Development of Semi - Two - Dimensional SDAR Model for Bed Variation Simulation in Alluvial Rivers

A. Ardestikh, F. Bahadori, and A. Tahershamsi
Faculty of Civil & Environmental Engineering, AmirKabir University of Technology

Abstract: In this paper, development of a semi-two- dimensional mathematical model called SDAR is introduced. The model is composed of two principal modules of hydraulics and sediment transport. The newly developed SDAR model has a number of capabilities including determination of sediment transport rate, aggradation - degradation
مرکز - ۱ مقدمه
بررسی و شناخت رفتار رودخانه‌ها پیش‌بر کیفیت اقتصادهای مهندسی در طرح‌های ساماندهی و بهره‌برداری از منابع رودخانه‌ای تلفیق می‌شود. از این رو در دهه‌های اخیر توجه منابع‌سازی و استفاده از ماده‌های وسیع رابطه های و بسط و گسترش مدل‌های راهی و محفظه شده است. در این راستا و در پس‌گویی ضرورت‌های موجود و به‌نمونه تقویت و تدوین تحقیقات کاربردی در عرصه مهندسی آب یک گناه من‌سازی و معرفی مفروضات سه‌نفری تلقی می‌شود.

به دنبال انجام محاسبات هیدرولوژیکی، روند پایی رسو و تغییر عبور راز استر از مقطع بالا دست شروع و به سمت پایین دست ادامه یابد. کاهش درون حاله برای هر لوله جریان به‌طور مجزا باید تکرار شود. در کوچکترین روش‌های مکانیزی تغییرات راز استر مستلزم تحقیق شرایط زیر است:
- تغییرات تاریخی در مقطع بالا دست شروع و به سمت پایین دست ادامه یابد.
- تغییرات تاریخی انتقال ماده بر اساس روش آرایه شده توسط ورود و هیکاران[۵].
- مکانیک تکمیل و شکسته شدن یا آزمایش، بر اساس روش کسان[۱۲].
- ملاحظات مربوط به انتقال نا تعادلی در شرایط زیر تاپان دست شروع SAAR ایفا می‌شود.
- تغییرات عرضی رسو و با حالت S-2D محقق می‌شود.
- استفاده از مفاهیم لوله جریان برای تعیین تغییرات عرضی سرعت به عنوان یک روش اولین بر توضیح یک مطرح شد[۲۰] در روش پایانی انتقال شاخص‌های جانبدار و با تغییر و برداشت
گر فته است. در این بررسی‌ها طیف‌های مختلف دانه بندی، مقاطع هندسی، طول رودخانه، بلان مسیر و هیدرولوگی جریان به کار گرفته شده است. در مراحل مختلف کالیبراسیون آنالایز HEC-1 با عملکرد مدل‌های مرجع نظری، 6-12 SDAR-2 و 12-14 شدت و حضور مورد اصلاحات لازم در عناصر مختلف مدل اعمال شده است.

SDAR-2 مدل‌های حاکم در فرمول‌بندها مدل حركت و جابجایی مواد رودخانه‌ها تابع مشخصات هیدرولوگی حاصله از جریان آب است. ارتباط بین هیدرولیک جریان و انتقال رسو و اسید از مدل‌های متعدد و پیوسته که اصلاحات معادلات حاکم نامیده می‌شود می‌باشد. است. برای مدل کردن ترکیب رودخانه‌ها لازم است معادلات حاکم بررسی شده و با توجه به نوع مدل در صورت لزوم ساده‌سازی‌های بعد انجام پذیرد. به‌هنجاره تغییرات شرایط اولیه و شرایط مرزی ضروری است. مدل SDAR در مدل MUCSDAR مداره‌های در ارتفاع دیگر عمده زیر است

d(Q^2 \times A) / dx + gA(\delta h / \delta x + \delta Z_b / \delta x) + S_T = 0 \tag{3}

در معادله (3) شیب بستر جریان ناشی شده از مقدار می‌شود. با اندک تغییرات معادله (3) را می‌توان به صورت زیر ارائه کرد:

\[\frac{d}{dx} \left(\frac{Q^2 \times A}{gA^3} \right) + (S_T - S_O) = 0 \tag{4} \]

و یا:

\[\frac{d}{dx} \left(\frac{S_O - S_T}{1 - Q^2 \times B/gA^3} \right) = 0 \tag{5} \]

معادله (5) متابی محاسبات هیدرولیکی در مدل SDAR است و تغییرات مکانی تراز سطح آب را برای یک دانه مشخص "Fr" (Fr) معرف عدد فرو رود (Saint Venant) بوده و عامل کلان‌کنده در تعیین مسیر محاسباتی تلقی می‌کند. در این مدل SDAR و به معادله دینامیک موج شرط دارد [7].

در این معادلات، Q سطح مقطع، Zb شیب جریان، h عمق آب، A سطح سطح جریان، B ضریب سطح جریان و Sg نقطه پایین، x فاصله از مبدا (طول پایه)، t زمان، qL دی‌بی و رودی بی خروجی جانبی به‌زیستی واحد طول متر است. در این بررسی‌ها طیف‌های مختلف دانه بندی، مقاطع هندسی، طول رودخانه، بلان مسیر و هیدرولوگی جریان به کار گرفته شده است. در مراحل مختلف کالیبراسیون آنالایز HEC-1 با عملکرد مدل‌های مرجع نظری، 6-12 SDAR-2 و 12-14 شدت و حضور مورد اصلاحات لازم در عناصر مختلف مدل اعمال شده است.

SDAR-2-1 معادلات مسیری و پیوستگی در مدل

در معادله (1) تغییرات دبی را نسبت به زمان مشخص می‌دارد. از آن جایی که جریان‌های رودخانه‌ای عمدها از نوع منفی تدریجی هستند و چنین مدلهای جریان (3) به صورت ناقص با بهره‌وری در این راستا با هر گام محاسباتی مقدار Q نسبت به زمان ثابت در طی زمان می‌شود. با این ساده‌سازی ضریب لحاظ کرد. تغییرات هر می‌گذارد جریان ناپایدار به جریان شیب پایدار "Fr" تقلیل می‌یابد:

\[\frac{d}{dx} \left(\frac{Q^2 \times A}{gA^3} \right) + \delta \frac{Z_b}{\delta x} + S_T = 0 \tag{3} \]

در معادله (3) شیب بستر جریان ناشی شده از مقدار می‌شود. با اندک تغییرات معادله (3) را می‌توان به صورت زیر ارائه کرد:

\[\frac{d}{dx} \left(\frac{Q^2 \times A}{gA^3} \right) + (S_T - S_O) = 0 \tag{4} \]

و یا:

\[\frac{d}{dx} \left(\frac{S_O - S_T}{1 - Q^2 \times B/gA^3} \right) = 0 \tag{5} \]

معادله (5) متابی محاسبات هیدرولیکی در مدل SDAR است و تغییرات مکانی تراز سطح آب را برای یک دانه مشخص "Fr" (Fr) معرف عدد فرو رود (Saint Venant) بوده و عامل کلان‌کنده در تعیین مسیر محاسباتی تلقی می‌کند. در این مدل SDAR و به معادله دینامیک موج شرط دارد [7].

در این معادلات، Q سطح مقطع، Zb شیب جریان، h عمق آب، A سطح سطح جریان، B ضریب سطح جریان و Sg نقطه پایین، x فاصله از مبدا (طول پایه)، t زمان، qL دی‌بی و رودی بی خروجی جانبی به‌زیستی واحد طول متر است. در این بررسی‌ها طیف‌های مختلف دانه بندی، مقاطع هندسی، طول رودخانه، بلان مسیر و هیدرولوگی جریان به کار گرفته شده است. در مراحل مختلف کالیبراسیون آنالایز HEC-1 با عملکرد مدل‌های مرجع نظری، 6-12 SDAR-2 و 12-14 شدت و حضور مورد اصلاحات لازم در عناصر مختلف مدل اعمال شده است.

