مبانی محاسبات حمایت بهداشتی برای حفاظت کیفی چاه‌های آب شرب در شهرها

کاظم بدر
گروه مهندسی عمران دانشکده فنی، دانشگاه ارومیه
(دریافت مقاله: 24/8/1/97 - دریافت نسخه نهایی: 24/7/1/98)

چکیده - این تحقیق با هدف تعريف مبانی علمی و شناسایی و ارائه روش‌های موجود برای محاسبه حمایت بهداشتی چاه‌های آب شرب شهرها صورت گرفته است. نتایج این مطالعه نشان داد که باید از نیازهای ذکر شده، در تصویب کشور برای کنترل تکنیکی منابع آب شرب از طریق تعیین و اعمال حریم‌های بهداشتی چاه‌ها برتری سازد. ابتدا با استفاده از معادلات علمی موجود و روش‌های تعیین حریم بهداشتی جاهای تهیه شده، سپس روش‌های (1) شعاع تابع (2) اشکال مختلف ساده شده، و (3) روش محاسباتی چریان - انتقال در قابل کد رایانه‌ای WHPA محاسبه شده برای 26 چاه آبرسانی شهر ارومیه با استفاده از معادلات علمی موجود در کد WHPA ارائه شده، و ناتیب پارامترهای هیدروژئولوژیکی در مساحت حریم‌های سوق تحت قرار گرفت. در صورت فراهم بودن اطلاعات قابل اعتماد هیدروژئولوژیکی در منطقه استقرار چاه‌ها، روش‌های محاسباتی و کد WHPA نتایج دقیق‌تری را برای حریم‌های بهداشتی چاه‌ها ارائه می‌دهند.

واژگان کلیدی: چاه‌های آب شرب، حفاظت کیفی، حریم بهداشتی هیدروژئولوژی

Fundamentals of Capture Zone Calculations for the Qualitative Protection of Urban Drinking Water Wells

K. Badv
Department of Civil Engineering, Faculty of Engineering, Urmia University

Abstract: This study is an attempt to introduce scientific fundamentals and available methods for wellhead protection area (capture zone) delineation for drinking water wells in cities. The results of this study could obviate some demands of the national water and wastewater company in quality control of the drinking water resources by delineation and application of the wellhead protection areas. For this purpose, the available literature reviewed to extract, criteria and methods of wellhead protection delineation, Then, (1) fixed radius method, (2) simplified variable shape methods, and (3) flow-transport analytical methods implemented in the computer code WHPA are introduced. The applicability of these methods is shown by some sample calculations for Urmia drinking water wells. Samples of the calculated wellhead protection areas for 36 wells in Urmia City will be shown using three analytical modules in WHPA. The effects of the hydrogeologic parameters on the wellhead areas will be discussed. When reliable hydrogeologic parameters are available in the region where wells are located, the analytical methods and WHPA code produce accurate results for wellhead protection areas.

Keywords: Drinking Water Wells, Quality Control, Capture Zone, Hydrogeology
۱- مقدمه

حفاظات کیفی از منابع آب زیرزمینی شهرها که برای تأمین آب شرب استخضاعی از چنین نقص دارند، امرهایی است که مستلزم هستند و دفع و خشک کردن آنها ممکن است. توسعه آب شرب بینی سازمان‌های آب منطقه‌ای و شرکت‌های آب و فاضلاب کشور محصول می‌شود. در این راستا محاسبه بهینه و دقت حفاظت با استفاده از مبانی علمی از مهم‌ترین رابطه با برخورد است. با این محاسبه و اعمال حرم و کوچک حفاظت در این منابع را به عنوان خودکار تعریف مبانی علمی و شناسایی و آرا بهبود و روش‌ها و روش‌های محاسبه حرم برای مباحث حرم بیان می‌شود.

آمیزه مذکور در این مقاله مورد توجه قرار گرفته است.

