شیب‌سازی هیدرولوژی سیل بر اساس عدم قطعیت پارامترهای مدل‌های بارش – رواناب

علی حیدری، بهرام تفتیان و رضا مکنون
دانشکده مهندسی عمران، دانشگاه صنعتی امیرکبیر
پژوهشکده حفاظت خاک و آبخیزداری

(دریافت مقاله: 14/01/1429 - دریافت نسخه نهایی: 14/09/1429)

چکیده - عدم قطعیت پارامترهای بارش - رواناب نقش مهمی در شیب‌سازی هیدرولوژی سیلاب دارد. در مقاله حاصل ارزیابی عدم قطعیت‌ها با استفاده از روش مونت کارلو در حوزه قره‌سو واقع در حوزه کرخه بررسی می‌گردد. برای شیب‌سازی حوزه از مدل توزیعی - مفهومی موسوم به مدل کلاسی استفاده کرده‌اند که در آن شیب‌سازی بارش – رواناب در یک شیب دو بعدی در حوزه از ترکیب رواناب سطحی محاسبه شده که حاصل می‌شود. به کاربردی این روش مونت کارلو برای تحلیل عدم قطعیت پارامترها، منجر به تغییر محاسبات تغییرات پارامترها شده که دانش حاصلی نسبتی به معیارهای نیکویی برای اجرا داشته. نتایج معیارهای مختلف نیکویی پردازش در این مقاله منجر به یافتن می‌گردد و به‌همراه شیب‌سازی بخش اوج هیدرولوژی با اعمال اثر وزنی در دبی اوج ارزیابی می‌شود.

واژگان کلیدی: مدل بارش – رواناب. عدم قطعیت، مونت کارلو، کرخه، ایران

Flood Hydrograph Simulation with Uncertainty in Rainfall – Runoff Parameters

A. Heidari, B. Saghfian and R. Maknoon
Department of Civil Engineering, Amirkabir University of technology
Soil Protection and Watershed Management Research Institute

Abstract: Flood hydrograph simulation is affected by uncertainty in Rainfall – Runoff (RR) parameters. Uncertainty of RR parameters in Gharasoo catchment, part of the great Karkheh river basin, is evaluated by Monte–Carlo (MC) approach. A conceptual-distributed model, called ModClark, was used for basin simulation, in which the basin’s hydrograph was determined using the superposition of runoff generated by individual cells dividing the catchment in a raster-based discretization. A narrow parameter range was obtained through application of the MC method. Parameter range depended on goodness of fit measures. The results of various goodness-of-fit measures are discussed in this paper. The selected goodness-of-fit measures gave high weight to peak discharge to reduce peak discharge error.

Keywords: Rainfall-Runoff model, ModClark, Uncertianty, Monte Carlo, Karkheh

1383

استقلال، سال 1383، شماره 2، اسفند

93
فهرست علائم

<table>
<thead>
<tr>
<th>Φ</th>
<th>سمحت هر مربع</th>
<th>A_{cell}</th>
</tr>
</thead>
</table>
| R | ضریب نفوذ در شروع
| |
| A_{AA} | گام زمانی محاسبات | AK |
| R_{AI} | نفوذ پانسیل بر حسب | AL |
| R_{T(x,y)} | نفوذ تجمعی بر حسب | C |
| t_{cell} | ضریب روندی یا ذخیرهای | C_b, C_s |
|
| i | شماره مبنی بر حوزه | CN |
| P | Fاصله پیامشی رواناب از هر مربع
| |
| m | تعداد
| |
| D | تعداد
| |
| C | تعداد ایستگاهی بارش | d_{cell} |
| d_{max} |
| x_i | فاصله پیامش برای
| |
| x_i | تعداد د و هیدروگرافی | d_{mean} |
| Z(\begin{array} | متوسط د و هیدروگرافی | I_a |
| x \end{array}) | متوسط د و هیدروگرافی | Q_{mean} |
| Z(\begin{array} | متوسط د و هیدروگرافی | n |
| x \end{array}) | نماد د و هیدروگرافی | m |
| \hat{\Delta}t | نماد د و هیدروگرافی | O_1 |
| \hat{\sigma}_{s}^2 | نماد د و هیدروگرافی | O_{t1} |
| \hat{\sigma}_{s} | نماد د و هیدروگرافی | O_t |
| \hat{\lambda}_i | نماد د و هیدروگرافی | Out_i |
| v | نماد د و هیدروگرافی | P |
| v | نماد د و هیدروگرافی | П |