SDAR-2-1 معادلات مسیری و پیوستگی آب

حالات کلی معادله مسیری با مسیر حاکم آب بر اساس تحلیل جنسین برای رودخانه‌ها و در حالت یک بلندی به صورت زیر می‌باشد:

\[\frac{\partial Q}{\partial t} + \frac{\partial (Q^2 \times A)}{\partial x} + gA \frac{\partial h}{\partial x} + \frac{\partial Z_b}{\partial x} + (S_T - S_O) = 0 \tag{1} \]

معادله پیوستگی منظور با معادله بایا عبارت است از:

\[\frac{\partial Q}{\partial x} + B \frac{\partial h}{\partial x} = \pm q_L \tag{2} \]

معادله (1) مدل کردن بک‌های سه‌بعدی و نان (Saint Venant) بوده و به معادله دینامیک موج شرط دارد [7].

در این معادلات، Q سطح مقطع، Zb شیب جریان آب، h عمق آب، A سطح سطح جریان، B ضریب سطح جریان و Sg نقطه پایین، x فاصله از مبدا (طول پایه)، t زمان، qL دی‌بی و رودی بی خروجی جانبی به‌زیستی واحد طول متر است. در این بررسی‌ها طیف‌های مختلف دانه بندی، مقاطع هندسی، طول رودخانه، بلان مسیر و هیدرولوگی جریان به کار گرفته شده است. در مراحل مختلف کالیبراسیون آنالایز HEC-1 با عملکرد مدل‌های مرجع نظری، 6-12 SDAR-2 و 12-14 شدت و حضور مورد اصلاحات لازم در عناصر مختلف مدل اعمال شده است.
مدل و ملاحظات کارشناسی مطلق توصیه‌های چاپ تعيین می‌شود. مقدار در هر مقطع برای لوله‌های جریان یکسان در نظر گرفته می‌شود. در مقاطع مختلف می‌تواند مقاوات باشد. این سرعت در لوله جریان، را در مقطع مقطع سرعتی اصلی، P، محاسبه می‌شود. در معادلات جریان با استفاده از معادله (8) به‌طور مستقیم در مقطع مشخص می‌شود.

\[
\frac{dQ_s}{dx} + (1 - \theta)B \frac{d^2Q_s}{dt^2} + BC_s \frac{dQ_s}{dx} + A \frac{dC_s}{dt} = Q_{SL} \tag{13}
\]

پیش‌بینی می‌شوند. این معادلات تغییرات عرضی در لوله در Tz مشخص می‌شود. برای تعیین V_{st} بررسی را در مرحله اصلی مشخص می‌کند. برای تعیین تأسیسات با استفاده از معادله (9) پیش‌بینی می‌شود. این معادلات تغییرات عرضی در لوله در Tz مشخص می‌شود.

\[
K_{st} = \frac{1}{mc} \left(\frac{A_{st} (A_{st} / P_{st})^{2/3}}{i_{j}} \right) \tag{10}
\]

\[
V_{st} = \frac{Q_{st}}{A_{st}} \tag{11}
\]

\[
\tau_{st} = \gamma \left(\frac{A_{st}}{P_{st}} \right) \frac{S_{st}}{i_{j}} \tag{12}
\]

\[
Q_{st} = (Q_{t} - Q_{f}) / JST \quad i = 1, 2, \ldots, 1_{\text{max}}, \quad j = 1, 2, \ldots, JST
\]

\[
K_{mc} = \frac{1}{mc} \left(\frac{A (A / P)^{2/3}}{i_{j}} \right)
\]

\[
K_{st} = \frac{1}{mc} \left(\frac{A_{st} (A_{st} / P_{st})^{2/3}}{i_{j}} \right)
\]

\[
V_{st} = \frac{Q_{st}}{A_{st}} \tag{11}
\]

\[
\tau_{st} = \gamma \left(\frac{A_{st}}{P_{st}} \right) \frac{S_{st}}{i_{j}} \tag{12}
\]

\[
Q_{st} = (Q_{t} - Q_{f}) / JST \quad i = 1, 2, \ldots, 1_{\text{max}}, \quad j = 1, 2, \ldots, JST
\]

\[
K_{mc} = \frac{1}{mc} \left(\frac{A (A / P)^{2/3}}{i_{j}} \right)
\]

\[
K_{st} = \frac{1}{mc} \left(\frac{A_{st} (A_{st} / P_{st})^{2/3}}{i_{j}} \right)
\]

\[
V_{st} = \frac{Q_{st}}{A_{st}} \tag{11}
\]

\[
\tau_{st} = \gamma \left(\frac{A_{st}}{P_{st}} \right) \frac{S_{st}}{i_{j}} \tag{12}
\]

\[
Q_{st} = (Q_{t} - Q_{f}) / JST \quad i = 1, 2, \ldots, 1_{\text{max}}, \quad j = 1, 2, \ldots, JST
\]

\[
K_{mc} = \frac{1}{mc} \left(\frac{A (A / P)^{2/3}}{i_{j}} \right)
\]

\[
K_{st} = \frac{1}{mc} \left(\frac{A_{st} (A_{st} / P_{st})^{2/3}}{i_{j}} \right)
\]

\[
V_{st} = \frac{Q_{st}}{A_{st}} \tag{11}
\]

\[
\tau_{st} = \gamma \left(\frac{A_{st}}{P_{st}} \right) \frac{S_{st}}{i_{j}} \tag{12}
\]

\[
Q_{st} = (Q_{t} - Q_{f}) / JST \quad i = 1, 2, \ldots, 1_{\text{max}}, \quad j = 1, 2, \ldots, JST
\]

\[
K_{mc} = \frac{1}{mc} \left(\frac{A (A / P)^{2/3}}{i_{j}} \right)
\]

\[
K_{st} = \frac{1}{mc} \left(\frac{A_{st} (A_{st} / P_{st})^{2/3}}{i_{j}} \right)
\]

\[
V_{st} = \frac{Q_{st}}{A_{st}} \tag{11}
\]

\[
\tau_{st} = \gamma \left(\frac{A_{st}}{P_{st}} \right) \frac{S_{st}}{i_{j}} \tag{12}
\]

\[
Q_{st} = (Q_{t} - Q_{f}) / JST \quad i = 1, 2, \ldots, 1_{\text{max}}, \quad j = 1, 2, \ldots, JST
\]

\[
K_{mc} = \frac{1}{mc} \left(\frac{A (A / P)^{2/3}}{i_{j}} \right)
\]

\[
K_{st} = \frac{1}{mc} \left(\frac{A_{st} (A_{st} / P_{st})^{2/3}}{i_{j}} \right)
\]

\[
V_{st} = \frac{Q_{st}}{A_{st}} \tag{11}
\]

\[
\tau_{st} = \gamma \left(\frac{A_{st}}{P_{st}} \right) \frac{S_{st}}{i_{j}} \tag{12}
\]

\[
Q_{st} = (Q_{t} - Q_{f}) / JST \quad i = 1, 2, \ldots, 1_{\text{max}}, \quad j = 1, 2, \ldots, JST
\]
3- ساختار محاسبات عدده در مدل