در بررسی منابع، یافته‌های علمی متمتی‌کننده در مورد روش‌ها و روش‌های تعیین حیاتی بهداشتی بنا به برقیانی شدید (۱) استفاده از مبانی اطلاعات جغرافیایی (۳) (۴) استفاده از روشهای محاسباتی (۵) (۶) استفاده از تحلیل‌های هیدروژئولوژیک - زئولوژیک (۷) (۸) بروز کلی و مکانیزم مربوط به تعیین حیاتی بهداشتی جامعه (۱۲) در بهترین منابع دارد. رابطه بین توزیع بلانژوورده و همیاکونک برای اداره حفاظت WHPA منابع آب زیرزمینی آتشفشان حفاظات محیط زیست آمریکا به شده است. روش‌های محاسباتی دارد برای استفاده کاربرد منابع آب زیرزمینی ایاماب متحرک آمریکا برای تعیین حیاتی بهداشتی چهار آب شرب بهدیده است و ناکارانی در تعیین حیاتی بهداشتی ایاماب مختلف امریکا مورد استفاده قرار گرفته و صحت نتایج نابینایی بی‌های است (۱۴) تعیین حیاتی بهداشتی بنا

۲- تعیین حیاتی بهداشتی بنا

در منابع علمی از حیاتی بهداشتی بنا به نامهای (۱) ناحیه نشگیری، (۲) ناحیه مشارکت و (۳) ناحیه
کاهش آلودگی ناحیه‌ای تعبیه می‌شود که در داخل آن ناحیه لایه‌های زیرسطحی دارای طرفیت بالابیندگی و جذب کافی برای کاهش غلتک آلاینده‌ها به حد قابل قبول برای سرب هستند. هر کدام از پنج میزان فوق الذکر دارای معایب و محاسبات اند و انتخاب آنها به مقدار زیاد بستگی به وضعیت لایه‌های هیدرژولوژیک زیرسطحی در هر منطقه و همچنین وجود اطلاعات داده‌ها و کارشناسان خبره در این زمینه دارد.

 حرکت ۵ سال فرض شود، ناحیه پا می‌شود. در اطراف چاه مشخص خواهد شد که هر آلاینده‌ای که در روی مرز قرار دارد، ۵ سال طول خواهد کشید که به چاه برسد. در معیار مرز جریان، مرز بخشی‌می‌آید آب زیرزمینی و سایر عوارض فیزیکی و هیدرژولوژیکی (مانند مرز غیرقابل نفوذ) که جریان آب زیرزمینی را کنترل می‌کند، مشخص و در تعیین حریم بهداشتی دخالت داده می‌شود. در معیار طرفیت لایه آبادار برای جذب و

شکل ۱– (الف) مقطع عمودی و (ب) بیان شماتیک از تعیین ناحیه ناپایدار (ZOC). (ZOI). ناحیه مشارکت (ZOT) برای یک چاه در حال پیمایش واقع در یک زemin یا سطح آب زیرزمینی شیب‌دار.
به دنبال انتخاب معیار تعیین حریم بهداشتی چاه، روش تعیین حریم برای محاسبه و ترسیم حریم روی نقشه و سپس در زمین باید انجام شود. شش روش برای تعیین حریم شیمیایی شده‌اند که به ترتیب از روش ساده و کم هزینه تا روش پیچیده و پرهزینه عبارتند از: (1) روش شعاع فرضی و محاسبه شده، (2) روش اشکال متغیر ساده شده، (3) روش‌های محاسباتی، (4) روش ترسیم نشانه‌های هیدروژنولزیک، و (5) روش مدل‌های عدیدی جریان. انتقال در روش اول (شعاع) و محاسبه شده یک معادله محسوباتی با استفاده از معیار زمان حریم، شعاع دور از دفع (اشکال متغیر ساده شده) از یک سری اشکال استاندارد حریم دور استفاده می‌شود. این اشکال با استفاده از معادلات محسوباتی و ترکیبی از معیارهای حریم جریان و زمان حریم محاسبه و ترسیم می‌شوند. در روش سوم (روش محاسباتی) مزرعه‌های جریان آب زیرزمینی و دینامیک انتقال آنلودگی با استفاده از معادلات تجربی محاسبه و حریم بهداشتی تعیین می‌شود. این روش از دقت بیشتری نسبت به دو روش یاد شده است. در روش چهارم (ترسیم نقشه‌های هیدروژنولزیک) مزرعه‌های جریان آب زیرزمینی با استفاده از روش‌های زمان شناسی، زنوترولزیک، زونومورفولزیک، زنوتوپسیک و روابط چندی مواد برای مشخص و در روى نقشه ترسیم می‌شود. در روش پنجم (روش مدل‌های عدیدی جریان - انتقال) با استفاده از معادلات محاسباتی ریاضی جریان آب زیرزمینی و با استفاده از مدل‌های شتاب‌تغییری و وضعیت هیدروژنولزیک پتانسیل‌های آنلودگی محل شده و حریم بهداشتی چاه تعیین می‌شود. این روش دو فیبرن و گرانترین روش تعیین حریم بهداشتی چاه است.