1- مقدمه

پارامترهای به‌هم‌نامه کشور، بسیار معنی‌دار می‌باشد که ممکن است سبب شود که نقشه‌های مختلف پارامترهای نتایج یکسانی در روند کالیبراسیون داشته باشند و موارد مناسب برای انتخاب سری بهینه با توجه به اطلاعات دست‌موجود نباشد. در صورت کالیبراسیون موفق مدل در یک دوره آماری با اطلاعات موجود، عمد قطعیت پارامترها سبب شود که شبیه واقعی برای دو درجه حرارت از دوره کالیبراسیون کمتری اطمینان بپذیرد. بررسی و کمی کرون عمد قطعیت پارامترهای مدل‌های بارش-رواناب عمدتاً در دهه اخیر مطرح شده است. با سیب و یاوش (1991) عمد قطعیت مدل
راه در انتظار حاضر، کاربردی کردن روش مونت کارل برای مدل‌سازی عدم قطعیت پارامترها در شیوه مطالعه، هیدرورگراف سیل با توجه به حاشیه‌های اطلاعات نشسته شده در یکی از حوزه‌های آبگیری‌ای که در این مطالعه تأثیر عمده هندسی مختلف و حساسیت پارامترها نسبت به این توابع مورد ارزیابی قرار گرفت و تأثیر ویژه‌ای در حسن و صحت پارامترها نسبت به این توابع مورد ارزیابی قرار گرفت و تأثیر ویژه‌ای در حسن و صحت پارامترها نسبت به این توابع مورد ارزیابی قرار گرفت و تأثیر ویژه‌ای در حسن و صحت پارامترها نسبت به این توابع مورد ارزیابی قرار گرفت و تأثیر ویژه‌ای در حسن و صحت

تومیسی یا پایه فیزیکی پارش-رواناب را با استفاده از روش‌های زیرنویسی شیب سازی مودن‌کارل بررسی نموده و اثبات تغییر کاربردی آرازی می‌کردند. بهون و پاینی (۱۹۶۲) (۱۹۵۹) روش تحقیق عدم قطعیت شناخته عمومی (GLUE) را پیشنهاد کردند که در آن روش شیب‌سازی مونت کارل و GLUE را به کار بردند. جمله و همکارانشان (۱۹۹۹) روش تحقیقی مونت کارلو و زیانگ مارکو (۱۹۲۶) را به کار بردند که در آن برخاک روش GLUE (MCMC) برای تغییر پارامترهای مدل از توزیع احتمالاتی با کاهش بود. از توزیع احتمالاتی واقعی پارامترهای استفاده شده. این روش مونت کارل بررسی، روش متروپولیس-هستینگس (کوزرا و پارنت ۱۹۹۱) پیشنهاد کردند. جمله و همکارانشان (۲۰۰۱) این روش و فریزر (۲۰۰۱) مورد استفاده از انتخاب مناسب و نیکوئی برای مدل‌سازی عدم قطعیت، روش مونت کارلوسکی در این روش فرض بر این است که سری پارامترهای مختلف، برای روش تکراری، یکسانی بین رواناب محاسباتی و ماهیت‌های ایجاد می‌کند. در این حالت باید هر پارامتر محدوده نسبتاً وسیع مقادیر ممکن بر اساس کلایپرسیون‌الیک تعبیر شده و سپس سری متفاوت پارامترها با استفاده از اعداد تصادفی محاسبه در حالت جزئی توزیع یکنواخت در محدوده مشخص برای هر پارامتر تولد می‌شود. برای هر سری پارامترها، مدل بارش-رواناب اجرا شده و کارایی آن با میزان در محدوده پارامترها پس از تجزیه، مجدد آزمایشات انجام می‌شود تا محدوده تغییرات بارشی سری پارامترهای و هم‌اکنون با حاصل شده. معیار نیکوئی برای می‌تواند در تعیین محدوده

شیب سازی مفهومی – توزیعی حوزه

در حالی که مدل هیدرولوژیکی دارای دو مولفه اصلی است، در مولفه اول سه بارش در رواناب حوزه‌های متنوع می‌شود و در مولفه دوم توزیع زمانی رواناب برای تعیین شکل هیدرورگراف جیبی مشخص می‌شود. بهنامی و فرمان‌های پارش-رواناب در حوزه‌های برف‌گیر می‌توان شیب سازی تفکیک باران و برف از بارش کل، تغییر و تلفات باران در سطح حوزه، تغییر آب حاصل از ذوب برف و برف پایه رواناب در سطح حوزه دانسته که سه فرآیند اول در مولفه اول مدلها و فرآیند آخر در مولفه دوم مدلها شیب سازی می‌شود.