مطالعه روند نمای برای فعال‌کردن مدل، معرفی و شرایط اولیه و شرایط مرزی و سایر در مورد هر دو روش انتقال است. شرط مرزی اولیه درست توصیف شده دانسته می‌شود. و برای مقیاس بسیار کوچک تابع مشخص باید به عنوان شرط مرزی شناخته شده و سایر ویرایش می‌شود و روش محاسباتی تقریبی پرداخته شده است. از جمله داده‌های ورودی ضریب مانیتگ و تغییرات آن در مقاطع مختلف و سیستم است. در حال حاضر مدل, گذرگیری سیال در حالت مستقل و چپ جلو و چپ مقیاس برنامه‌ریزی می‌شود. دانسته بسیار متحرک توسط فایل‌های مربوط به مدل معرفی می‌شود. دانسته بر اساس مورد بسیاری ضخامت لایه آرکن و طول و بازی پایانى در این مدل شرایطی باید تغییرات دانسته بندی در هر یک از همچنین فاصله بزرگی برای ثبت تغییرات دانسته بندی در هر یک از طول مجرای θ تخلخل مواد رسوبی، Z_b تراز بستر ورودی و

4- 2- ساده‌سازی محاسبات پوستگی رسوب در مدل

در مدل ساده‌سازی شده و همچنین امکان انتخاب گام زمانی طولانی تر و باریک

مقدار محاسباتی، محاسبات گرمایش دانسته شده است. در

معادله (13) عناصری مشخص

کننده تغییرات غلظت مواد معلق نسبت به زمان است. در مدل

با یکی از فرض که مواد معلق در خانه‌گی های زمانی (تقیت

شروع گام زمانی جدید) به دنبال مقدار تغییر زمانی

غلظت مواد معلق جهت حد حدشده و مدل پوستگی رسوب

بهصورت زیبایی شده است.

\[
\frac{\partial Q_s}{\partial x} + (1 - \theta)B \frac{\partial Z_b}{\partial t} = q_{sl}
\]

(14)

معادله (14) برای حالت S-2D صدق است. در حالت

ساده‌سازی برای هر یک از لوه‌های جریان به‌طور مستقل

به‌کار گرفته می‌شود. برای حل معادله (14) لازم است بر

انتقال رسوب با استفاده از معادلات انتقال مشخص شود (در

خصوص معادلات انتقال رسوب به میثاق 3-42 بین

پتانسیل انتقال مراجعه شود). شکل کلی معادله انتقال رسوب

بهصورت زیر بیان می‌شود:

\[
Q_s = f(V, D, G_s, \ldots)
\]

(15)

در این معادله Q_s نرخ انتقال رسوب، V سرعت جریان آب، D

قطر دانه‌های رسوب، G_s چگالی دانه‌ها هستند.

معادله (14) پس از گسترش رسوب به روش صریح تغییرات

تراز بر زمان و بر اساس نظامی طولانی گام زمانی مورد نظر

محاسبه می‌شود. بدین منظور لازم است Q_s از معادله (15)

تعیین شود (شکل گستن معادله 14 در مبحث 3-4 برای

حالت S-2D ارائه شده است).
شماره اولیه، شرایط مرزی، مشخصه‌های هندسی مقاطع و...

تعداد گام‌های زمانی

مشخصات لوله‌های چران

تعیین ضخامت لایه فعال و نا فعال

تعداد پازه‌ها

تعداد کلاس‌های دانه بندی

دروس و زنی روسری در هر کلاس دانه بندی

عمق فرسایش و با روسری‌گذاری

تغییرات ناز بست و مشخصات مقطع و عرضی مجزا

خروجی

STOP

شکل 1- روند نما و ساختار محاسباتی مدل SDAR

محاسبات‌های هیدرولیکی

محاسبات عددی برای تعیین خصوصیات هیدرولیک جریان

در مدل SDAR نخست برای حالات 1-D با استفاده از معادلات

(5) و (6) محقق می‌شود. یکی از محدوده معادله (5) برای حالت

یک بعدی به شکل محاسباتی زیر تغییر داده شده است. این

محاسبات از مقطع پایین دست آغاز و به سمت بالا دست پیش می‌رود:

\[H_s(I + 1) = H_s(I) + (\Delta X(\bar{S} - \bar{S}))_{14t} + DHEC \]

(16)

لوله‌های چرایان در مدل منظر شده است. نیم‌دیه رودخانه

یا رزیم چرایان برای دوره شیب‌سازی توسط هیدرولیک‌ها

مشخص می‌شود که شامل هیدرولیک‌های و موردی از مقطع

بالا و یا پایین‌تر شیب‌سازی است. هیدرولیک‌های سیالی پس از

پل کشیدن به مدل معنی می‌شود تا شرط برقراری خروجی

شبه یا برای برای هر گام زمانی محقق شود. دو عوامل اصلی از

مدل SDAR متأثر از رزیم هیدرولیکی و اهداف مطالعه

پایه و ممکن است محدوده دوره زمانی معادل مدت زمان

عبره موج سیل و یا جریان‌های طولانی مدت ماهیانه و سالانه شود.

128

استقلال، سال 13, شماره 1, شهریور 1383
در این معادله H_i بردار \vec{H} انتزاع ویژه دهاچه به S_0 مشترک است. مقطع (افت گرداهای با موضوع) (θ) به ترتیب شماره φ مقطع باینیست و بالا است. نیز برای کنترل صحیح محاسبات از معادله زیر می‌گوییم:

$$H_{st}(I+1) = Y(I+1) + \alpha V^2(I+1)/2g$$

و در نتیجه مقدار خطای از معادله زیر بدست می‌آید:

$$DIFN = H_{st}(I+1) - H_{s}(I+1) \leq |\epsilon|$$

که در آن Y سرعت متوسط جریان است. شیب محاسبه به این صورت است که در مقطع $(I+1)$، هم‌مانو $H_{s}(I+1)$ مقدار $(I+1)$ و $H_{st}(I+1)$ برای بیک شاید فرضی آب تعیین می‌شود. در صورتی که مقدار $DIFN$ محاسبه می‌شود. در حالتی که $DIFN$ در حد خطای قابل قبول باشد محاسبات تایید و S مشخصات هیدرولوگی نشته می‌شود. در غیر این صورت تراز آب جدیدی منظور و محاسبات مجدد تکرار می‌شود. در خانه محاسبات اطلاعات جامعی از خصوصیات جریان در شرایط یک بعید از راههای شده و زمینه‌ای از موقعیت توسعه منشیت می‌شود.

3-1- محاسبه تغییرات تراز بستر

هدف اصلی کلیه رسوی در مدل $SDAR$ تعیین تغییرات تراز بستر است. هدف اصلی کلیه رسوی در محاسبه بستر تعیین سطح و نرخ تراز بستر است. یک محاسبه بستر، مطابق با مساحت ΔA_i نگهداری و نمایش داده می‌شود. هم‌مانو $H_{st}(I+1)$ برای بیک شاید فرضی آب تعیین می‌شود.

3-2- محاسبه تغییرات بستر و تراز

$$\Delta A_i = A_i \frac{\Delta \alpha}{D_i}$$

در این معادله A_i می‌باشد و تراز بستر است. این معادله به ترتیب شماره φ مقطع باینیست و بالا است. نیز برای کنترل صحیح محاسبات از معادله زیر می‌گوییم:

$$H_{st}(I+1) = Y(I+1) + \alpha V^2(I+1)/2g$$

و در نتیجه مقدار خطای از معادله زیر بدست می‌آید:

$$DIFN = H_{st}(I+1) - H_{s}(I+1) \leq |\epsilon|$$

که در آن Y سرعت متوسط جریان است. شیب محاسبه به این صورت است که در مقطع $(I+1)$، هم‌مانو $H_{s}(I+1)$ مقدار $(I+1)$ و $H_{st}(I+1)$ برای بیک شاید فرضی آب تعیین می‌شود. در صورتی که مقدار $DIFN$ محاسبه می‌شود. در حالتی که $DIFN$ در حد خطای قابل قبول باشد محاسبات تایید و S مشخصات هیدرولوگی نشته می‌شود. در غیر این صورت تراز آب جدیدی منظور و محاسبات مجدد تکرار می‌شود. در خانه محاسبات اطلاعات جامعی از خصوصیات جریان در شرایط یک بعید از راههای شده و زمینه‌ای از موقعیت توسعه منشیت می‌شود.

