیل کردن
مطابقتی آن توسط استفاده از قاعدده به هنگام گردنه‌های
اندکی کاملاً می‌پایین. این قاعدده باعث می‌شود که مطابقتی
گروهی به صورتی پیوست در حال تغییر باشد و از همکارا شدن
جواب‌ها در اطراف یک به یک بگذاری شود. این قاعدده از
این اصل طبیعی ناشی می‌شود که همواره مقداری از فرصتی
که مورچه‌ها برای یک صورتی باقی می‌گذرند با دلیل تبیخ
یا بین می‌روند. برای هنگام گردنه‌های موج‌گرهای موجود در
گروه چیکم از معادله زیر استفاده می‌کنیم:
\[
\tau_i = (1 - \rho) \tau_i + \rho \Delta \tau_i \tag{2}
\]
در این معادله,
\[
\Delta \tau_i = \begin{cases} (L_{gb})^{-1} & \text{if } i \in \text{global best Loop} \\ 0 & \text{otherwise} \end{cases}
\]
است که منظور از طول بهینه حلقه به‌دست آمده‌اند تکرار
کننده‌کلمه‌ای است و \(\rho\) نیز به نام پارامتر تبیخ است. هدف
از معادله فوق آن است که اگر گروهی متعلق به بهترین حلقه
موجه تا نکردن کننده نبوده مقدار فرصتی کمتر خواهد شد
و اگر گروهی متعلق به بهترین حلقه موجه بود اگر چه به دلیل
تبیخ مقدار از فرصتی آن کم می‌شود یا این مقدار از انداده
سابی گروها نخواهد بود.
از ترکیب الگوریتم‌های زیر گروه‌های با قواعد ذکر
SLRP
شدت در پایالگوریتم مورچه‌ای برای حل مستطبل
به‌صورت زیر به‌دست آمده‌اند:
کام 1: شمارش‌دادن تکرار الگوریتم یعنی I و شمارش‌دادن تعداد
مورچه‌های معینه \(k\) را برای 1 قرار دهید. حداکثر مقدار هریک از
آنها را ترتیب فرض کنید.
گام 1: یک گروه غیر از گروه صفر با چندین تصادفی از گروه
چیدمان بزرگ‌سایت و آن را با چسب داد کنید مورد گاه \(K\)
ام را برای آن قرار دهید. اگر این گروه به‌عنوان گروهی دیگر گروه
(غیر از گروه صفر) می‌شود یا در جایی باقی می‌ماند مزین
دیپارتمان قرار دارد و به گام 2 پرورده...

استقلال، سال 13، شماره 1، شهریور
1383
- نتایج محاسباتی
برای شناسایی آماری م دقیقه تهیه شد و بر روی ۲۲ سمیته نمونه آزمایش شد. مساحت
نمونه برابر انجام ان نام 각یالی مبتنی بود که در مرجع [1] نیز مورد استفاده قرار گرفته اند به این دلیل که در این کتاب کاری که بیشتر مشاهده شد. هزینه مساحت مشاهده شد. در جدول زیر
نتایج حاصل از اجرای الگوریتم بر روی مسئله نمونه و با استفاده
از رایانه شخصی ۳ با پردازنده بسیارهای ۸۰۰ مگاهرتز
می‌گویند حاصل یک جواب مربوط به هر سمیت نسبت به
جواب بهینه از جدول نتیجه گرفت که حتی
بدست‌یابی جواب‌های حاصل از الگوریتم نیز نتوانست به جواب بهینه
است. همچنین متوسط جواب حاصل از اجرای الگوریتم بر روی
تمام مسئله نمونه در یازده روزه [80/2] نسبت به جواب بهینه
مسائل قرار دارد. متوسط زمان آماری که برابر تمام
مسائل نمونه بود. ۷۶۷ ثانیه و به تفکیک هر گروه از مسئله
برحسوب درمانگاه در جدول ۲ داده شده است. برای ذهن
زمان اجرای الگوریتم در کل ۹۶۰ اجرا ممکن بود ۳۲ سمیت در مسئله
شماره ۱۹ با ۴۰ دارا مسئله ای اجرا شده است که در ۲۳۸ ثانیه به
سمت که برابر اجرا شده است. در مسئله این
جدول به ترتیب از سمت چپ شماره مسئله (NO.) نام مسئله
در مرجع [1] مسئله اجرا شده که در آن جواب
زمین اجرا گردیده که در آن جواب
بررسی کارایی الگوریتم نم افزاری بی زبان برناهنویسی