4- نقش مکانیزم‌های حرکت آنلودگی در حریم بهداشتی چاه

آشنایی با اصول اولیه حرکت آنلودگی و آنلودگی در لایه‌های خاک در قالب مباحث هیدروژنولزی و حرکت آنلودگی در خاک
همیشه که زمان تأخیر 50 تا 100 روز و هرچجا که ممکن باشد تا یکسکال برای حافظان آب چاه‌ها و ویرس‌ها و باکتری‌های پاتوژنی در نظر گرفته شود. به عداون مثل زمان تأخیر 50 روز به این معنی است که 50 طول مکعب که ویروس رها شده در داخل زمین قبل از مردن، از یک نقطه از اطراف جهت به‌طور قابل قبول آنها حریم به‌داشتی برای حفاظت از ویرس‌ها و باکتری‌ها توسعه شده است. این توصیه‌ها نتیجه مطالعات گسترده جدیدی ساله‌ها روز حریم و بقای ویرس‌ها و باکتری‌ها در آب‌های زیرزمینی است.[16]

5- محاسبه حیمت بهداشتی بر روی شما شعاع ثابت

این روش برای محاسبات اولیه حیمت جاهایی به طور تقریبی و قبل از محاسبات حیمت برای شما دیفیئر می‌تواند مورد استفاده قرار گیرد. در این روش از محاسبات حیمت در آب زیرزمینی به طرف جهت در یک مدت زمان انتقال می‌شود. این روش در اثر مدت زمان نهایی توسط Theis و FDER جریان حجمی Q و FDER صورت مالامی نیز از محاسبه حیمت برای آب آب‌رسانی شده 20 از این‌ها، حجم استخوانی از آب در اطراف قسمت مشبک چاه FDER مالامی و سپس توجه گذاشته که شما شعاع حریم جاهای خواهد مورد محاسبه می‌شود. محاسبه مربوط به صورت زیر است:

\[Q_t = 2\pi H r^2 \] (1)

\[r = \sqrt{\frac{Q_t}{n\pi H}} \] (2)

در این معادلات Q دیب بهمراه (متر مکعب در ساعت) و n درجه بیوکس سفره آب از زیرزمینی، و H ارتفاع قسمت مشبک چاه (متر) و H ارتفاع استخوان یا شعاع حریم بهداشتی (متر) و 2/3 هستند. با استفاده از این معادلات می‌تواند به آب‌های سطحی هستند و دو مرحله متعدد زیرزمینی در آب با کمک Enterovirus می‌تواند نازکت پیامدهای بالا باشد. به عداون مثل حیمت در آب زیرزمینی می‌تواند با استفاده از این روش شعاع حریم جهت حریم جاهای شماره 20 به‌طور با متر محاسبه می‌شود. اگر مدت زمان انتقال یک سال و ارتفاع 20 متر محاسبه می‌شود. مدت زمان انتقال یک سال و ارتفاع 20

col

بر اساس یافته‌های محققین در کشورهای اروپایی توصیه

1382

81

استقلأل، سال ۳۳، شماره ۲، اسفند ماه ۱۳۸۲

Hepatitis Virus, Poliovirus, Enterovirus

می‌تواند با استفاده از این روش از زیرزمینی و Poliovirus به وسیله نشانه‌های می‌تواند به این نتیجه برسد.
جدول 1- داده‌های مورد استفاده در محاسبه حریم بهداشتی جاهای آبزیایی شهر ارومیه

