Fundamentals of Capture Zone Calculations for the Qualitative Protection of Urban Drinking Water Wells

K. Badv
Department of Civil Engineering, Faculty of Engineering, Urmia University

Abstract: This study is an attempt to introduce scientific fundamentals and available methods for wellhead protection area (capture zone) delineation for drinking water wells in cities. The results of this study could obviate some demands of the national water and wastewater company in quality control of the drinking water resources by delineation and application of the wellhead protection areas. For this purpose, the available literature reviewed to extract, criteria and methods of wellhead protection delineation, Then, (1) fixed radius method, (2) simplified variable shape methods, and (3) flow-transport analytical methods implemented in the computer code WHPA are introduced. The applicability of these methods is shown by some sample calculations for Urmia drinking water wells. Samples of the calculated wellhead protection areas for 36 wells in Urmia City will be shown using three analytical modules in WHPA. The effects of the hydrogeologic parameters on the wellhead areas will be discussed. When reliable hydrogeologic parameters are available in the region where wells are located, the analytical methods and WHPA code produce accurate results for wellhead protection areas.

Keywords: Drinking Water Wells, Quality Control, Capture Zone, Hydrogeology
حفاظت سر چاه‌یی

۱۰-۱۰ مقدمه

حفاظت کیفی از منابع آب زیرزمینی شهرها که برای تأمین آب شرب استحکامی از چاه‌های نقش دارد، امره‌ای از منابع عمده و دفعه‌های نگرانی ملی‌گرایان تامین و توزیع آب شرب بین سازمان‌های آب منطقه‌ای و شرکت‌های آب و فاضلاب کشور محسوب می‌شود. در این راستا محاسبه بهینه و دقیق حمایت‌ها با استفاده از مبانی علمی از اهمیت بالایی برخوردار است و به اهمیت محسوسی و اعمال حمایت کوچک‌تر خانواده‌ای آب جا را بپردازد. حمایت و حمایت کارکنان اخلاق سرمایه‌ای را به دنبال خواهد داشت.

۱۰-۲ تعريف مبانی علمی و شناسایی و ارزشی معیارها و روش‌های محاسبه حمایت با انجام محاسبات حمایت برای تعیین از چاه‌های آب شرب شهر ارومیه در این مقاله مورد توجه قرار گرفته است.

در بررسی مقالات، یافته های علمی متعددی در مورد روش‌های تعیین حمایت جاهایی شناسایی شده است. به چالش، ناحیه تعیین حمایت جاهایی شناسایی شده است. این مقاله را می‌توان به صورت نهایی تعیین کرد: (۱) تعريف مبانی تعیین حمایت بهداشتی چاه [۱] و [۲]، (۲) مطالعات موردی [۴] و [۵] و [۶] استفاده از سیستم اطلاعات جغرافیایی [۷]، (۳) استفاده از روشهای محاسباتی [۸] و [۹]، (۴) استفاده از مدل‌های عددی [۱۰]، (۵) استفاده از تحلیل‌های هیدرولوژیک – زئولوژیک [۱۱] و (۶) پروپتودهای و مقررات مربوط به تعیین حمایت بهداشتی چاه‌ها [۱۲] در بررسی این مقاله، کد رایانه‌ای که توسط بلقوورد و هیوکانک برای ناحیه حفاظت WHPA، عنوان آب زیرزمینی آتشفشان حفاظت محیط زیست آمریکا به شده شناسایی شده است. (۱۲) این کد محاسباتی - عددی برای استفاده کارشناسان مدیریت منابع آب زیرزمینی ایالات متحده آمریکا برای تعیین حمایت بهداشتی چاه‌های آب شرب شده است و ناکوکی در تعیین حمایت بهداشتی چاه‌های مختلف آمریکا مورد استفاده قرار گرفته و صحت نتایج آن تایید شده است [۱۳].