95
در مقابله مدلهای توزیعی - پایه‌های فیزیکی شیب‌های سازی بارش - روانه‌گر نسبتاً جدیدی وجود دارد که به آن روش توزیعی - مدلهای اталق می‌شود. در این تحقیق شبیه‌سازی‌های تبدیل بارش به روانه‌گر به روش مادکارک انجام می‌گیرد. روش مادکارک یک روش مدلهایی است که با توجه به نظر متفاوت این روش در سال‌های اخیر توسعه یافته و با اصول محاسباتی آن بر اساس تغییرات زمان حرکت روانه‌گر از مناطق مختلف حوزه‌ها خروجی از شکل می‌گیرد.

و این نمونه‌ها در روش هیدرگراف واحدی کلی و دیگر روش‌های انجام می‌شود. این روش توسط مدل زمان‌ساخت در قابل شیب‌های میتوان حوزه یافت و سپس به تغییر حوزه با مدل محرز خطي محاسبه می‌شود. این روش برای هر میتوان شیب، فاصله تا خروجی حوزه یافت و زمان انتقال روانه‌گر از هر میتوان شیب به خروجی حوزه به صورت زیر محاسبه می‌شود.

\[t_{cell} = \frac{t_c \cdot d_{cell}}{d_{max}} \]

که در آن:

در این روش دوب روانه‌گر هر گام زمانی از حاصل ضرب

مساحت مربع در شیب بارش و تغییر می‌شود. شیب بارش

متر نیز پس از تغییر مقدار نفوذ هر مربع از کل بارش مربوط

انجام می‌شود. با اندازه‌های تغییرات نفوذ یافته از تغییرات

مختلف حوزه، شیب‌های سازی مربع و ذوب برای به پایان انجام می‌گیرد. خرس‌دری در این روش توزیع استفاده از نشتد و

اطلاعات مکانی برای تغییر پارامترهای نفوذی حوزه به صورت توزیعی است. این موضوع به علت خصوصیات پوستگی

گیاهی و نوع خاک و همچنین سازندگی زمین‌شناسی در سطح حوزه، می‌تواند در تغییر کمیت نفوذ و تغییرات مناطق مختلف

حوزه در حین وقوع بارش بسیار موثر باشد. از این جهت برای

عمد ای از خصایش شیب‌های مدل بارش - روانه‌گر مربوط به

پراورد نفوذ و تغییر نسبت باران و سهم ذوب برای است

نگهداری روش پیشنهادی مادکارک می‌تواند برتری قابل توجهی

بر روی تغییرات یکپارچه داشته باشد. از معایب این روش می‌توان به شیب‌های کالیبراسیون آن با روش‌های بهینه نام‌گذاری یا سایر

روش‌های مسیر و خطاط اشکال کرد. که جنگله پارامترهای

حوزه به معنای واقعی، توزیع در گرفتگی شود، باعث هر

مربع حوزه‌ای یک سری پارامتر و وجود خوشه‌های که امکان

انتقال در روی‌های بهینه می‌تواند تغییرات بهینه تعداد

منتهی پارامتر وجود نخواهد داشت.
3- منطقه تحقیق

حویزه این تحقیق، حوزه فر سو یکی از زیر حوزه‌های اصلی حوزه آبریز کرحه است که موقتیت آن در شکل (1) به همراه است. استغلال‌های هیدرومتری و بارانسنجی موجود نشان داده شده است. در تفکیک بندی سبل خزی حوزه‌های آبریز کشور برای کل حوزه کرحه اولویت که برای حوزه رودخانه‌های سرو اولویت ب منظور شده است. مساحت حوزه تا استغلال‌های هیدرومتری قربانی ۵۵۰۰ کیلومتر مربع است که سطحی معادل ۱۲ درصد حجم کرحه نمایا مساحت. حداقل و حداقل ارتفاع حوزه در محل استغلال هیدرومتری خرس آباد، به متر در دسترس که از نظر به دسته جوز حوزه‌های کوهستانی بر فر گزار می‌گردد. عمدتاً سبلی‌های به موقع پیوسته در این حوزه مانند از بارش و دوب‌فر یا به این موضوع بیشتر باید با توجه به در مدل بارش - حوزه حجم استخراج ناپایدار می‌باشد. سبل‌های این حوزه بسیار از ترکیب با سبل‌های شاخه‌ای کانسپس، مناطق سیلاب‌دسته و رودخانه‌های سیمه‌ریا غرفت کرده و خصائص زیادی به بار می‌آورد.