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضخامت سطح (m)</td>
<td>38</td>
<td>ضخامت سطح (m)</td>
<td>130/7</td>
</tr>
<tr>
<td>ضربت نفوذپذیری سطح (ساعت/m)</td>
<td>237/2</td>
<td>ضربت نفوذپذیری سطح (ساعت/m)</td>
<td>10</td>
</tr>
<tr>
<td>کرانه‌های هیدرولیک سطح</td>
<td>0/49</td>
<td>کرانه‌های هیدرولیک سطح</td>
<td>0/1</td>
</tr>
<tr>
<td>سرعت جریان آب زیرزمینی (ساعت/m²)</td>
<td>20/4</td>
<td>سرعت جریان آب زیرزمینی (ساعت/m²)</td>
<td>42/00</td>
</tr>
<tr>
<td>افت سطح آب در اثر بمبای</td>
<td>0/15</td>
<td>افت سطح آب در اثر بمبای</td>
<td>0/25</td>
</tr>
<tr>
<td>قابلیت انتقال سرفه (ساعت/m³)</td>
<td>24</td>
<td>قابلیت انتقال سرفه (ساعت/m³)</td>
<td>47/6</td>
</tr>
<tr>
<td>تعداد بستری سرفه</td>
<td>0/10</td>
<td>تعداد بستری سرفه</td>
<td>0/10</td>
</tr>
<tr>
<td>نرخ درجه سرعت</td>
<td>1/57</td>
<td>نرخ درجه سرعت</td>
<td>1/57</td>
</tr>
</tbody>
</table>

6- محاسبه حریم بهداشتی با روش اشکال

می‌تواند، بعد از این روش اشکال متغیر ساده‌ای از جریان بهداشتی به‌صورت فردی گزارش شده باشد و این روش به‌صورت بروز، روش مورد استفاده از دو نوع مزرعه جریان و زمان حرکت و با استفاده از مدل‌های محاسباتی تریمی می‌باشد. در مزرعه‌ای مورد رسیدن به حالت تعادل در آزمایش‌های پایانی، نتیجه‌گیری می‌گردد چه این مزرعه به‌صورت ناحیه مشترک (ZOC) با توجه می‌شود. این کار با استفاده از محاسبه مزرعه‌ای به‌صورت استخراج می‌شود. پارامترهای مورد نیاز محاسبات روش همان پارامترهای اساسی هیدرولوژیکی و دیگر پایه‌رو این است. این محاسبات یا روش ساده‌ای محاسبات و عدم رایانه‌ای محاسبات و پایه‌رو کردن حریم است. لکن از میزان آن دقت کم نتایج حاصله در مناطق دارای ناهنجاری‌های شرایط هیدرولوژیک است. در این روش فاصله واهای دست چاپ حریم بهداشتی قسمت مشبک چاپ به 20 سانتی‌متر افزایش یافته، شعاع حریم به 220 متر کاهش می‌یابد. در روش S به پایان ماروزک به‌وجود آمد و سپس روز منحنی Theis قابلیت متریابی S با ضربت ذخیره برای سقوط آب زیرزمینی و مورد نظر به‌صورت می‌باشد. معادلات استفاده شده عبارت‌اند از:

\[T = \frac{4uT_i}{S} \]
\[w(u) = \frac{4\pi Ts}{S} \]