۱۰-۳ معیارها و روش‌های تعیین حمایت بهداشتی چاه

نظریه‌ها و استانداردهای فهمومی که روشهای تعیین حمایت بهداشتی بر اساس آنها تعیین می‌شود، مصوب نمایده می‌باشد. در بررسی مقالات بیشتر تعیین حمایت بهداشتی اصلی شناسایی شده‌اند [۳] که عبارتند از: (۱) معیار فاصله، (۲) معیار فاصله، (۳) معیار زمان حکمر، (۴) معیار معیار زمان حکمر، (۵) معیار معدنی‌های جهان، (۶) معیار معیار معدنی‌های جهان، (۷) معیار معدنی‌های جهان، (۸) معیار روش‌های تخصصی و مراحلی که در آن تعیین حمایت بهداشتی جهان به صورت نهایی تعیین کرده‌اند. در موارد فاصله بین بازی‌های انتخاب شده شوند. در موارد فاصله، با استفاده از فاصله شناختی در اطراف چاه به عنوان حمایت تعیین می‌شود. در تعیین مراحل، تعیین اطراف چاه به عنوان می‌شود که بر اساس معیار معیار توازنی در اطراف چاه می‌باشد. در معیار زمان حرکت (TOT) ناحیه‌ای در اطراف چاه که برای تعیین حمایت بهداشتی‌چاه به نام‌های (۱) ناحیه نشانه‌ای، (۲) ناحیه میلث perpetuity، (۳) ناحیه...
کاهش آلودگی ناحیه‌های تعمیر می‌شود که در داخل آن ناحیه لایه‌های زیرسطحی دارای طرفت بالای‌دنگی و جذب کافی برای کاهش غلظت آلاینده‌ها به حد قابل قبول برای شرب هستند. هر کدام از یکی می‌تواند فاقد ذکر دارای معایب و محاسباتی و انتخاب آن‌ها به مقدار زیاد بستگی به وضعیت لایه‌های زیردریازیک زیرسطحی در هر منطقه و همچنین وجود اطلاعات، داده‌ها و کارشناسان خبره در این زمینه دارد.

حرکت ۵ سال فرض شود، ناحیه‌ای برای در اطراف چاه مشخص خواهد شد که در آن آلایندگی که در روی مزر فار دارد، ۵ سال طول خواهد کشید که به چاه برسد. در می‌توان مرز جریان، مرز ترمیم آب زیرزمینی و سایر عوارض فیزیکی و هیدرولوژیکی (مانند مرز غیرقابل نفوذ) که جریان آب زیرزمینی را کنترل می‌کند، مشخص و در تعیین حریم بهداشتی دخل داده می‌شود. در می‌توان طرفیت لایه آباد برای جذب و
به دنبال انتخاب معیار تعیین حرم به‌داشتی چه، روش تعیین حرم برای محبوبی و ترسیم حرم روی نقشه و سپس در زمین باید انتخاب شود. شش روش برای تعیین حرم شناسایی شده‌اند (۳) که به ترتیب از روش ساده و کم هزینه تا روش پیچیده و پرهزینه عبارت‌اند از: (۱) روش شعاع فرضی و محبوبی شده‌اند، (۲) روش اشکال متغیر ساده شده، (۳) روش‌های محبوبی، (۴) روش ترسیم نشان‌های هیدرولوژیکی، و (۵) روش‌های علی‌الهای سه‌بعدی جبران - آنتی‌وال. در روش اول (شعاع فرضی و محبوبی شده) یک معادل محبوبی‌ای با استفاده از معیار زمان حرکت، شعاع دکترای چهار فاصله مشخص می‌کند. از یک سری اشکال استاندارد بزرگ حریم که شامل می‌شود این اشکال با استفاده از مدل‌های محبوبی و ترکیبی از معیارهای مرز جریان و زمان حرکت محبوبی و ترسیم می‌شوند. در روش سوم (روش محبوبی) مرزهای جریان آب زیرزمینی و دیمانیک انتقال آن‌ها با استفاده از معادلات تجربی محبوبی و حرم به‌داشتی تعیین می‌شود. این روش از دقت بیشتری نسبت به دو روش اول بسیاری است. در روش به‌همتار (ترسیم نقشه‌های هیدرولوژیکی)، مرزهای جریان آب زیرزمینی با استفاده از روشهای زمین شناسی، زئومورفولوژیک، زئوفیزیکی و رادیولوژی موارد مشخص و در روی نقشه ترسیم می‌شود.