4- مراحل شبیه‌سازی بارش - روتواب

برای شبیه‌سازی بارش - روتواب در حوزه تحقیق از روشهای توزیعی - هم‌فروشی مدل‌های استفاده می‌شود. از این روشهای استخراجی شبیه‌سازی بارش - روتواب، شبیه‌سازی هیدرومتری سیستم‌های زیر از وقوع بارش است و روشهایی به صورت نک اولویت عمل کرد. هم‌مرجعی سیستم‌ها به خصوص شبیه‌سازی می‌کند. در روشهای شبیه‌سازی مدل‌های استخراجی شبیه‌سازی بارش - روتواب و هم‌مرجعی سیستم‌ها به شمار می‌روند. این مدل قابلیت شبیه‌سازی HEC-HMS را به حوزه مدل بارش - حوزه حجم اصلی از ریزی بارش را دارد ویا امکان شبیه‌سازی توزیع بارش و دوب‌فر در آن وجود ندارد. به این ترتیب یک برنامه رایانه‌ای برای شبیه‌سازی بارش - روتواب به روشهای پیشنهادی مدل‌های استخراجی به نهایت به دست آمده در آن شبیه سازی.
شکل ۱- موقعیت حوزه فرآ سو در حوزه آبریز کرخه به همراه ایستگاه‌های بارانسنجی و هیدرومتری

شکل ۲- مدل رقموی ارتفاعی حوزه فرآ سو
اسفند می‌شود در حالی که عضده مهم ذوب بر فر در سیاله‌ای ماهه‌ای فروردین، از این‌جایی خطر اتفاق‌ها می‌افتاد. لذا از آمار
horiaهای مجله در ماهه‌ای بهمن، اسفند استفاده شد و برای
کالی‌پراین ضریب ذوب بر فر و نرخ بودجه بر فر در طول
زمان، مدل پی‌کارش مجذوبی برای شیوه مثالی بارش و ذوب
برف با استفاده از روش مشابه حاصل نبود. بر اساس اطلاعات
روانه‌ای، دما و بارش ویژه و رود این‌بخش و ذوب بر فر در
زمان حذف از اطلاعات اتمی تصویر سنجی (ناخست بر نتیجه) لاغیت
اوایل نیائع (نام‌برده برای) شیوه زمانی. تاریخ اتمام
پی‌کارش با مقایسه سری زمانی 10 روزه تصویر ماهوراهای
در کنار مس حجم بودجه بر فر در طول اتمام نا خبر است. توزیع بودجه بر فر با ارتفاع حوزه
طریق محاصلی تباره نشان می‌دهد که سهم ذوب بر فر از این‌بین نواحی
ارتفاعی حوزه باشد. این نرخ بودجه بر فر 1/2 یکی از پی‌کارش
سپر. این شیوه سازی ساخته ذوب بر فر در حین وقوع سیل، برای
شیوه حجم ساخته ذوب بر فر در حین وقوع سیل
در محل مناسب‌ناکی از روش درجه‌بندی و روز استفاده شد و سپس
ارتفاع آب معادل ذوب بر فر در هر مربع و گرم زمانی در
محاسبه نفوذ و روانه‌ناتوان خوزه لحاظ شد. دما نزول شده
در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود که با
روش درون بایس مثبت به این ساختار نیابد. برای تغییر
سهم حجم روانه‌ناتوان حوزه از کل بارش ناکی از روش نفوذ
برای SCS و نفوذ نامی از کار رفت. روش نفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر سهم حجم روانه‌ناتوان حوزه از کل بارش ناکی
از روش نفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر سهم حجم روانه‌ناکی از کل بارش ناکی
از روش نفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر سهم حجم روانه‌ناکی از کل بارش ناکی
از روش نفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر سهم حجم روانه‌ناکی از کل بارش ناکی
از روش نفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر سهم حجم روانه‌ناکی از کل بارش ناکی
از روش نفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر سهم حجم روانه‌ناکی از کل بارش ناکی
از روش نفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر سهم حجم روانه‌ناکی از کل بارش ناکی
از روش نفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر سهم حجم روانه‌ناکی از کل بارش ناکی
از روش Nفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر سهم حجم روانه‌ناکی از کل بارش ناکی
از روش Nفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر سهم حجم روانه‌ناکی از کل بارش ناکی
از روش Nفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر سهم حجم روانه‌ناکی از کل بارش ناکی
از روش Nفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر سهم حجم روانه‌ناکی از کل بارش ناکی
از روش Nفوذ
می‌تواند در این‌بین کلماتولوژی حیث وقوع بارش سه سازنه بود
که برای تغییر Sهم حجم روانه‌ناکی از کل Bارش Nسازنه Bبا کار
نکند. هر چند پردازش ار اساس اطلاعات پوشش گیاهی و نوع
خانک حوزه قابل تعیین از در محاسبه حجم روانشناسی بر روی
نفوذ نماینده چند معادل به صورت زیر وجود دارد که در معادله
(8) و (9) به ترتیب برای محاسبه نفوذ حاصل از بارش بارش و
دوب بر فر در هر گرم زمانی به کار می‌رود.

\[
AL = (AK + DK)\rho FR
\]

\[
\sum_{i=1}^{n} \lambda_i R(x_i - x_j) + \sigma = \sigma_i (x_i - x_0)^2
\]

\[
\sum_{i=1}^{n} \lambda_i = 1
\]

\[
E(\bar{Z} - Z_A)^2 = n \sum_{i=1}^{n} \lambda_i R_{AI} + R_{AA}
\]

از حلق سیستم معادلات (3) و مهندس‌های بارش و در
نهاه متوسط بارش حوزه تعیین شد.