در این معادلات 4- شعاع حریم بهداشتی چاه (m)، 4- مدت زمان رسیدگی به بازدارنده در آزمایش پایانی (ساعت)، 5- افت سطح آب زیرزمینی در فاصله چاه (m²/ساعت) نام ذخیره Theis چاه، 6- پارامتر زمان بعد مربوط به بازدارنده چاه که از جدول مورد نظر استخراج می‌شود، و بقیه پارامترها قبل W(u) برای W(u) تعیین شده‌اند. با توجه به داده‌های جدول 11 ناب‌چاپ به شماره 20 برای 1/8864، و در نهایت شعاع حریم چاه (m) برای 1/792/7 و این مقدار حریم با مقدار حریم محاسبه شده با روش هم‌خوانان داده که به‌طور عملاً سقوط FIDER نوع جریمه‌ای نسبتاً برتری را پایان چاپ نتیجه می‌دهد.
مدت زمان انتقال ۵۰ روز در نظر گرفته شده است. در شکل (۷) حرم بهداشتی نسبت به جهت حرم آب‌زیرزمینی ترسیم شده است.

۷- محاسبه حرم بهداشتی با روش‌های محاسباتی

حرم بهداشتی چهار می‌تواند با استفاده از مدل‌های رایانه‌ای که با استفاده از روش‌های محاسباتی حرم آب‌زیرزمینی و انتقال آلوتکی را مدل کند، تعیین شود. امروزه مدل‌های رایانه‌ای من奐 در دسترس قرار دارند که برای تحلیل وضعیت‌های هیدرولوژیکی که دارای شرایط مرزی یکتا (یچی‌های هستند، بسیار مفیدند. داده‌های مورد نیاز این مدل‌ها بایان‌سازی و حضوری از هنگام و موجودیت هیدرولوژیکی را شامل می‌شود. پارامترهای انتقال آلوتکی می‌تواند در پیش‌بینی و گذشته‌ای این مدل اندیشه‌ها دقیق باشد. نتایج آنها به مناسبات این مدل، دسته‌بندی آنها و کاربرد آنها در انتخاب و تحلیل سیستم‌های هیدرولوژیکی یکتا است. با استفاده از این مدل‌ها جاسمیت (یران‌ها) و تأیید‌پذیری حرم تعیین شده که این پارامترها را می‌توان از اینکه کربونات‌های آن‌ها از طرفی توسعه‌های نیازی به هر یک کاربرد مدل و هزینه تحلیل را بهبود بیان از میان روش‌های با شمار اورد. این قسمت از مطالعه از کد رایانه‌ای WHPA استفاده شده است [۱۳]. به همین‌و افزایش مواد محاسباتی حرم بهداشتی در کد وجود دارد. این موادها بهترین حساسیت در GPRTRAC و مدل WHPA. حسن مدل‌ها و مدل‌های مورد استفاده در GPRTRAC، مدل مولکولی و مدل WHPA مولکولی، مدل RESSQC بد. جدول (۷) و جدول (۸) که در این مدل‌ها به همراه شرایط مرزی در نظر گرفته شده و در پذیرش آنها، ارائه شده است [۲۲]. در همه مدل‌ها این درک به شکلی اخیر داشته باشد. پاک‌رسانی به روش‌های محصول و یا به محصول آزاد (آزاد) باشد. GPRTRAC آبخوان نمی‌محمور با نشان دار نیز

\[
x_{l} = \frac{Q}{2n k b l}
\]

که در آن Q تغذیه‌نری سفره آب‌زیرزمینی (ویژه سفره اکنون) و b ضخامت سفره آب‌زیرزمینی. در حالت سفره محصور و یا ضخامت محصور سفره آب‌زیرزمینی (ویژه سفره غیرمحصور) و گرادین هیدرولوژیکی سفره آب‌زیرزمینی. فاصله مداوم حرمی آب‌زیرزمینی (Y1) نیز از محاسبه زیر محاسبه می‌شود:

\[
x_{1} = \frac{Q}{2n k b l}
\]

که در آن Z عبارت است از:

\[
Z = \frac{Q}{2n k b l}
\]