در روش نهم (روش مدل‌های عمدی جریان - آنتی‌وال) با استفاده از محبوبی‌های ریاضی جریان آب زیرزمینی و با استفاده از آن‌ها در انتقال آن‌ها شرایط ممکن برای وضعیت‌های هیدرولوژیکی و ناتوانی‌های آن‌ها مدل شده و حریم به‌داشتی چه تعیین می‌شود. این روش دیفه ترین و کردار آبی روش تعیین حرم به‌داشتی چه است.

۴- نقش مکانیزم‌های حرکت و آلاینده‌ها در حرم به‌داشتی چه

آشنایی با اصول اولیه حرکت آب و آلاینده‌ها در لایه‌های خاک در قالب مبانی هیدرولوژی و حرکت آلاینده در خاک
حذف شده و با کاهش غلظت یابید. لکن تعدادی از این عناصر به مدت طولانی در داخل خاک و آب زیرزمینی می‌توانند توکات داشته باشند. بنابراین مثل حشره کش DBCP به عنوان مثال در این مقاله استفاده شده است.

6/98

برای قرنطینه‌های طولانی وجود و نقش مکروراکتیوژن‌ها

پاتوژنی در آب زیرزمینی و حفاظت آب آشامیدنی استحکامی از این متابیت‌ها بی‌بازم و در قرار گرفتن آنها در داخل خاک اتفاق می‌افتد. در لایه‌های خاک نیمه اشباع عمدی و در صورت وفور اکسیژن در این جایی‌ها، باکتری‌ها می‌توانند به مدت میلی‌سی معنی‌دار شوند. ظهور سه‌زده نیز زندگی بی‌بازم می‌تواند در خاک عامل فیزیکی (مانند دما) بیولوژیکی یا شیمیایی باشد. پاتوژنی در داخل خاک پیش از از کم‌های رونده در دمای بالا. مقدار pH زیاد کردن آن در صورت نصف باکتری‌های پاتوژنی را افزایش می‌دهد [12]. حذف عناصر میکروبیولوژیکی در خاک و شیمی‌بازی می‌تواند در داخل خاک به عنوان مثال بکتری‌های فرم پس از مدتی گذشته تا 8 روز به میزان 99/9 درصد حذف می‌شود در صورتی که میزان E.Coli به مدت زمان پنجه روز نیاز دارد تا به همان میزان حذف شود [17] و بروز می‌گردد این امر اغلب ایجاده زیست‌محیطی. در این مطالعات در زمین می‌تواند حسک را کند. بنابراین مثل حسک عکس از ویروس‌ها در عمق 77 متری و حسک افقی به طول 40 متری توسط تعدادی حداقلی این میزان می‌تواند در اعتیاد زیستی افراد در زمین استفاده از آب و خاک را کند. این امکان محقق گزارش شده است [18]. مطالعات فوقانی روی عامل تشریحا در بین ویروس‌ها در آب زیرزمین انجام پذیرفته است. این مطالعات نشان می‌دهد که دمای از پارامترهای مهم در این ارتباط است. همچنین مطالعات نشان داده است که ویروس‌ها در آب چشیداری از طول عمر بیشتری نسبت به آب‌های سطحی هستند و 0/2 درصد. Hepatitisvirus Poliovirus Enterovirus

می‌توان نا به گزارش از ۱۴۰ روز در آب زیرزمینی زندگی می‌کنند که این مدت بسیار طولانی از مدت زندگی ممکن ۱۵۰ درصد سانسایگاد E.Coli باکتری‌های Poliovirus می‌توانند به مدت بیش از ۲۵۰ روز نیز زندگی باشند [19].