S-2D- محاسبه تغییرات بستر و تراز

یک اعمال محاسبات هیدرولوگی در حالت $1-D$ تخته با IST در انجام محاسبات هیدرولوگی در حالت $1-D$ تخته با استفاده از معادلات (7) به φ از مقطع باینیست دست آغاز و φ از مقطع انتهایی به φ رود. در هر مقطع توسعه سرعت، تراز بررسی یپشین جریان جمعی آب، میزان لوله‌های جریان و سایر مشخصات هیدرولوگی تعیین می‌شود. برای محاسبه عرض و عمق موردنمایه در هر لوله جریان به تعبیه از هیدرولوگی S-2D- مدل تراز بستر است.
آن فرسایش بستر وجود دارد و برای هر لوله جریان برابر با عمق مولوت (EFSD) در نظر گرفته می‌شود. بقیه پارامترها قبلا تعیین شده‌اند.

در این مدل جریان دی‌ویژن

\[D_v = \frac{\text{ قطر آبیاری}}{\text{ قطر طولی}} \]

در نظر گرفته می‌شود. نیروی نشانده در فاصله‌ای، جریان دی‌ویژن (Ta) از معادله ارائه شده توسط بوره [9] تغییرات بازی حالت دوید و انتظار شده است.

\[(T_a)_{i,j} = 100 \frac{D_v (i) \cdot j}{D_v (i) \cdot j - 1} \quad (0) \]

در این معادله Ta ضخامت دی‌ویژن فعال Dv قطر پایدار بر سر مستطیلی که باعث انتقال آب و ماده‌های

\[k \text{ در منطقه } \text{ صدرخته } \text{ و } \frac{\text{ تغییر نیروی}}{\text{ تغییر درصد وزنی}} \]

در صدرخته داخلی تغییر

\[\text{ تغییر برای } \text{ تغییر درصد وزنی رعایت می‌شود: } \]

\[Ta (k, i, j) = \Delta P (k, i, j) * (T_a)_{i,j} \quad (57) \]

در محل گاز خاک و لوله جریان با توسط دانه دنبی باید به جریان لایه تغییم شود.

\[(q)_{i,j} = \frac{1}{\text{nmC}} \frac{N_e^{5/3}}{S_f^{1/2}} \quad (55) \text{ معادله مانیگ} \]

\[(Y_e)_{i,j} \text{ از 10 \text{ معادله شیلدز}} \]

\[Y_e_{i,j} / (G_s - 1) (D_c)_{i,j} = 0.03 \quad (56) \text{ چنینچه در معادله (57) به جای } \]

\[S_{f} \text{ در معادله (55) قرار داده شود (برای فرض اینکه } \]

\[G_s \text{ چگالی دانه با برابری } 2/5 \text{ است)} \text{ معادله‌ای ضریب تغییر می‌شود: } \]

\[(Y_{e})_{i,j} = 4.495 \text{ nmC} / \text{DC}^{6/7}_{i,j} \quad (57) \text{ معادله آید} \]

\[\Delta H = \text{ ها} \quad \text{ (28) در معادله باالا } q \text{ دیب در واحد ابرع لوله جریان، عمق } \]

\[Y_e \text{ تعیین می‌شود که در آن دانه های موجود در بستر پایدار بوده و } \]

\[\text{ فرسایش متوقف می‌شود.} \]

\[\text{ استقلال، سال 13, شماره 1, شهرور 1383} \]

\[\text{ 130} \]
\[
\frac{(Q_{\text{Out}} - Q_{\text{Sin}})}{\Delta X} + B(1 - 0) \frac{\Delta Z}{\Delta T} = \frac{QSL}{\Delta X}
\]
(32)

جوهرة کاربرد آنها در منابع مختلف از جمله مرجع [٦] موجود است. معادلات انتقال رسو معمولاً در شرایط جریان یک بعدی و با فشار بالا یکنواخت تر ترسرع می‌پذیرد. برای تطبیق این معادلات با S-2D مجزا ترخ انتقال رسو نوعی و یا داشتن تغییرات در حجم از جایی مواد رسوی همچنین در مدل SDAR دارای مواد رسوی‌های یکنواخت و یا اندازه‌های مختلف ماسه، شن و قلوه سنگ است. منحنی نمایانید. مواد بسته به جملات شماره توزیع داده شده با استفاده از معادله پتانسیل انتقال به دست می‌آید. معادله (3٣) را می‌توان با تغییرات بر حسب می‌کند که:

\[
\Delta Z(k,i,j) = \sum_{i,j} \Delta Z(k,i,j)
\]
(3٤)

در معادله بالا k معرف کلاس دانه بندی است. مقدار معادله (3٣) تغییرات ترخ برای هر کلاس دانه بندی در لوله جریان به‌طور جزئی و در معادله کلی زیر منظور می‌شود:

\[
\Delta Z(i,j) = \sum_{k=1}^{N} \Delta Z(k,i,j)
\]
(3٥)

\[
(Q_{\text{Out}})^{k,i,j} \leq (Q_{\text{Sin}} + QSL)^{k,i,j} + (VOAL)^{k,i,j}/\Delta T
\]
(3٦)

\[
(VOAL)^{k,i,j} = (Ta)^{i,j} * (1 - 0) * (SA)^{i,j}
\]
(3٧)

در این حالت مقدار QSL معادله زیر در مدل کنترل می‌شود:

(3٦) - (3٧) به‌صورت کاردیژ متراپ کرد.
در معادلات بالا VOAL حجم لاپلاس موجود در بازه لوله
جراین ز و قطعات خروجی که در این دانه بندی ساخت
بستر رودخانه در بازه ای برای لوله جراین ز و بهبود و دقت پارامتر ها
قبل تعیین شده اند.

حالات 2- چنانچه QSRj = 0 باشد میان ما است که رسول
خروجی از لوله جراینی کمتر از رسول ورودی بوده و بستر در
حالات رسول کمیا اندازه است (0 > AZ) منبت). در این حال
یا پتانسیل انتقال تسوی معادله زیر در مدل کنترل

(QSout) k,i,j < (QSin + QSL) k,i,j

(37)

حالات 3- در صورتی که QSRj = 0 باشد رسول ورودی و
خروجی از لوله جراینی مساوی بوده و حالات برقرار
می‌باشد (0 = AZ). در مدل SDAR مقادیر
نظریه بوده تبدیل می‌شود. مطالب نظریه مزبور مقدار
بوجود آن را ظرفیت انتقال ماده نامیده است از احتمال فرض
پتانسیل انتقال در ضریب اصلاحی به دست می‌آید [5].