با استفاده از داده‌های جدول (۱) حرم بهداشتی چهار شماره ۲۰ اره‌های به روش فوق محاسبه شده که در شکل (۲) نشان داده شده است. در این شکل مقادیر ۴/۷ متر ۲۲۰، و ۴۵/۵/۸ متر به ترتیب فاصله بینی تا حرم بهداشتی (Y2)، فاصله بالا دست چاه تا حرم بهداشتی (Y1) و فاصله کناری حرم بهداشتی (Y3) در طرفین چاه تا چاه است. در این محاسبات
جدول 2- تعریف و کارایی مدل‌های محاسباتی در کد WHPA

<table>
<thead>
<tr>
<th>نام مدل</th>
<th>تعریف و کارایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESSQC</td>
<td>حریم‌های بهداشتی وابسته به زمان را در اطراف چاه‌های یپماز و یا جهت آلودگی را در اطراف چاه‌های جاذب در سفره‌های آب‌هگمکن گسترش سطحی نامحدود با جریان آب زیرزمینی پایدار و یک‌نواخت مشخص می‌کند. تأثیر تداخل چاه‌ها در نظر گرفته می‌شود.</td>
</tr>
<tr>
<td>MWCAP</td>
<td>حریم‌های بهداشتی پایدار وابسته به زمان و یا نامشخص را برای چاه‌های یپماز در سفره‌های همگن با جریان آب زیرزمینی پایدار و یک‌نواخت مشخص می‌کند. سفره آب‌هگمکن گسترش سطحی نامحدود داشته و با تأثیر مرزهای غیرقابل نفوذ و یا رودخانه‌های متواند مدی کند. این مرزهای به صورت یک خط مستقیم به محل تعریف می‌شوند. اگر دو جهت در نظر گرفته شود تأثیر تداخل چاه‌ها در نظر گرفته می‌شود.</td>
</tr>
<tr>
<td>GPTRAC</td>
<td>حریم‌های بهداشتی وابسته به زمان را برای چاه‌های یپماز در سفره‌های آب‌هگمکن با جریان آب زیرزمینی پایدار و یک‌نواخت متواند مدی کند. سفره آب‌هگمکن گسترش سطحی نامحدود داشته و با توسط یک دو مرز موازی غیرقابل نفوذ و یا رودخانه‌های متواند مشاهده شود. سفره آب‌هگمکن متواند محصول محصور نشته دار و یا غيرمحصور با تغذیه سطحی پاشید. تأثیر تداخل چاه‌ها در نظر گرفته می‌شود.</td>
</tr>
</tbody>
</table>

شکل 2- حریم بهداشتی محاسبه شده برای چاه آبرسانی شماره ۲۰ شهر ارومیه با استفاده از روش اشکال متغیر ساده شده
است. جدول (2). شکل (3) محدوده جبهه آلودگی را برای یک گچه فاضلاب (با گچه فضایی) که در این صورت ضخامت و ضریب نفوذپذیری لایه محصورکنده به مدل تعیین می‌شود.

در کنار رایانه‌ای WHPA سوز حیرت بهداشتی می‌تواند محاسبه شود. این حیرت‌های عبارتند از: (1) حیرت بهداشتی پایدار، (2) حیرت بهداشتی وابسته به زمان و (3) حیرت بهداشتی ناپدید. حیرت بهداشتی پایدار ناحیه سطحی زیرسطحی در اطراف چاه است که در یک مدت زمان نامحدود از این ناحیه آب زیرزمینی داخل چاه تا نامیشود. به دلیل نامحدود بودن زمان، یک انتها این نوع حیرت همواره با خواهد بود. در حالتی که در زمان محصورکنده وابسته به زمان، حیرت برای یک فضای حیرتی محصورکنده شده و محدود حیرت یک سطح معنی‌دار دارد. به علت غیر عملی بودن استفاده از حیرت پایدار، حیرت ناپدیده که ترکیبی از حیرت پایدار و حیرت وابسته به زمان است. مرور استفاده قرار می‌گیرد و انتها حیرت ناپدیده با توجه به زمان انتقال در نظر گرفته شده، یک یک منحنی بسته می‌شود. مساحت حریم وابسته به زمان عمووماً کمتر از مساحت حریم‌های پایدار و ناپدیده است. (22)