بر اساس یافته‌های محققان در کشورهای اروپایی توسعه استلال، سال ۱۳۸۷. شماره ۲، اسفند
جدول ۱- داده‌های مورد استفاده در محاسبه حریم بهداشتی چاه‌های آب‌رسان شاخص ارسالی شهر ارومیه

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضخامت سقف (م)</td>
<td>38</td>
<td>ضرب و توان‌برداری سقف (م)</td>
<td>2/3762</td>
</tr>
<tr>
<td>ارتفاع قسمت مشبک چاه (م)</td>
<td>10</td>
<td>گرادیان هیدرولیکی سقف</td>
<td>0/049</td>
</tr>
<tr>
<td>شعاع چاه (م)</td>
<td>0/1</td>
<td>سرعت جریان آب زیرزمینی (م/ساعت)</td>
<td>0/046</td>
</tr>
<tr>
<td>مدت زمان انقال (ساعت)</td>
<td>4/8800</td>
<td>افت سطح آب در اثر پمپاژ</td>
<td>0/015</td>
</tr>
<tr>
<td>درجه پوکی سقف آب زیرزمینی</td>
<td>0/25</td>
<td>مدت زمان رسیدن به حالت تعادل در آزمایش پمپاژ (ساعت)</td>
<td>24</td>
</tr>
<tr>
<td>ضریب قابل‌پذیری انقال سقف (ساعت/م)</td>
<td>47/56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ضریب ذخیره‌سازی</td>
<td>0/137</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

۷- محاسبه حریم بهداشتی با روش اشکال متغیر‌ساده شده

در این روش اشکال متغیر‌ساده شده چاه‌ها از حریم بهداشتی چاه با استفاده از دو معیار مزه‌های جریان و زمان حرکت و به استفاده از سه‌گانه محاسباتی تریسم می‌شوند. فاصله مرز زبانی است. محاسبه مزه‌های پایینی در اطراف چاه به‌وسیله یک همان مثلث حسابی مشابه ZOC است. تعیین می‌شود. این کار با استفاده از معادله جریان آب زیرزمینی یک‌نگاهی که توسط Todd [21] ارائه شده است انجام می‌گیرد. سپس با استفاده از معیار زمان حرکت فاصله مرز بین دست حریم نمی‌باشد. تعیین می‌شود. پس از محاسبه مزه‌های بالایی و پایینی دست حریم چهار مطلق جهت جریان آب زیرزمینی تنظیم و روش تنشی بیابد می‌شود. پارامترهای مورد نیاز محاسبات این روش همان پارامترهای اساسی هیدرولوژیکی و دیگر پمپاژ چاه است. از محاسبه این روش سادگی محاسبات و عدم نیاز به تصویب نیایان برای محاسبه و پمپاژ کردن حریم است. لکن از معاوض آن دقت کم نتایج حاصله در مناطق دارای ناحیه بزرگ شرایط هیدرولوژیک است. در این روش فاصله پایین دست حریم بهداشتی قسمت مشبک چاه به 30 سانتی‌متر افزایش یابد. شعاع حریم به آب زیرزمینی است. Haas [20] Theis تا سطح آب توسط آزمایش پمپاژ برای چاه مورد نظر به دست آمده و سپس روی منحنی Theis قابلیت استقلال T و ضریب ذخیره S برای سرفر اپ زیرزمینی مورد نظر به دست آید. معادلات استفاده شده عبارتند از:

$$f = \sqrt{\frac{4uT_l}{S}}$$

$$w(u) = \frac{4\pi Ts}{S}$$

در این معادلات ۴ شعاع حریم بهداشتی چاه (م)، ۴ مدت زمان رسیدن به حالت تعادل در آزمایش پمپاژ (ساعت)، ۵ افت سطح آب زیرزمینی در فاصله حداکثر شعاع نیاز چاه T، ۶- زمان تابع Theis چاه T، ۷- پارامتری بی سایر مربوط به تابع چاه که از جدول Theis به توجه به داده‌های چاه (۱) تابع جاهای برای W(u) برای مرور نظر استخراج می‌شود. و بقیه پارامترها قبل W(u) تعیین شد. با توجه به داده‌های چاه (۱) تابع جاهای برای W(u) این فرمول را برای ۲۰۰ برابر ۶/۷۶۸ و ۱۸۸۵ و در نهایت شعاع حریم چاه (۲) برای با ۷۹/۲۵۹ متر محاسبه می‌شود. این مقدار حریم بر مقدار حریم محاسبه شده با روش همکاران دارد. به گرحه، در و مدل حریم بهداشتی FDER بودن حریم بهداشتی نسبتاً برقراری را برای چاه نتیجه می‌دهد. 

استحصال، سال ۱۳۸۳، شماره ۶، استاندارد ۸۲
مدت زمان انتقال 50 روز در نظر گرفته شده است. در شکل (2) حیرم بهداشتی نسبت به جهت حیرام آب زیرزمینی ترسیم شده است.

\[ \text{xl} = \frac{Q}{2n k b i} \]  

که در آن \( Q \) کمیت محصول در ساعت، \( K \) ضریب توغذیری سفره آباد (متر بر ساعت)، \( b \) ضخامت سفره آباد در حال سفره محصول، \( b_a \) ضخامت اشابه سفره آباد در حال سفره غیرمحصول (متر) و \( k \) کرایدان هیدرولوژیکی سفره است. فاصله کاتاری حیرام تا طرفین چاه (\( Y_L \)) به کمک زیر محاسبه می‌شود:

\[ X_f = \pm \frac{Q}{2n k b i} \]  

برای محاسبه فاصله بالادست چاه تا حیرام بهداشتی (جهت حیرام آب زیرزمینی از بالادست چاه به طرف چاه است) از معادله زیر که اساس معیار زمان حرکت تعیین شده است استفاده می‌شود:

\[ Z = \frac{Q}{2n k b i} \]  

برای محاسبه بالادست حیرام تا چاه از علائم (5) معادله (7) استفاده می‌شود. در معادله (7) زمان حرکت از نقطه واقع در حیرام بالادست چاه تا چاه (ساعت)، \( S \) ضریب ذخیره سفره، \( V \) سرعت حریم آب زیرزمینی (متر بر ساعت)، \( W_L \) شعاع چاه (متر) و \( V \) فاصله بالادست حریم تا چاه (متر) است. برای محاسبه \( V \) با سهولت و خطای انجام محاسبه این، ابتدا مدت زمان انکشاف \( t \) انتخاب شده و سپس مقدار \( Z \) از معادله (7) محاسبه می‌شود.
جدول ۲- تعريف و كارايني مدل‌های محاسباتی در کد WHPA

<table>
<thead>
<tr>
<th>تعريف و كارايني</th>
<th>نام مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>حریم‌های بهداشتی وابسته به زمان و را در اطراف چاه‌های چماق، یا جهت آلودگی را در اطراف چاه‌های چماق، در سفره‌های آب‌های هم‌کن گسترش سطحی نامحدود با جریان آب زیرزمینی یک‌جا وابت‌های مشخص می‌کند. تأثیر داخل چاه‌ها در نظر گرفته می‌شود.</td>
<td>RESSQC</td>
</tr>
<tr>
<td>حریم‌های بهداشتی پایدار وابسته به زمان و یا انتخابات را برای چاه‌های چماق در سفره‌های هم‌کن با جریان آب زیرزمینی پایدار و یک‌جا وابت‌های مشخص می‌کند. سفره‌ای آب‌های محصور نامحدود داشته و با تأثیر مزه‌های غربال‌های نفوذ و با رودخانه‌های آب‌های محدود شده. این مزه‌ها به صورت یک خط مستقیم به مدل تعريف می‌شوند. اگر حجم می‌شود. این تأثیر داخل چاه‌ها در نظر گیری نمی‌شود.</td>
<td>MWCAAP</td>
</tr>
<tr>
<td>حریم‌های بهداشتی وابسته به زمان را برای چاه‌های چماق در سفره‌های آب‌های هم‌کن با جریان آب زیرزمینی پایدار و یک‌جا وابت‌های مشخص می‌کند. سفره‌ای آب‌های محصور نامحدود داشته و با تأثیر مزه‌های غربال‌های نفوذ و با رودخانه‌های محصور شده باشد. سفره‌ای آب‌های تودز محصور نشته دار و یا غیرمحصور با تعیین سطحی باشد. تأثیر داخل چاه‌ها در نظر گرفته می‌شود.</td>
<td>GPTRAC</td>
</tr>
</tbody>
</table>