QSRj = Ω*(QSout) k,i,j

(38)

با عفوصی مورد تغییرات تراز بستر در
لوله های جراین بهصورت ساده زیر حاصل می‌شود:

Ω = (1 - ∑ N k=1 (QSout) k,i,j / (QSout) k,i,j)

(39)

(ITS) k,i,j = (VST) k,i,j * ΔT / ΔX

(40)

که در آن ITS تغییرات خروجی در روند باین رسول در لوله جراین
از مقطع اول سرعت جراین آب در لوله جراین از مقطع
VST، گام زمانی در روند باین رسول است. در تغییرات
ΔT، تغییرات تراز بستر و تغییرات دانه نیز به
میان در معادلات (33) معرفی می‌شود. به هدف در
ΔTS مورد نظر، اندازه گیری وضعیت به تغییر

132
به لوله جریان و در پارامتر ترسبیب DEC به کیفیت ترسبیب فاکتور

\[(QSOut)_{i,j} = (QSin + QSL)_{i,j}, \Delta Z(k,i,j) = 0 \] (48)

به دنبال این است که تغییر شرایط هیدرولوژیکی امکان شکستش شدن یا آمورم وجود دارد. از این رو در صورت

\[\text{BSF} \geq 0.65 \]

ترسبیب فاکتور پایداری بستر برش به‌کمک‌کننده یا امکان‌های نرم‌افزاری بستر از مقدار گیری در محدوده جریان تعیین می‌شود. بنابراین، طرفین مقادیر استفاده از معادله زیر در مرحله جریان تعیین می‌شود. در این صورت فرسایش در بستر تا رسیدن به شرایط پایداری و تشکیل یا آمورم مقاوم ادامه می‌یابد.

\[(BSF)_{i,j} = \left(\sum_{k=1}^{N} Pa_{k}^{2} PF_{k} - D_{k} \right) \] (49)

در این معادله فاکتور پایداری بستر در لوله جریان و احتمال پایداری دانه ها در بستر (برای کلاس که بندی) که یا امکان‌های نرم‌افزاری بستر از مقدار گیری در محدوده جریان تعیین می‌شود. بنابراین، طرفین مقادیر استفاده از معادله زیر در مرحله جریان تعیین می‌شود.

\[(QSD)_{i,j} = (QSin_{j} \times TE)_{k,i,j}, \quad (QSD)_{i,j} \leq (QSin_{j} + QSL)_{k,i,j} \] (50)

\[(TE)_{k,i,j} = 1 - e^{-\Delta X/30(EFDST)_{i,j}} \] (51)

\[(DEC)_{k,i,j} = (2AX_{k} W_{k}) / (EFDST \times VST)_{i,j} \] (52)

در معادلات بالا طرح‌های مکانیکی با پارامتری که در لوله جریان و احتمال پایداری دانه ها در بستر (برای کلاس که بندی) که یا امکان‌های نرم‌افزاری بستر از مقدار گیری در محدوده جریان تعیین می‌شود. بنابراین، طرفین مقادیر استفاده از معادله زیر در مرحله جریان تعیین می‌شود.

\[(QSOut)_{i,j} = (QSin + QSL)_{i,j}, \Delta Z(k,i,j) = 0 \] (48)

\[ER = \Delta X / 30(EFDST)_{i,j} \] (44)

\[(QSD)_{i,j} = (QSin_{j} \times TE)_{k,i,j}, \quad (QSD)_{i,j} \leq (QSin_{j} + QSL)_{k,i,j} \] (50)

\[(TE)_{k,i,j} = 1 - e^{-\Delta X/30(EFDST)_{i,j}} \] (51)

\[(DEC)_{k,i,j} = (2AX_{k} W_{k}) / (EFDST \times VST)_{i,j} \] (52)
مواد رسمی و ضخامت لایه فعال و ترکم در فاصله مریب‌های به‌منظوری پیش‌بینی محاسبات در گام‌زمانی بعدی ذیخرو می‌شود. لازم به ذکر است که اعمال نگرانی در ترکم برتر در هر گام محاسباتی تها در محدوده بستر متحرک که منطق بر مجاری آصلی بوده و در گریز به لوله‌های جریان است، انجام می‌گیرد. شکل (2).

4- وابستگی (کالیبراسیون) مدل و پرست تأثیر حاصله به‌منظوری بررسی قابلیت مدل برای شیب‌سازی تغییرات تراز ست و منشات هیدرولیک جریان، با استفاده از یاده‌های تجربی و صحراوی مدل مورد عبور با تأثیرات وابستگی قرار گرفت. همچنین نتایج حاصله از وابستگی مدل مصرف، نظر (6).

FLUVIAL و G27-GSTARS شده است. مشخصات مدل و مدل‌های مربوط در جدول (1) مقایسه شده است. SDAR مدل‌های مربوط در جدول مورد استفاده در محاسبات وابستگی مدل در جدول مربع منعکس است. به‌طوری که از جدول مورد استفاده می‌شود، کالیبراسیون مدل برای شرایط مختلف رودخانه‌ای انجام شده است. به‌عنوان مثال می‌سی بی 17 ترکم‌های از رودخانه‌های زبرگ و منطقه‌های مناطق جلگه‌ای است. زامبوزو و آریسانیاکو 18 در زمره رودخانه‌های کوچک تا نوساز از نوع کوچک‌های این است. همچنین از نتایج فرم آزمایشگاه [19] بر کنترل دقت مدل استفاده شده است. محاسبات وابستگی مدل در مرحله زیر انجام گرفته است.

- رودخانه با بستر صلب
- رودخانه با بستر متحرک

نتایج حاصله از این پرسی با دنبال ارائه می‌شود:

املهای رودخانه‌ای نسبت به انتخاب گام‌زمانی (ΔT) از خود حساسیت نشان می‌دهد. عدم توجه به این استحکام موجب بررسی گام‌زمانی در محاسبات عددی و تأثیر بر نیروهای می‌شود. در مواردی تا از تأثیر نداشته‌ای محاسبات ثابت حاصله، ارزش مهدی به توجه کانینه و ایجاد رفتاری رودخانه نیست. عموماً حساسیت مدل‌های مورفولوژیک به گام‌زمانی بیشتر بوده ولازم است برای رسیدن به جواب‌های منطقی و اجتناب از وابستگی ΔT مناسب انتخاب شود. برای انتخاب رعایت معیار کورتین در امتداد فرود [19] این معیار مطلوب

معادله زیر به عدد کورتین مشخص می‌شود:

\[
C_s = \frac{C_v \Delta T}{\Delta x}
\]

برای عدد کورتین [C_s] استفاده می‌شود.

\[
(\Delta T)_{\text{max}} = \frac{\Delta x}{C_v}
\]

5- بررسی آزمایشگاهی مشخصات هندسی مقاطع و تراز بستر

در خانه مه و نیروگاه زمانی پس از روندهای بی‌رو بر اساس مقایسه به‌منظوری آماده در لوله‌های جریان و به‌منظوری [ΔT] مختلف، مشخصات هندسی هر نقطه اصلاح می‌شود می‌باشد وضعیت تراز بستر نباید طولی شیب سرسای شود. به دنبال یکی جدید

استقلال، سال 123، شماره 1، شهربور 1389

134
جدول 1- مقایسه مشخصات مدل SDAR با مدل‌های مراجع

<table>
<thead>
<tr>
<th>FLUVIAL-12</th>
<th>GSTARS-2</th>
<th>HEC-6</th>
<th>SDAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>زیر بحرانی</td>
<td>زیر بحرانی- فوق بحرانی</td>
<td>دارد</td>
<td>رژیم جریان</td>
</tr>
<tr>
<td>دارد</td>
<td>ندارد</td>
<td>دارد</td>
<td>پذیرش شاخص‌های جای‌بندی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نوع رسوایی</td>
<td>خاصی-تیغه‌های فشاری- پلاس-کم</td>
<td>غیرچسب</td>
<td>غیرچسبه-چسبه</td>
</tr>
<tr>
<td>1-D</td>
<td>S-2D</td>
<td>1-D</td>
<td>S-2D</td>
</tr>
</tbody>
</table>