سهم بارش و بر فر از کل بارش حوزه بر اساس توزیع دمای
حوزه در هر مربع و گرم زمانی به روش گردانی دما محاسبه
شد. برای تعیین توزیع دما در سطح حوزه ابتدا دماهای ماهه‌ای
ابسته‌گاه کلیماتولوژی متشکل از یک دوره مشترک آماری
کمیک شد و به متوسط دوازم دمای هر ایستگاه به
تفکیک سالهای خشک، نیم و عادي به همراه ارتفاع آن برای
تعیین گردانی اغراق شد.

از ناحیه که می‌توان تغییرات گردانی دما را در طول ها
یکسانه فرض کرد، لذا تعیین گردانی ماهه برای بارش سازی
سیاله کفایت می‌کند. گردانی دما در سالهای مختلف می‌تواند
متاثر از شرایط آب و هوای بادی که در این تحقیق این گردانی
به تفکیک سه وضعیت آب و هواهای تعیین شد. در هر مربع و
در هر گرم زمانی محاسبات دماهی هر مربع بر اساس دمای نیابت
شده در ایستگاه کلیماتولوژی انتخابی و گردانی دماهای
سال و موقع سیل تعیین شد. حدد استاندارد دماهی بارش و باران
درجه سانتیگراد و ذوب بر فر صفر درجه محدود شد.

تعیین بودجه برای حوزه در زمان شروع بارش در تعیین
سهم ذوب بر فر در سیاله حوزه حالت اولیه رد و برای این
منظور آفرین حفر سنجی و تغییرات ماهوراهایی به کار گرفتند. شد
علت استفاده از تصور ماهوراهای گیرا در بر حسب در طول
زمان بود. آمار آفرین سنجی موجود در این حوزه‌های آبیز
وجود ندارد و حوزه‌های مجاور نیز محدود به ماهه‌ای بهمن و

استقلال، سال 23، شماره 2، استاد 1383
در این تحقیق پارامترهای روش SCS و تدوین نمایی برای تعامل مربعات حوزه پیکرچه فرض شدند. این فرض به عدد وجود و اجرا در این تحقیق از حوزه پیکرچه حوزه پیکرچه استفاده شده است. نتایج حاصل از روش مادکارکار و مقایسه آن با روش پیکرچه برای پارامترهای پیکرک در نمایی تهیه شده است.

۶- معیار تشایه
نتایج روش مونت کارلو نشان می‌دهد انجام انتخاب معیار تشایه

\[
L(\theta) Y = \left(1 - \frac{\sigma^2}{\sigma_{obs}^2}\right)^N
\]

که در آن:

- معیار تشایه‌ای امین مدل مشروط بر مشاهدات و

\[
DK = 0.2DL\left(1 - \frac{C}{DL}\right)^2 \quad C \leq DL
\]

\[
AK = \frac{SR}{RL^{0.1C}}
\]

\[
AK = \frac{SS}{RK^{0.1C}}
\]

در این تحقیق پارامترهای روش SCS و تدوین نمایی برای تعامل مربعات حوزه پیکرچه فرض شدند. این فرض به عدد وجود و اجرا در این تحقیق از حوزه پیکرچه حوزه پیکرچه استفاده شده است. نتایج حاصل از روش مادکارکار و مقایسه آن با روش پیکرچه برای پارامترهای پیکرک در نمایی تهیه شده است.
شکل 3- نمودار جریانی مراحل محاسباتی مدل بارش-رواناب به روش مادکلاروک

روندی بالای در مخزن خظی

$C_i = \Delta t (R + 0.55\Delta t)$

$C_{i0} = 1 - C_i$

$O_i = C_i (E_{i0} / A_{cell}) + C_{i0} O_{i0}$

$Out_i = (O_{i0} + O_{i}) / 2$

شکل 4- مقایسه نتایج روش توزیعی- مفهومی ماد کلاروک و روش هیدرولوژی واحد کلاروک

در ایستگاه خرس آباد (سیلاب مورخ 1 آذر 1333)
جدول 1- محدوده پارامترهای مدل بارش - روانب به روش Model Clark