شکل ۲- حریم بهداشتی محاسبه شده برای چاه آب‌سوزانی شماره ۲۰ شهر ارومیه با استفاده از روش اشكال متغیر ساده شده
است. جدول (2). شکل (3) محدوده جبهه آلودگی را برای یک 1000 متر مکعب در روز برای همان مدت زمان‌های انتقال نیز نشان می‌دهد. یک توجه به اشکال حریم و جبهه‌های آلودگی می‌تواند مدل‌سازی که در این صورت ضخامت و ضریب نفوذپذیری لایه محصور کننده به مدل تعیین می‌شود. در کد رایانه‌ای WHPA باید حریم بهداشتی می‌تواند محاسبه شود. این حریم بهداشتی باید به زمان و (2) حریم بهداشتی نامتعادل. حریم بهداشتی پایدار ناحیه سطحی یا زیرسطحی در اطراف چهار سمت که در یک مدت زمان نامحدود از این ناحیه آب یا عفونی‌شده داخل چاه، تا این می‌شود. به دلیل نامحدود بودن زمان، یک انگیزه این نوع حریم همواره با خواهد بود، بنابراین در حالتی که به حریم بهداشتی وابسته به زمان، حریم برای یک زمان محدود محاسبه می‌شود و حریم بهداشتی یک سطح معین دارد. به علت هر عملی بودن استفاده از حریم پایدار حریم بهداشتی نامتعادل که ترکیبی از حریم پایدار و حریم وابسته به زمان است. محدوده استفاده قرار می‌گیرد و انگیزه حریم نامتعادل یا توجه به زمان انتقال در نظر گرفته شده، با یک منحنی بسته می‌شود. مساحت حریم وابسته به زمان عموماً کمتر از مساحت حریم‌های پایدار و نامتعادل است.[12]

با استفاده از سه مدل فوق حریم‌های بهداشتی برای چاه‌های آب‌رسانی ارومیه در شارای مختلف محاسبه شده و (2) تعدادی از این نتایج در ادامه آن‌ها می‌شود. در محاسبات از حریم بهداشتی وابسته به زمان به علت تطابق بین حریم شتاب واقعی استفاده شده است. در یک مورد، با استفاده از مدل MQCAP نتایج حریم‌های بهداشتی نامتعادل نیز ارائه شده است.

با استفاده از سه مدل فوق حریم‌های بهداشتی برای چاه‌های آب‌رسانی ارومیه در شارای مختلف محاسبه شده و (2) تعدادی از این نتایج در ادامه آن‌ها می‌شود. در محاسبات از حریم بهداشتی وابسته به زمان به علت تطابق بین حریم شتاب واقعی استفاده شده است. در یک مورد، با استفاده از مدل MQCAP نتایج حریم‌های بهداشتی نامتعادل نیز ارائه شده است.