جدول 2- مشخصات عمومی رودخانه‌های مورد استفاده در کالیبراسیون مدل SDAR

<table>
<thead>
<tr>
<th>زاویه</th>
<th>فاصله آزمایشگاهی</th>
<th>فاصله آزمایشگاهی</th>
<th>حداکثر</th>
<th>بیست</th>
<th>نام رودخانه با مجرا</th>
<th>(mm)</th>
<th>(mm)</th>
<th>(sec)</th>
<th>(day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>0.57</td>
<td>0.56</td>
<td>0.8</td>
<td>D50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>10</td>
<td>50</td>
<td>Dmax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.065</td>
<td>0.065</td>
<td>0.15</td>
<td>Dmin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0341</td>
<td>34</td>
<td>1400</td>
<td>34</td>
<td>Qmin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0341</td>
<td>908</td>
<td>9800</td>
<td>284</td>
<td>Qmax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.041</td>
<td>0.83</td>
<td>120</td>
<td>54</td>
<td>طول مدت جریان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>720</td>
<td>86400</td>
<td>86400</td>
<td>قطره</td>
<td>طول مدت جریان</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1625</td>
<td>10000</td>
<td>8000</td>
<td>قطره</td>
<td>قطره</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>11</td>
<td>24</td>
<td>11</td>
<td>قطره</td>
<td>قطره</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>160</td>
<td>417</td>
<td>800</td>
<td>قطره</td>
<td>قطره</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>قطره</td>
<td>قطره</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4*10^{-3}</td>
<td>3.4*10^{-3}</td>
<td>1.1*10^{-4}</td>
<td>1.2*10^{-3}</td>
<td>S0 – شب رودخانه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.074</td>
<td>3.9</td>
<td>16.2</td>
<td>1.6</td>
<td>قطره</td>
<td>قطره</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.603</td>
<td>2.27</td>
<td>2.21</td>
<td>0.89</td>
<td>قطره</td>
<td>قطره</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>167</td>
<td>367</td>
<td>50</td>
<td>قطره</td>
<td>قطره</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.73</td>
<td>0.48</td>
<td>0.18</td>
<td>0.24</td>
<td>قطره</td>
<td>قطره</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 3- مقایسه مدل‌های SDAR با مراجع

<table>
<thead>
<tr>
<th>FLUVIAL-12</th>
<th>GSTARS-2</th>
<th>HEC-6</th>
<th>SDAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع مدل</td>
<td>نوع مدل</td>
<td>نوع مدل</td>
<td>نوع مدل</td>
</tr>
<tr>
<td>یک بعدی</td>
<td>یک بعدی</td>
<td>یک بعدی</td>
<td>یک بعدی</td>
</tr>
<tr>
<td>شبه دو بعدی</td>
<td>شبه دو بعدی</td>
<td>شبه دو بعدی</td>
<td>شبه دو بعدی</td>
</tr>
</tbody>
</table>

ملاحظات: مقادیر Qmax به وسیله و مربع متوسط در بازه مطالعاتی است. می‌توانیم SDAR اجرا شده است. طول محدوده مطالعاتی حدود 8 کیلومتر و سه شاخص جایی و یک سیستم سربری (شرط سربری) در مسیر رودخانه وجود دارد. به علاوه، 68 متر مکعب در ناحیه بندی عناوین به‌دست آمده گالب می‌شود. در شکل (3) نیز بر روی شکل (3) به عنوان شاهد ترسیم شده است.

استقلال، سال 1332 شماره 11 شهريور 1383

135
شکل 2 - نحوه عملکرد مدل SDAR در تعیین تراز پسر رودخانه

روند محاسبه‌های حاصله از دو مدل دارای انطباق مطلوبی برده و بیانگر قابلیت مدل جدید SDAR در شیب‌سازی خصوصیات هیدرولیکی در شرایط مختلف آبدهی است.

شکل 3 - مقایسه نیمرخ طولی تراز آب رودخانه زامیرو حاصل از مدل HEC-6 با نتایج مدل SDAR در حالت پسر صلب

4-2-1- وانتشی مدل در شرایط پسر متحرک محاسبات هیدرولیکی در شرایط پسر صلب در جریان‌های شبه پایدار نسبت به گام زمانی (ΔT) حساس نیستند. لیکن در

استقلال، سال 13، شماره 1، شهریور 1383

136
رسوب در خصوص راه‌های مقابله با چنین پدیده‌ای ای و برای هدایت محاسبات در مسیر یادگیری منظم و جلوگیری از پدیده، و اکران‌ها با چند آزمون اولیه بر روی دب‌های شاخ‌عملا کردن منطق و محدوده مناسب برای Qmax (نظیر) انتخاب شود به انتخاب ΔT مناسب شرایط κΔT کوراتیون در خصوص شرایط کوراتیون و انتخاب ΔT به به بهبود پایین‌سیب ۳/۶۴ تا ۷/۸۴ مراجعه شود در مدل برقرار شد. و ایجاد سازگاری بین آن و جهت هیدرولوژیکی و انتقال رسوب خطر و اکران‌ها مرتفع و محاسبات تا رسیدن به نتیجه تهیه می‌رود (۳ و ۴). بررسی حسابی مدل نسبت به ΔT به مرور بر منجرات جدول (۲) اکتیون‌دار است، مقدار جدول مزبور مثل ΔT، به حساب می‌رود و شرایط هیدرولوژیکی در محدوده ۱۲ تا ۰۷۴۰ ذیل نهایی انتخاب شده است. و ایجاد نشان مقدار ΔT به‌طور محسوسی کمتر است و با افزایش ابعاد هندسی مجزا می‌توان گامهای زمانی برگزاری انتخاب کرد.

یک‌دستی تغییرات تراز بستر در حالت یک بعد (I-D) روند تغییرات تراز بستر است. رفتار سنجی مدل در حالت یک بعد بر روی رودخانه‌های کاهن قرار گرفت. شاید پدیده‌ای که در مدل هیدرولوژیکی انتخاب کرده است، رودخانه‌های زابل‌وآریسیگا انتخاب گرفته است.

جایی این واقعیت است که مدل‌های رایانه‌ای علاوه بر گرام‌زنی می‌تواند به گامهای نسبت به گام مکانی (ΔX) نیز حساسیت دارد. شدت چنین عکس عملی با مشخصات هندسی مجزا، تغییرات دبی، خصوصیات داده‌برداری و اهداف طالبی علت انتخاب مدل از این را نشان می‌دهند که در مدل‌های رایانه‌ای Qmax نیز به گامهای مناسب انتخاب ΔX نیز به‌طور محسوسی کمتر است و با افزایش ابعاد

رشور تغییرات تراز بستر در حالت یک بعد (I-D) شیب‌سازی تغییرات تراز بستر در حالت یک بعد (I-D)

سپاس از پیش نمی‌رود چنین تغییرات دبی، خصوصیات داده‌برداری و اهداف طالبی علت انتخاب مدل Qmax نیز به‌طور محسوسی کمتر است و با افزایش ابعاد

شرایط HEC-6 و SDAR به‌طور تغییرات تراز بستر برای مدل Qmax نیز به‌طور محسوسی کمتر است و با افزایش ابعاد

شیب‌سازی تغییرات تراز بستر در حالت یک بعد (I-D)

شیب‌سازی تغییرات تراز بستر در حالت یک بعد (I-D)
شکل ۴- نمایش نحوه انطوق نیم‌مربع طولی سطح آب حاصل از مدل FLUVIAL-۱۲ و SDAR در حالت بستر متحرک برای رودخانه آپاسانیاکو (سیل یکصد ساله)

شکل ۵- مقایسه نحوه پیشروی تغییرات تراز بستر رودخانه زاپاسیرو توسط مدل HEC-۶ و SDAR
فرضیه‌ای و رسوب‌گذاری از روی مشابه تبیین می‌کنند. این تشکیل‌های الکتریکی بی‌مدل مرخش معادنی از توانمندی مطالعه فعال اعمال شده روی رودخانه‌ای از بازگردانی

شکل (۱) مثال موردی دیگری در حضور آزمون قابلیت شیب...

۲-۲-۴- شیب‌سازی تغییرات تراز با تغییرات...

بعدی (۲D)...

سنجش عملکرد مدل در حالت...