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>حداقل</th>
<th>حداقلر</th>
<th>روشن</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان تمرکز TC (ساعت)</td>
<td>10</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>ضریب ذخیره R (ساعت)</td>
<td>5</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>ضریب اولیه Ia (mm)</td>
<td>3</td>
<td>8</td>
<td>3/7</td>
</tr>
<tr>
<td>شماره منحنی</td>
<td>STRKR</td>
<td>RTIOL</td>
<td>DLTKR</td>
</tr>
<tr>
<td>تیل (باران)</td>
<td>3</td>
<td>8</td>
<td>3/7</td>
</tr>
<tr>
<td>زاویه STRKS</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td>دمای برف</td>
<td>RTIOL</td>
<td>DLTKR</td>
<td>STRKS</td>
</tr>
</tbody>
</table>

شکل 5- نمونه ای برای محدوده عدم قطعیت پارامترهای به روش Model Clark
سپس تغییر تابع تشابه در اثر سیلاب‌های نمی‌شود. تغییرات مقدار زمان تمرکز خوشه به استنادی یک سیل تاثیر بسیار اندکی در معیار تشابه دارد ولی ضریب ذخیره حوزه تأثیر نسبتاً زیادی در تابع تشابه می‌گذارد (شکل 7-6). پراکندگی پارامترهای نفوذ عمیقی در شکل (7-6، 7، 8، 9، 7، 8) نشان داده شده است. برخی از پارامترهای نفوذی سپس تغییر در داده‌های تشابه و حساسیت تابع تشابه به ان می‌شود. برخی از پارامترهای نیز خروج پارامترهای غیر حساس به شماره رونده SR در زمان شروع بارش استفاده نمی‌کنند. همان طور که در شکل مشخص است، دامنه تغییرات معیار تشابه در سیل‌های مختلف متوسط به تغییرات این پارامتر در مقدار کم قابل توجه است و با افزایش آن از شدت حساسیت آن کاهش می‌شود. تفسیر این موضوع را از نظر نظری می‌توان به کلیه ناحیه‌های کاهش پارامتر نفوذ اولیه هزینه در زمان شروع بارش کمتر از مقدار بارش می‌شود و در نتیجه، شیب سازی ارتفاع روان‌های سطحی از ناحیه که افزایش این پارامتر مقدار نفوذ اولیه افزایش می‌یابد و تا زمان‌های که مقدار آن به N در این معادله به کاشت خطاهای مشاهده‌ای واریانس خطاهای به صفر نزدیک شده و کمیت تشابه به عدد یک می‌رسد. برخی از افراشی ها، واریانس خطاهای به واریانس دیگر مشاهده‌ای می‌رسد و مقدار تشابه صفر یا حتی منفی می‌شود. با Nash Sutcliff فرآیندهای به معیار کارایی خواهد شد. مقادیر بزرگ N سبب افزایش وزن مدل‌های با مقدار تشابه بالاتر و کاهش وزن مدل‌های با تشابه کمتر شده و شیب‌سازی را به‌همو نمی‌خشد.

حساسیت معیار تشابه بر اساس معادله فوق با N=1 به ازای سیل‌های 15 سیل‌های زیر شده در تاریخ‌ها 03 آذر 67، 19 آذر 69، 27 آذر 74، 7 آذر 75، 28 آذر 78، 18 آذر 80، 1 اسفند 80، 9 اسفند 80، 9 اسفند 81، 30 اسفند 81، 1 اسفند 82، 7 آذر 83، 16 آذر 84، 19 اردیبهشت 84، 19 اردیبهشت 86، 19 اردیبهشت 86، 19 اردیبهشت 86 و 27 اردیبهشت 03 اسفند 78 بررسی شده که پراکندگی تابع تشابه به ازای پارامترهای مدل در شکل (7) نشان داده شده است. همان طور که در شکل (7-6) می‌توان مشاهده کرد، مقدار نفوذ اولیه افزایش می‌یابد و تا زمان‌های که مقدار آن به N در این معادله با کاشت خطاهای مشاهده‌ای واریانس خطاهای به صفر نزدیک شده و کمیت تشابه به عدد یک می‌رسد.