2-7 محاسبه حریم‌های بهداشتی برای 37 چاه آب‌رسانی ارومیه با GPTRAC و MWCAP و RESSQC استفاده از مدل‌های RESSQC

1-7 محاسبه حریم‌های بهداشتی برای 20 آب‌رسانی و جبهه آلودگی برای یک چاه فاضلاب یا با استفاده از مدل‌های RESSQC

با استفاده از داده‌های جدول (1) و سایر یارانه‌های محیطی و هیژئونترولوژیک، حریم بهداشتی چاه آب‌رسانی شماره 20 ارومیه برای مدت زمان انتقالات 10 سال با استفاده از مدل RESSQC محاسبه می‌شود و در شکل (2) نقاط شده است.

آبخوان همگی با ضخامت ثابت و گسترش سطحی نامحدود
شکل 3- حریم‌های بهداشتی و جهت‌های آلودگی محاسبه شده برای چاه آب‌رسانی شماره 10 WHPA از کد رایانه‌ای RESSQC برای مدت زمان انتقال 1 تا 5 سال

چاه‌ها در نظر گرفته شده هستند (جدول 2). در این قسمت از محاسبات رودخانه‌های شهر جای به صورت یک خط مستقیم و با موقعیت مکانی خود نسبت به چاه‌ها و با امتداد مشخص، به همسایگان جهت جریان آب زیر زمینی به مدل تعریف می‌شوند. به‌واسطه داده‌های ورودی همانند داده‌های استفاده شده در مدل است. شکل (5) حریم‌های بهداشتی محاسبه شده با RESSQC را برای 36 چاه آب‌رسانی ارومیه در دو حالت حریم بهداشتی وابسته به زمان (شکل 5-الف) و حریم بهداشتی نامتناقض (شکل 5-ب) نشان می‌دهد. مقایسه حریم‌های محاسبه شده در شکل (5-الف) با حریم‌های محاسبه شده توسط مدل RESSQC نشان می‌دهد. اثر تداخل چاه‌ها را در نظر می‌گیرد و مطابق شکل (4) این اثر در شکل حریم‌های بهداشتی جهت‌هایی که ۲۰۱۴، ۲۰۱۵ و ۲۰۱۹ نیستند (مانند جهت‌های شماره ۱۴) جهت جریان آب زیر زمینی گسترده دارد و چاه‌ها نسبت به حجم استفاده، علائم حریم‌ها به علت اثر تداخل چاه‌ها کاملاً هم جهت نیستند.

**MWACP**

با این محصول اثر رودخانه در حریم‌های بهداشتی، به عنوان یک مزرعه فیزیکی می‌تواند از نظر گرفته شود، لذا اثر تداخل

استقلال سال ۱۳۸۳ شماره ۲ یافت.
شکل ۴: حریم‌های بهداشتی محاسبه شده برای ۳۶ چاه آب‌رسانی شهر ارومیه با استفاده از مدل RESQC
برای مدت زمان انتقال ۵ سال WHPA

مساحت تقریبی حریم‌ها در شکل (۴) (مدول و شکل (۵ - الیف) می‌توان نتیجه گرفت که امتیاد طولی حریم‌های محاسبه شده توسط مدل RESQC کم از امتیاد طولی حریم‌ها در مدل MWCAP بیشتر و مساحت حریم‌ها نیز مقداری بیشتر است. مطابق شکل (۵ - ب) حریم‌های بهداشتی نامحسوب محاسبه شده، قسمتی از حریم‌های که در شکل (۴) امتیاد حریم‌ها لزوماً همگی در امتیاد جهت عمومی جریان آب زیرزمینی نیستند. این تفاوت به دلیل اعمال RESSQC و عدم اعمال تاثیر در مدل MWCAP و محاسبات حریم بهداشتی هر چاه به طور مجرد و بدون تاثیر داخل حریم‌های بهداشتی، انجام می‌پذیرد. از مقایسه استقلال، سال ۱۳۸۳، شماره ۲، اسفند
شکل ۵: حریم‌های بهداشتی محاسبه شده برای ۳۳ چاه آب‌رسانی شهر ارومیه با استفاده از مدل محاسباتی MWCAP با وجود مرز رودخانه و در دو حالت (الف) حریم واپسین به زمان، و (ب) حریم تا میان‌سال. مدت زمان انتقال ۵ سال می‌باشد.
شکل ۶ - حمیمه‌ای بهداشتی محاسبه شده برای ۳۶ چاه آبرسانی شهر ارومیه با استفاده از مدل محاسباتی

جمالیه‌ی نیمه محصور نشته دار، با گسترش نامحدود و بدون مرز برای سفره مدت زمان انتقال ۵ سال است.