سد جهان...
شکل 6- مقایسه نحوه پیشروی نرخ رودخانه آرسانتیاکو توسط مدل FLUVIAL-12 و SDAR

جدول 3- مقایسه خطای پیشروی فرسایش و رسوب گذاری توسط مدل SDAR با مدل به مدل‌های مرجع

<table>
<thead>
<tr>
<th>نام رودخانه</th>
<th>رودخانه زامبو</th>
<th>رودخانه آرسانتیاکو</th>
<th>رودخانه می سی سی پی</th>
<th>مقدار مشاهده شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع مدل</td>
<td>HEC-6</td>
<td>FLUVIAL-12</td>
<td>GSTARS-2</td>
<td>مقدار مشاهده شده</td>
</tr>
<tr>
<td>درصد خطای هیدرولوژی (روز)</td>
<td>54/43</td>
<td>39/36</td>
<td>77/77</td>
<td>-</td>
</tr>
<tr>
<td>تراز آب</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-</td>
</tr>
<tr>
<td>تراز فرسایش</td>
<td>57</td>
<td>39</td>
<td>77</td>
<td>-</td>
</tr>
<tr>
<td>تراز رسوب گذاری</td>
<td>60</td>
<td>61</td>
<td>61</td>
<td>-</td>
</tr>
</tbody>
</table>

شکل 7- مقایسه نحوه پیشروی نرخ رودخانه می سی سی پی توسط مدل GSTARS-2 و SDAR

استقلال، سال 1، شماره 1، شهریور 1383

140
مقایسه حاصله از مدل SDAR و مدل‌های مرجع را برای رودخانه‌های مورد نظر، مشخص می‌کند. مقدار جدول (۳) محدوده خطای برای تراز آب از ۰/۱ تا ۰/۹ درصد، فرسایش بین ۳۳ تا ۷۷ درصد و در هر خصوص روابط ژئوداوسی ۲۱ تا ۵۱ درصد است. طبق محدوده در جدول (۲) خطای حاصله از شیب‌سازی تراز آب به مران کمتر از خطای تراز بستر است. این این رو عملکرد هیدرولوژی مدل SDAR را می‌توان مشابه مدل‌های مرجع قلمداد کرد. این واقعیت ضمن تنها توانمندی مدل ضرورت عوامل بزرگ‌تر را در شیب سازی بروز خطا در شیب سازی و روابط‌گذاری محور می‌کند. از جمله اولین بررسی خطای تأثیرگذار در شیب‌سازی انتقال رسواب، است. برخی از مقایسه‌های هیدرولوژیکی که از اصول و مبانی مشخصی پیروی می‌کند، برای انتقال رسواب در افزایش عوامل ناشان‌داده اش حاصله که کاهش آنها در معادلات انتقال رسواب ملحوظ نبود. نحوه مقاله‌ها ناسازی انتقالی حاصله از این فرایند از جمله باند راهنما اساسی در تهیه ساختمان مدل‌های رودخانه‌ای تلقی می‌شود. اینگونه مشابه بروز خطای در فرسایش و روابط‌گذاری در مدل‌های مرجع برای شیب سازی انتقال رسواب SDAR جستجو کرد. به علاوه، زیر برنامه‌های مربوط به تعیین توزیع سرعت توزیع شرکتی مرزهای لوله جریان، ضخامت لایه فعلی و نافعالی، بدی‌بندی تشکیل لایه هپرژور، حالت تعادلی و ناپاک آموزش، نظامی سنجش لایه هپرژور، محاسبه ناپاک آموزشی و ناپاک آموزشی سطح. توزیع سرعت سطح دانه‌ها و ناگفته آن در جد دارای اصول و مبانی شناخته شده‌اند. لیکن از جنبه عملی تطبیق آنها به الگو محاسباتی در هر مدل به تبعیت از دیدگاه ناحیه برنامه، نوس مبتدای بوده و به خصوص در مدل‌های مرجع مورد استفاده در این تحقیقات به عوامل رمز و توسعه مدل دسترسی به خطوط برنامه آنها برای تکمیل نشان‌داده با مشتری‌های خاصی مورد طراحی سطح و ناپاک آموزشی سطح. معادله (۳) جدول (۲) دامنه خطا در شیب‌سازی رودخانه‌زایمرود در SDAR توسط مدل HEC-1 به انتهای نهایی SDAR حاصل شده و به سطح این بررسی مشتری‌های خاصی مورد طراحی سطح و ناپاک آموزشی سطح. معادله (۳) جدول (۲) دامنه خطا در شیب‌سازی رودخانه‌زایمرود در SDAR توسط مدل HEC-1 به انتهای نهایی SDAR حاصل شده و به سطح این بررسی مشتری‌های خاصی مورد طراحی سطح و ناپاک آموزشی سطح. معادله (۳) جدول (۲) دامنه خطا در شیب‌سازی رودخانه‌زایمرود در SDAR توسط مدل HEC-1 به انتهای نهایی SDAR حاصل شده و به سطح این بررسی مشتری‌های خاصی مورد طراحی سطح و ناپاک آموزشی سطح. معادله (۳) جدول (۲) دامنه خطا در شیب‌سازی رودخانه‌زایمرود در SDAR توسط مدل HEC-1 به انتهای نهایی SDAR حاصل شده و به سطح این بررسی مشتری‌های خاصی مورد طراحی سطح و ناپاک آموزشی سطح. معادله (۳) جدول (۲) دامنه خطا در شیب‌سازی رودخانه‌زایمرود در SDAR توسط مدل HEC-1 به انتهای نهایی SDAR حاصل شده و به سطح این بررسی مشتری‌های خاصی مورد طراحی سطح و ناپاک آموزشی سطح. معادله (۳) جدول (۲) دامنه خطا در شیب‌سازی رودخانه‌زایمرود در SDAR توسط مدل HEC-1 به انتهای نهایی SDAR حاصل شده و به سطح این بررسی مشتری‌های خاصی مورد طراحی سطح و ناپاک آموزشی سطح. معادله (۳) جدول (۲) دامنه خطا در شیب‌سازی رودخانه‌زایمرود در SDAR توسط مدل HEC-1 به انتهای نهایی SDAR حاصل شده و به سطح این بررسی مشتری‌های خاصی مورد طراحی سطح و ناپاک آموزشی S
طیب‌ی‌ی است. شبیه‌سازی چنین فرآیندی از جمله چالش‌هایی است. در مدل تشکیل‌لا سیستم‌های بزرگ، یکی از آن‌ها بشریت یکی یا گروهی بشری و مشابه‌ترین آن در هر گونه زمانی کنترل می‌شود. بررسی باید با توجه به این در حالی بوده‌اند در مقابل منابع توانایی آن در پیش بینی و ربات‌های رودخانه منفعت کند. در این خصوص در ادامه سیستم‌های مرتبط به S-2D شبیه‌سازی تغییرات رودخانه می‌سی‌پی در حال تالاگ 38 یا خط تصویری نیز دو روزتر از جمله قابلیت‌های مدل‌ها و مدل‌های پیش‌بینی. بررسی و تحقیقات مختلف از جمله شناسایی آزمایش‌گاهی که توسط آن‌ها می‌تواند کمک کند. در مورد نقطه‌ای در مدار بزرگ GASTAR، نیز که در زمرو مدل‌های شبه دوی‌دی است در یک مقطع مزرعه یا ارائه شده است. مطالعه بررسی‌های گروه‌ها و کوادمندگی نسبتاً زیاد بست شده است. (حدوده‌ای) شیب‌سازی رودخانه می‌سی‌پی نیز به ویژه در این گروه‌ها و کوادمندگی نسبتاً زیاد بست شده است. (حدوده‌ای) شیب‌سازی رودخانه می‌سی‌پی نیز به ویژه در این گروه‌ها و کوادمندگی نسبتاً زیاد بست شده است. (حدوده‌ای) شیب‌سازی رودخانه می‌سی‌پی نیز به ویژه در این گروه‌ها و کوادمندگی نسبتاً زیاد بست شده است. (حدوده‌ای) شیب‌سازی Raste مقطع‌های نشان می‌دهد. ضمن آنکه محدوده فرسایش عمدهاً متوجه به روش‌نیانی رودخانه ای است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای مدل‌های حاصل شده است. بپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای مدل‌های حاصل شده است. بپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای مدل‌های حاصل شده است. بپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای M-4 مدل‌های حاصل شده است. Bپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای M-4 مدل‌ها و مدل‌های پیش‌بینی و مشابه‌جریان پیش‌بینی شده است. مدل‌های حاصل شده است. این دیگر نموداری را در لایه آزمایش‌گاهی است. بررسی کننی است. (حدوده‌ای) نیز از نقطه‌هایی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای M-4 مدل‌ها و مدل‌های پیش‌بینی و مشابه‌جریان پیش‌بینی شده است. Bپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای M-4 مدل‌ها و مدل‌های پیش‌بینی و مشابه‌جریان پیش‌بینی شده است. Bپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای M-4 مدل‌ها و مدل‌های پیش‌بینی و مشابه‌جریان پیش‌بینی شده است. Bپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای M-4 مدل‌ها و مدل‌های پیش‌بینی و مشابه‌جریان پیش‌بینی شده است. Bپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای M-4 مدل‌ها و مدل‌های پیش‌بینی و مشابه‌جریان پیش‌بینی شده است. Bپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای M-4 مدل‌ها و مدل‌های پیش‌بینی و مشابه‌جریان پیش‌بینی شده است. Bپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای M-4 مدل‌ها و مدل‌های پیش‌بینی و مشابه‌جریان پیش‌بینی شده است. Bپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای M-4 مدل‌ها و مدل‌های پیش‌بینی و مشابه‌جریان پیش‌بینی شده است. Bپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. تفاوت در ساختار برنامه‌ای M-4 مدل‌ها و مدل‌های پیش‌بینی و مشابه‌جریان پیش‌بینی شده است. Bپذیرنی است. همان‌گونه که در مبحث بررسی خطاهای منابع شد. T
شکل 8 - نمودهای از مقطع عرضی شیب‌سازی شده توسط مدل SDAR و مقایسه