شکل 7-6: هیدروگراف مشاهده ای سیلاب مورخ 18 آذر MC سیلاب مورخ 05 آذر
شکل 7- حسابی تابع تشتیز معادله N=10 با N نسبت به تغییرات پارامترهای نفوذ نمایی، R و TC (الف- پارامتر زمان تمرکز، ER پارامتر ضرب ذخیره، ج- پارامتر نفوذ اولیه و berk پارامتر DL نفوذ باران، و- پارامتر RL نفوذ باران، ه- پارامتر SR د- پارامتر RK نفوذ ذوب برف و ح- پارامتر SS نفوذ ذوب برف)
مقدار پارش برسد در روانای حوزه تأثیر گذار است ولی پی از آن تأثیر چندانی در رواناب محاسبه‌ای نخواهد داشت. مقدار این پارامتر در سیلاب‌های مختلف با توجه به رطوبت اولیه خاک در شروع پارشی می‌تواند متفاوت باشد. بنابراین تعیین دامنه تغییرات آن در شرایط اولیه حوزه در شیب سازی صحیح سیلاب نقش مؤثری دارد. از این رو تفکیک سیلاب‌های از نظر SR شرایط اولیه یکسان و دمته بندی آنها برای تعیین پارامتر منجر به تعیین محدوده تغییرات مناسب خواهد شد. سایر پارامترهای حوزه مستقل از شرایط اولیه حوزه است.

پارامترهای حوزه از طریق سال و ماه‌های حاصله، مدل دبی‌های هیدرودسیف سیل برای تعیین معیار تشکیل داده شد. در حالتی که شیب سازی سیل، دبی اوج هیدرودسیف اهمیت بیشتری نسبت به سایر پارامترها دارد، بنابراین در این تحقیق نسبت وزنی برای دبی اوج هیدرودسیف محسوب شد تا به نحوی سهم خطاهای مربوط به دبی اوج هیدرودسیف در معیار تشکیل بیشتر شود. بنابراین، وزنی برای افزایش اهمیت دبی اوج با استفاده از معادله زیر محاسبه شد.

\[W = \frac{(O_i + Q_{\text{mean}})}{(2 \times Q_{\text{mean}})} \]

و در شکل (1) الف و ب) حسابی تابع تعابی به ازای SR و لگاریتمی دهی با \(N = 10 \) برای پارامتر روش نتیجه گرفته است و این نتایج را اثبات می‌کند. مدل را ارائه شده است. پارامتر SR معرف نتیجه اولیه حوزه است.
شکل 8- توزیع احتمالاتی پارامترهای مدل با تشابه معادله (10) و N=100
شکل 9- پراکندگی معیارهای تشاده مختلف نسبت به پارامتر SR

ب- تابع تشاده وزنی، ج- تابع لگاریتم داده ها، د- تابع رابطه ی 14 با N=N=10

شکل 10- محدوده پیش بینی‌ها به ازای N=N=3 و N=4 در سیلاب مورخ 18 آذر 1387

استقلال، سال ۱۳۸۷/۱۳۸۸ نشریه بیمارستان
می‌شود. بدین ترتیب امکان ارایی حساسیت پارامترهای مستقل یا در نظر گرفتی شویی نمایندگی قابل قبول و مردود از طریق ونیت‌های نشان و وجود دارد. این ارزیابی همگین با توزیع حاشیه‌ای نشان برای هر پارامتر با انگرال‌گیری در طول فضای پارامتری امکان‌پذیر است.

7- محدوده پیش نسبت

یک مقدار معیار در معیار نشان بروی در مدل در نظر گرفته می‌شود. مدل‌های مردد تعیین شدند. مقادیر ونیت‌های (شیب‌های) مدل‌های تا پیش‌بینی داده‌ها مجدداً مقدار دهی شدند تا مجموعه آنها برای یک شرط توزیع احتمالی دیگری با توجه به نیاز شیب‌های حاصل از مدل مدل‌کارکرد تعیین شد که تابعی از آن برای دیگر سیالاپودی آزمایش 5% با در نظر گرفتن اثر یکسانی و با اعمال اثر ونیت برای دیگر هیدروگراف با فرض $N=0$ و مقدار 0.05 آستانه معیار نشان بروی در مدل در شکل (11) ارائه داده شد. این معیار نشان برای یک توزیع احتمالی دیگر در هر گام زمانی حاصل از شیب سازی تعیین شد و سپس توزیع احتمالی مربوط به این نشان توانسته شود. با استفاده از تابع چگالی احتمالاتی 11 حاصله، تابع توزیع تجمعی F معیار نشان و از طریق آن محدوده 90% اطمینان پیش به نسبت در نظر گرفته. بدين ترتیب توزیع تجمعی پیش به نسبت در نظر گرفته. با اعمال اثر ونیت دیگر هیدروگراف، توزیع چگالی احتمالاتی دیگر هیدروگراف در دیگر مشاهده‌ها متغییر محیطی می‌شود. در حالی که برای دیگر دیگر هیدروگراف این موضوع بر عکس است. نتیجه شکل تابع چگالی دیگر، این نشان به نماین داده به شیب اوج هیدروگراف نسبت به سایر دیگر مدل‌ها در تابع نشان بروی ونیت بوده است. مقدار اطمینان پیش به نسبت دیگر اوج هیدروگراف با اعمال اثر ونیت دیگر به عنوان دیده است. همان طور که در این شکل مشخص است مقدار این تابع نشان بروی دیگر تعیین سیالاپودی مثبت بوده و در روند تغییرات پارامتر در آن به خوبی مشخص است. تابع نشان مقدار $L(0|Y)$ SR حساسیت تغییرات در مقایسه کم را نشان داد ولی تابع $L(0|Y)$ SR حساسیت تغییرات در مقایسه کم را نشان داد ولی تابع $L(0|Y)$ SR حساسیت تغییرات در مقایسه کم را نشان داد ولی تابع $L(0|Y)$ SR حساسیت تغییرات در مقایسه کم را نشان داد ولی تابع $L(0|Y)$ SR حساسیت تغییرات در مقایسه کم را نشان داد ولی $L(0|Y)$ SR حساسیت تغییرات در مقایسه کم را نشان داد ولی $L(0|Y)$ SR حساسیت تغییرات در مقایسه کم را نشان داد ولی $L(0|Y)$ SR حساسیت تغییرات در مقایسه کم را نشان داد ولی $L(0|Y)$ SR حساسیت تغییرات در مقایسه کم را نشان داد ولی