بدون انتهایی از نوع یابادار بوده لکن در انتهای خود با توجه به شروع انتقال در نظر گرفته شده با یک منحنی به دست‌یافت. مساحت این حمیمه‌ی (شکل ۵ - B) قدری بزرگتر از مساحت حمیمه‌ای وابسته به زمان هستند، شکل (۵ - A).

در نتایج محاسبات مدول MWCAP در شکل (۵ - A) رودخانه شهرونه‌ای به علت تغییرات آن باعث کوچکتر شدن حمیمه بهداشتی جاهایی مجاور شده است. برای مثال، مجموع مساحت حمیمه‌ای بهداشتی جاهایی شماره ۱۳، ۱۴ و ۱۵ استقلال، سال ۱۳۸۳، شماره ۲، اسفند
دوام تماشایی محاسبه شده برای در حالی سفره محصور و نامحسور به دلیل شرایط رطیقی و هیدروژنولوژیک یکنده در نظر گرفته شده، شبیه حریم‌های محاسبه شده توسط مدل مکانیزم‌های启 چه در محاسبات قادر به پیش‌بینی محصور یکنده در یک ضخامت 1 متر و ضریب تغذیه‌گر 4.8% در روز، برای این 37 چاه انجام پذیرفت. (2 سال 1 حریم توسط یک محاسبه شده را نشان می‌دهد. این حریم توسط یک خط جریانی نشان داده شده و پی‌سی باز و پشت همیشه یکنده در شکل قابل شناسایی می‌باشد. حریمها در دو حالت محصور و سفره محصور نشته‌ای می‌باشند. نشته‌ای از نشان داده که در حالت دوم حریم‌های محاسبه شده از نظر مساحت مقداری کوچک‌تر از حالت اول مستند به دلیل نشته‌ای از سفره یک محصور یکنده نشته‌ای است. این امر موجب شد مقداری از آب سفره تلف شده و میزان جریان آب و روستی به داخل چاه کاهش یابد. کاهش دبی و ورودی به داخل چاه (با دیپ یمپانز چاه) باعث کاهش مساحت حریم به‌داشتی چه می‌شود.

8- خلاصه و نتیجه‌گیری

در این مطالعه حریم‌های محاسبه برای کنترل کیفی چاه‌های آب شربت در شهرها تعریف و مبتنی بر مدل نوشته‌ای و نشته‌ای مختلف برای محاسبه حریم‌های محاسبه شده است. نقش مکانیزم‌های حرکتی و آلاینده‌های مکری و شبیه‌سازی در حریم به‌داشتی چه به طور اجمالی به‌حث‌شد. سپس با استفاده از دو واژه نامه

1. Blanford and Huyakon
2. capture zone
3. zone of influence (ZOI)
4. wellhead proration area, WHPA
5. cone of depression
6. zone of transport (ZOT)
7. capacity of the aquifer to assimilate contaminants
8. advection
9. zone of contribution (ZOC)

استقلال سال ۱۳۸۳، ص۲، شماره ۲، استادی ۱۳۸۳


22. بدو، ك. "تحقیق در وضعیت منابع آب زیرزمینی مورد استفاده جهت آب شرب شهری و منابع آلاینده در شهر ارومیه با تاکید بر تعیین حجم بهداشتی برای چاه‌های آب شرب." گزارش پژوهشی، سازمان مدیریت و برنامه‌ریزی استان آذربایجان غربی، دو جلد، 336 صفحه، 1381.