شکل 9 - نمایش چگونگی انتقال دانه‌سازی لايه آمور محسوب شده توسط مدل SDAR با دانه‌سازی لايه آمور

دارند. در حالی که این محدود کمتر از ۵۰ درصد وزنی را قبل از شروع آزمایش به خود اختصاص داده است، با توجه به آمور مقدار آن به حدود ۹۵ درصد دانه بندی بستر افزایش می‌یابد.

۵- تیپ‌های گیری و ارائه پیشنهادات

با عنایت به مباحث عنوان شده در خصوص سازو کار مدل و با توجه به قابلیت‌ها و محدودیت‌های آن، به دنبال SDAR
ارزیابی نتایج حاصله از تحقیقات انجام شده در توسعه مدل پراداکس و پیشنهادات برای مطالعات آتی ارتقای می‌شود:
1- با توجه به ویژگی‌های رودخانه‌های مورد استفاده در مراحل کالیراسیون و تطبیق سطحی مدل با شرایط حوادث استفاده از برای اهداف مهندسی و انجام مطالعات رفتار شناسی رویدادهاهای آب‌بری و موارد رسوی غیرچسبیده و جریان‌های منتفی تدریجی با اعداد فرود کمتر از یک به توصیه S-2D و 1-D می‌شود. به ویژه قابلیت اجرای مدل در حالت زمینه‌های کاربردی منفی را بروز ارتفاعات کننده فراهم می‌کند. بله‌های بنیادین اثرات این ببیندیاری‌ها مقطعی و شاخه‌های جانبی بین‌بسته، لحاظ کردن قاب‌گذاری‌های ویژه‌رودخانه‌ها از طرفه‌ای محدود. در S-2D و 1-D آن است که به لحاظ نیاز به ظرفیت کم راکرهای امکان بررسی برای رانندگان طولانی می‌شود.

2- تبدیل جریان 1-D به S-2D با بهره‌گیری از روش ولر جریان‌های امکان‌پذیر و کارآمد و اندازه‌گیری از مدل در نوشتار موثرشکن و شبکه‌های فرعی از رویدادهای S-2D و 1-D مناسب است. در این روش محدوده‌های موجود در دیسپت‌بیش به تغییر شامل داده‌های سیستم‌های ارتباطی می‌شود.

3- در مدل S-2D معرفی مفهوم ارائه جریان یا به تحول S-2D جدید تلقی می‌شود. با چنین روشی محدوده حجم موارد مطالعه به سیستم‌های مختلفی تغییر داده و در مهندسی شاخه‌ها و شوک‌های جانبی و با توجه به اینکه امکان جریان و روش محلول بخشهای S-2D از مدل مصرف شده است.

4- استفاده از مدل S-2D در شرایط فعلی محدود به روش S-2D از مدل S-2D عوامل حاکم در انتقال سیستم‌های جریان این امر اهمیت اندام انجام کار تحقیقاتی و بررسی امکان‌های بوده و تدارک عوامل Zشکنی‌های پژوهشی مربوط به سیستم‌های کلیه یا S-2D و 1-D می‌شود.

5- بدین‌گونه، برداشت مصالح از رویدادهاهای و شیوه‌سازی تبعات حاشیه از عملیات مهندسی و تحقیقات آینده ارتقای می‌شود. یک طرح بی‌سیره است. با توجه به ویژگی‌های رویدادهای مورد استفاده در مراحل کالیراسیون و تطبیق سطحی مدل با شرایط حوادث استفاده از برای اهداف مهندسی و انجام مطالعات رفتار شناسی رویدادهاهای آب‌بری و موارد رسوی غیرچسبیده و جریان‌های منتفی تدریجی با اعداد فرود کمتر از یک به توصیه S-2D و 1-D می‌شود. به ویژه قابلیت اجرای مدل در حالت زمینه‌های کاربردی منفی را بروز ارتفاعات کننده فراهم می‌کند. بله‌های بنیادین اثرات این ببیندیاری‌ها مقطعی و شاخه‌های جانبی بین‌بسته، لحاظ کردن قاب‌گذاری‌های ویژه‌رودخانه‌ها از طرفه‌ای محدود. در S-2D و 1-D آن است که به لحاظ نیاز به ظرفیت کم راکرهای امکان بررسی برای رانندگان طولانی می‌شود.

6- قدردانی

این تحقیقات با حمایت مالی معاونت محترم مهندس پژوهشی و پژوهشی علی‌ﬃو وزارت نیرو انداخته گرفته است، بجای واسطه نوبت‌گیری مقایسه‌های را عوامل کاربردی و انتخابی متقابل بررسی و تدارک زمینه‌های پژوهشی مربوط به می‌کند.

استقلال، سال ۱۳۱۳، شماره ۱، شهریور ۱۳۸۳

۱۴۴
1. scour and deposition model of alluvial rivers (SDAR)
2. semi – two dimensional (S-2D)
3. stream tube
4. reachwise stream tube concept
5. gradually varied flow
6. backwater computation
7. standard step method
8. active and inactive layers
9. residual transport capacity
10. Armor layer
11. nonequilibrium sediment transport
12. quasi steady flow
13. Nnumber

14. stage discharge curve
15. Yang’s Gravel & Sand Eq.
16. Laursen Eq.
17. ackers-white Eq.
18. Engeland & Hansen Eq.
19. Myer – Peter & Muller Eq.
20. equilibrium transport
21. non equilibrium transport
22. bed stability factor (BSF)
23. Mississippi River
24. Zumbro River
25. upper San Diego River
26. The courtant condition
27. the Thalweg line

مراجع

استقلال، سال 1332، شمایه، 1 شهریور 1383