2-7 محاسبه حیرت‌های بهداشتی برای 31 چاه آرسنیک اروپی با GPTRAC و MWCAP و RESSQC استفاده از مدل‌های RESSQC

1-7 محاسبه حیرت بهداشتی برای چاه شماره 20 اروپی و جبهه آلودگی برای یک چاه فاضلاب فرضی با استفاده از مدل‌های RESSQC

با استفاده از داده‌های جدول (1) و سایر پارامترهای محیطی و هیپرزینتولوژیک حیرت بهداشتی چاه آرسنیک شماره 20 اروپی برای مدت زمان انقلال 10 سال با استفاده از مدل محاسبه و در شکل (3) نشان داده شده است.

آبخوان همگی با ضخامت ثابت و گسترش سطحی نامحدود
شکل 3- حریم‌های بهداشتی و جهت‌های آلودگی محاسبه شده برای 1/2 ارزان‌سایه شماره 10 شهرآباد و یک چاه فاضلاب

در این سمت از محاسبات رودخانه شهر چای به صورت یک خط مستقیم و با میزان مکانی خود نسبت به چاه‌ها و با امتداد مشخص به همراه جهت جریان آب زیر زمینی به مدل تعیین می‌شوند.

می‌گردد و مطابق شکل (4) این اثر در شکل حریم‌های بهداشتی چاه‌هایی که نزدیک هم هستند (مانند چاه‌های شماره 20، 22 و 23) دیده می‌شود و این چاه‌ها در قسمتی دارای حریم مشترکاند. همچنان که از شکل (5) مشود است، عموما حریم‌ها در جهت جریان آب زیر زمینی گسترش دارد و چنین تعیینی از حریم‌ها به علت اثر تداخل چاه‌ها کاملاً هم جهت نیستند.

RESQ

MCAP

با این مدل اثر رودخانه در حریم‌های بهداشتی ب DNA یک مرز فیزیکی می‌تواند در نظر گرفته شود; لذا اثر تداخل
مساحت تقریبی حریم‌های در شکل (۴) (مدول RESSQC) و شکل (۵ - الف) می‌توان نتیجه گرفت که امتداد طولی حریم‌های محاسبه شده توسط مدل MWCAP بیشتر و مساحت حریم‌های نیز مقداری بیشتر است. مطابق شکل (۵ - ب) حریم‌های بهداشتی نامجاسب محاسبه شده، قسمتی از حریم‌های که در شکل (۴) امتداد حریم‌ها لزوماً همگی در امتداد جهت عمومی جریان آب زیر زمینی بیشتر است. این تفاوت به دلیل اعمال مؤثر تداخل چاه‌ها درک شده توسط مدل RESSQC و عدم اعمال تمایل در مدل MWCAP است. در مدل MWCAP مهندسی حریم بهداشتی هر چاه به طور مجرد و بدون تأثیر تداخل حریم‌های بهداشتی، انجام می‌شود. از مقایسه
شکل‌ هایی حجم‌های بهداشتی محاسبه شده، پرای ۳۳ چند ایرانی شهر اروپا، با استفاده از مدل محاسباتی MWCAP با وجود مرز رویداده و در دو حالت (الف) حذف وایسته به زمان، و (ب) حذف نت منتجان. مدت زمان انتقال ۵ سال می‌باشد.
شکل 6- حجم‌های بهداشتی محسوب شده برای 36 چاه آبرسانی شهر ارومیه با استفاده از مدل محاسباتی

حال‌ت سفره نیمه محصور نشته دار، با گسترش نامحدود و بدون مریز برای سفره مدت زمان انتقال 5 سال است.

بدون انتهای از نوع بایاکه بوده، لکن در انتهای خود با توجه به زمان انتقال در نظر گرفته شده، با یک منحنی به شکل شده‌اند. مساحت این حجم‌ها (شکل 5-ب) نیز به آن‌ها از مساحت حجم‌های وابسته به زمان هستند، شکل (5-الف).