$$\begin{align*}
\tau^2 &= \frac{\sum_{i=1}^{n} w_i (x_i - \bar{x})^2}{n-1} \\
\text{L}(0|Y) &= \exp\left(-\frac{N \sigma_i^2}{\sigma_{obs}^2}\right) \quad \sigma_i^2 \leq \sigma_{obs}^2
\end{align*}$$
شکل 11- توزیع احتمالی پیش بینی در دبی اوج سیلات آذر ۱۳۸۷ (دبی مشاهده‌ای ۷۵.۵۴ cm³)

شکل 12- محدوده پیش بینی و اثر وقوع در دبی هیدروگراف سیلات مورد ۱۸ آذر ۱۳۸۷
۸ خلاصه و نتیجه‌گیری

در تحقیق حاضر کاربرد روش یونت کارلو برای تعیین عدم قطعیت پارامترهای مدل بارش - رواناب به روش مدلکارک در خوزه قره داغی رسید و نتایج آن در این مقاله ارائه شد. محدوده عدم قطعیت پیش بینی و توزیع احتمالی پیش بینی م 参数 از نتایج نهایی (تابع تابع) به دست آمده و اساتید رده و فیلتر مدل به کمک این فیلتر می‌تواند مدل خطاها احتمال قابل توجه دارد. به این دلیل پیش بینی دیگر سطح در پیش بینی و در این محدوده عدم قطعیت پیش بینی نسبت به سایر مدل‌های هیدرولوژیک دهد می‌تواند در پیش بینی مطمئنتر دیگر موثر باشد. در تحقیق حاضر نتایج حاصل از پیکانگرین نشان داده شد که این تحقیق در محدوده اوج هیدرولوژیک مورد بررسی قرار گرفت. نتایج حاکی از آن بود که با پیکانگرین نشان خطاها، محدوده نسبتاً وسیعی برای پیش بینی پیش از اوج هیدرولوژیک حاصل می‌شود. در حالي که با اعمال اولویت بالاتر برای محدوده اوج هیدرولوژیک پیش بینی در این محدوده کاهشی پایان داده و در مقابل خطاهای پیش بینی در سایر قسمتهای هیدرولوژیک زیادی می‌شود. چنین پیشنهادی را مدل برای کاهش این محدوده افزایش یابد. این مشاهده‌ها در اثر اطلاعات اجباری از محدوده ۱۹۰ اطلاعات به پیش بینی قرار خواهند گرفت و نتایج پیش بینی را متورش خطا جا نمی‌دهند. در تغییرات پارامترهای حساس در دقت پیش بینی نتایج به سزاوار دارد. در مقاله حاضر حساسیت هر یک از پارامترهای تغییرات پارامترهای تشخیص نسبت به تغییرات می‌تواند در صورتی که تغییرات پارامترهای

۱۰۰ استقلاال، سال ۳۲، شماره ۲، اسفند ۱۳۸۳

۱۱۰
1. Goodness of fit
2. generalized likelihood uncertainty estimation
3. Markov chain Monte Carlo
4. Lump ed
5. digital elevation model (DEM)
6. Flow Accumulation

7. Kriging
8. likelihood
9. Generalized sensitivity analysis
10. nonbehavioral
11. probability density function (PDF)
12. commutative density function (CDF)