End.
Calculate the objective function of the generated solution
End.
Find the best solution.
Make local – optimum.
Update the pheromone for each node by Eq. (2)
End.
جدول ۱ - نتایج محاسباتی حاصل از اجرای الگوریتم بر روی ۲۲ مسئله نمونه

<table>
<thead>
<tr>
<th>BI</th>
<th>Average</th>
<th>Worst Solution</th>
<th>Best</th>
<th>Time (sec)</th>
<th>#Dept.</th>
<th>Name</th>
<th>NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>0.073</td>
<td>10</td>
<td>A1</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>0.113</td>
<td>10</td>
<td>A2</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>0.047</td>
<td>10</td>
<td>T1</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>234</td>
<td>234</td>
<td>234</td>
<td>0.065</td>
<td>10</td>
<td>T2</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>340</td>
<td>240</td>
<td>240</td>
<td>0.056</td>
<td>10</td>
<td>F1</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>224</td>
<td>224</td>
<td>224</td>
<td>0.075</td>
<td>10</td>
<td>F2</td>
<td>6</td>
</tr>
<tr>
<td>30</td>
<td>224</td>
<td>224</td>
<td>224</td>
<td>0.062</td>
<td>10</td>
<td>F3</td>
<td>7</td>
</tr>
<tr>
<td>30</td>
<td>188</td>
<td>188</td>
<td>188</td>
<td>0.085</td>
<td>10</td>
<td>F4</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>425.5</td>
<td>452</td>
<td>422</td>
<td>0.325</td>
<td>20</td>
<td>A10T20</td>
<td>9</td>
</tr>
<tr>
<td>30</td>
<td>490</td>
<td>490</td>
<td>490</td>
<td>0.401</td>
<td>20</td>
<td>A20T10</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>373</td>
<td>373</td>
<td>373</td>
<td>0.267</td>
<td>20</td>
<td>F10F20</td>
<td>11</td>
</tr>
<tr>
<td>25</td>
<td>396.5</td>
<td>404</td>
<td>396</td>
<td>0.295</td>
<td>20</td>
<td>F30F40</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>416.8</td>
<td>426</td>
<td>402</td>
<td>0.326</td>
<td>20</td>
<td>A10F20</td>
<td>13</td>
</tr>
<tr>
<td>30</td>
<td>504</td>
<td>504</td>
<td>504</td>
<td>0.433</td>
<td>20</td>
<td>A20F40</td>
<td>14</td>
</tr>
<tr>
<td>30</td>
<td>430</td>
<td>430</td>
<td>430</td>
<td>0.274</td>
<td>20</td>
<td>T10F10</td>
<td>15</td>
</tr>
<tr>
<td>29</td>
<td>400.6</td>
<td>434</td>
<td>398</td>
<td>0.329</td>
<td>20</td>
<td>T20F30</td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>600.7</td>
<td>658</td>
<td>592</td>
<td>0.850</td>
<td>30</td>
<td>A10T20F30</td>
<td>17</td>
</tr>
<tr>
<td>30</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>0.871</td>
<td>30</td>
<td>F40A20T10</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>592.8</td>
<td>612</td>
<td>580</td>
<td>0.727</td>
<td>30</td>
<td>F10A10T20</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>598.3</td>
<td>610</td>
<td>580</td>
<td>0.895</td>
<td>30</td>
<td>F20A20T10</td>
<td>20</td>
</tr>
<tr>
<td>27</td>
<td>530</td>
<td>554</td>
<td>526</td>
<td>0.717</td>
<td>30</td>
<td>F30A10T20</td>
<td>21</td>
</tr>
<tr>
<td>29</td>
<td>602</td>
<td>752</td>
<td>598</td>
<td>0.649</td>
<td>30</td>
<td>F40T10A20</td>
<td>22</td>
</tr>
<tr>
<td>26</td>
<td>588</td>
<td>598</td>
<td>584</td>
<td>0.875</td>
<td>30</td>
<td>F10F20F30</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>536</td>
<td>538</td>
<td>534</td>
<td>0.700</td>
<td>30</td>
<td>F20F30F41</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>675.4</td>
<td>750</td>
<td>664</td>
<td>1.451</td>
<td>40</td>
<td>A10F20T10T20</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>747</td>
<td>784</td>
<td>710</td>
<td>1.445</td>
<td>40</td>
<td>F10F20F30F40</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>701</td>
<td>725</td>
<td>680</td>
<td>1.379</td>
<td>40</td>
<td>F20F31F42F13</td>
<td>27</td>
</tr>
<tr>
<td>17</td>
<td>698</td>
<td>732</td>
<td>680</td>
<td>1.549</td>
<td>40</td>
<td>F30F41F12F23</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>757</td>
<td>786</td>
<td>728</td>
<td>1.435</td>
<td>40</td>
<td>F40F11F22F33</td>
<td>29</td>
</tr>
<tr>
<td>15</td>
<td>655.6</td>
<td>684</td>
<td>642</td>
<td>1.470</td>
<td>40</td>
<td>A10T10F10F30</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>694.3</td>
<td>756</td>
<td>640</td>
<td>1.682</td>
<td>40</td>
<td>T20A10F20F40</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>833.4</td>
<td>892</td>
<td>770</td>
<td>1.626</td>
<td>40</td>
<td>A10F10A20F20</td>
<td>32</td>
</tr>
</tbody>
</table>