در نتایج محاسبات مدل MWCAP در شکل (5-الف) رودخانه شهروندی چهارراه علت اثر نگه‌داری ای آن، باعث کمیک شدن حجم‌های بهداشتی چاه‌های هم‌جو داشته است. برای مثال، مجموع مساحت حجم‌های بهداشتی چاه‌های شهره 3.4 و 15

GPTAC

GPTAC

GPTAC
روش شعاع ثابت و روش اشکال FDER و شعاع ثابت و FDER متعارض ساده شده، حریم‌های بهداشتی برای چهار ایالات می‌شماره.

20 ارور محاسبه شده و نایب حاصل مورد به‌طور گرفت.

در قسمت دیگر مطالعه کد رایانه‌ای WHPA و مدل‌های محاسباتی مربوط به عنوان یک روش محاسباتی برای دادن
حریم بهداشتی معمولی شده. سپس نتایج محاسبات حریم
بهداشتی با مدل محاسباتی GPRTRAC گرفته شد.

باید و نتایج کد رایانه‌ای WHPA از کد رایانه‌ای RESQCC
چا شماره 20 ارور به همراه جبه آنالیز برای یک چا
فعالیت فرضی در احتمال چا شماره 20 ارثیه شد. در ادامه با
استفاده از سِد مدل محاسباتی GPRTRAC،
حریم‌های بهداشتی برای چا ایالات می‌شماره.

برای شرایط محیطی و هیدرولوژیکی در نظر گرفته شده
تعیین شد. اثر داخل حریم چاه‌های محیطی با تاثیر روغن‌های
شاهرخ و تأثیر یک‌میلی‌متری و تغییرهای در حالت فضایی در
شکل حریم‌های بهداشتی محاسبه شده مورد به‌طور گرفت.

در صورت فراهم سایر استحصالات اقتصادی انضمام
هیدرولوژیکی در منطقه استقرار چاه، روشنایی محاسباتی و
کد رایانه‌ای WHPA کد مورد یافته را برای حریم‌های بهداشتی چاه
ارائه می‌دهند. این حریم‌ها نسبت به حریم‌های محاسبه شده با
روشنایی ساده‌تر مانند روش شعاع ثابت، کوچکتر و در نتیجه
اقتصادی‌تر خواهند بود.

تشکر و قدردانی

موفقت از مسئولین محترم سازمان مدیریت و برنامه‌ریزی و
شرکت آب و فاضلاب استان آذربایجان غربی که در طول این
مطالعه مشوق و پشتیبانی بوده‌اند تشکر و قدردانی می‌کنند.

1. Blanford and Huyakon
2. capture zone
3. zone of contribution (ZOC)
4. wellhead prorection area, WHPA
5. zone of influence (ZOI)
6. cone of depression
7. zone of transport (ZOT)
8. capacity of the aquifer to assimilate contaminants
9. advection

8- خلاصه و تبیه‌گری

در این مطالعه حریم بهداشتی برای کنترل کیفی چاه‌هایی
آب شرب در شهرهای تهران و سیستان و بلوچستان، به کمک
مختلف برای محاسبه حریم بهداشتی معمولی شده. نقش
مکانیزم‌های حرکتی و آلودگی‌های میکرو‌بیماری‌ها در حریم
بهداشتی چاه‌ها به طور اجمالی بحث شد. سپس با استفاده از دو

واژه‌نامه

استقلال، سال ۲۳، شماره ۲، اسفند ۱۳۸۳

۱۰۰

22. مراجع

23. “بتول. خ.، " gratuito مع الفوز: " يزغ ءل زميين مورد استفادته جهت آب شرب شهري و منابع آلانده در شهر "اروميه" با تاکید بر تعیین حریم بهداشتی برای چاههای آب شرب." گزارش "توپوهی، سازمان مدیریت و برنامه‌ریزی استان آذربایجانغربی، دو جلد، 1381 صفحه."