جدول ۲ - مقایسه نتایج الگوریتم مورچه‌ای و الگوریتم مرجع [1]

<table>
<thead>
<tr>
<th>BI</th>
<th>۲۰</th>
<th>۳۰</th>
<th>۴۰</th>
<th>۵۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>0.0785</td>
<td>0.331</td>
<td>0.07</td>
<td>1.507</td>
</tr>
</tbody>
</table>

جدول ۳ - نتایج حاصل از اجرای الگوریتم مورچه‌ای بر روی مسئل‌های بزرگ

<table>
<thead>
<tr>
<th>BI</th>
<th>۲۰۰</th>
<th>۱۶۰</th>
<th>۱۲۰</th>
<th>۸۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>0.0785</td>
<td>0.331</td>
<td>0.07</td>
<td>1.507</td>
</tr>
</tbody>
</table>

استقلال سال ۱۳۸۳ - شهر مه ۱ ۸۰
بنچمکس‌های مورد پژوهش در زمان قابل قبول حل تقاضای را ارائه کنند که این موضوع با اجرای الگوریتم بر روی 10 مسئله پرگربانا ابعاد مختلف که به‌صورت تصادفی تولید و به‌طور صریح است که نتایج آن در جدول (3) آمده است.

لازم به ذکر است که برای مسئله عملی حداکثر دیارترمان مورد بررسی معمولاً کمتر از 100 دیارترمان است که با توجه به آن می‌توان گفت که الگوریتم مورچه‌ای قادر است جواب نزدیک به بهینه را برای چنین مسئله‌ای در زمان کوتاهی تولید کند.

واژه‌نامه

۱. automated guided vehicles
۲. single loop guided problem
۳. ant colony optimization
۴. pheromone
۵. layout graph
۶. planar graph
۷. induced subgraph
۸. global updating rule

مراجع