بررسی جریان آرام سیال در خم‌های با مقطع مربعی - مستطیلی

امحمد رضا عظیمیان
دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان

(دریافت مقاله: 1386/2/27 - دریافت نسخه نهایی: 1389/6/13)

چکیده - در این مقاله جریان آرام سیال در خم‌های مختلف در یک کانال با سطح مقطع مربعی-مستطیلی به صورت عددی شبیه‌سازی شده است. در شبیه‌سازی جریان در این خمها نقطه زاویه خم و ابعاد سطح مقطع از اهمیت ویژه‌ای برخوردار است. برای شبیه‌سازی جریان معادلات پیوستگی و مشتوم در دستگاه مختصات منطقی بر بهره خنادان. برای حل معادلات سه بعدی منطقی بر مرز یک برنامه رایانه‌ای تهیه شده است. نتایج عمدی به دست آمده به نتایج تحلیل‌یک مختصات مربعی و نتایج تجربی موجود در یک خم 90 درجه با مقطع مربعی، تطبیق خوبی داشته که فقط روش عددی به کار رفته را ناشان می‌دهد. پس از حذف اطمینان از کارایی برنامه رایانه‌ای آن را برای بررسی الگوی جریان و تأثیر پارامترهای هندسی، به صورت نقطه نسبی اصلاح مقطع بر روی جریان بر دو حجم 90 درجه اجرای کرده‌ایم. نتایج عمدی حاصل پیدا‌شده‌ای عبور جریان سیال از یک مقطع به مقطع دیگر و نقاط آنها در سطح افت فشار را ناشان می‌دهند. همین بررسی را در خم‌های مختلف با زاویای 90، 150 و 180 درجه انجام داده و مقدار افت آنها را از حجم 90 درجه در نسبت شیب‌های مختلف مقایسه کرده‌ایم. نتایج نشان دهنده این مسئله که با افزایش زاویه خم به بیش از 90 درجه میزان افت مربوط به افزایش می‌یابد و یا کاهش آن به کمتر از 90 درجه افت مربوط به کاهش می‌یابد.

واژگان کلیدی: افت فشار، جریان آرام سیال، خم کانال، مختصات منطقی بر به

Laminar Flow Analysis in the Channel Bends

A. R. Azimian

Department of Mechanical Engineering, Isfahan University of Technology

Abstract: In this paper the laminar flow in the rectangular channel bends is simulated using numerical techniques. The turning angle of the channel bend and the area ratio of the channel cross-section are two important parameters to be examined. For flow simulation, the body fitted 3-D continuity and momentum equations are used and a body fitted general purpose code is developed. The existing results of a tied-driven cavity and the experimental results from a 90 degree square bend were used for code validation. After the code validation, the effect of the area change in the 90 degree bend is examined.

* - داشت‌یار

استقلال، سال 1383، شماره 2، اسفند

151
فهرست علائم

<table>
<thead>
<tr>
<th>پنجره‌های خطیت صحیح فشار</th>
<th>RES_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>a</td>
</tr>
<tr>
<td>Δp</td>
<td>b</td>
</tr>
<tr>
<td>DM</td>
<td>c</td>
</tr>
<tr>
<td>θ</td>
<td>d</td>
</tr>
<tr>
<td>ϕ</td>
<td>e</td>
</tr>
<tr>
<td>μ</td>
<td>f</td>
</tr>
<tr>
<td>ρ</td>
<td>g</td>
</tr>
<tr>
<td>a</td>
<td>h</td>
</tr>
<tr>
<td>b</td>
<td>i</td>
</tr>
<tr>
<td>c</td>
<td>j</td>
</tr>
<tr>
<td>d</td>
<td>k</td>
</tr>
<tr>
<td>e</td>
<td>l</td>
</tr>
<tr>
<td>f</td>
<td>m</td>
</tr>
<tr>
<td>g</td>
<td>n</td>
</tr>
<tr>
<td>h</td>
<td>o</td>
</tr>
<tr>
<td>i</td>
<td>p</td>
</tr>
<tr>
<td>j</td>
<td>q</td>
</tr>
<tr>
<td>k</td>
<td>r</td>
</tr>
<tr>
<td>l</td>
<td>s</td>
</tr>
<tr>
<td>m</td>
<td>t</td>
</tr>
<tr>
<td>n</td>
<td>u</td>
</tr>
<tr>
<td>o</td>
<td>v</td>
</tr>
<tr>
<td>p</td>
<td>w</td>
</tr>
<tr>
<td>q</td>
<td>x</td>
</tr>
<tr>
<td>r</td>
<td>y</td>
</tr>
<tr>
<td>s</td>
<td>z</td>
</tr>
</tbody>
</table>

مقدار

جابه جنبی سیال از مکانی به مکانی دیگر همواره یکی از مسائل مهم مهندسی بوده است. برای انجام این انتقال‌ها از کانال‌هایی مانند مایعات گوناگون استفاده می‌شود. این مایعات عموما به صورت مربی مکانیکی، نیتریک و غیره هستند که مایعات مدور و چهار گوش بیشتر مورد استفاده قرار می‌گیرند. در مسیر انتقال سیال بر اثر ورود مواد و محدودیت‌های محیطی تغییراتی در مسیر حریان به وجود می‌آید که این انتقال‌ها را از انتقال‌های می‌شود. این انتقال‌ها شامل نمایی از روش‌های مختلف، که هنگام انتقال سطح اصلی مشابه از مکانی به صورت

استلال، سال۳۲، شماره ۱، استقلال ۱۳۸۳
بررسی کردن. سود و همکارانش در کار دیگری\(^{(11)}\) مطالعات مشابهی را برای یک خم 180 درجه در یک مقطع دایره‌ای دنبال کردند. اثبات در این بررسی با اندازه‌گیری جراح‌های با استفاده از یک مشاهده سیم داغ مشخص‌های جراحی و اغتشاش سیال را در موقعیت‌های مختلف خم انزیم‌یوردگی کردند. در همین رابطه به کار باکتری و همکارانش \(^{(12)}\) برای جراحی در یک خم 180 درجه هم می‌توان اشاره کرد. بررسی جراحی در یک خم 30 درجه هم کافی ستند و با ساخته‌اندگی در همان سیال با استفاده از یک دستگاه لزیر اندازه‌گیری کردن. در هر پیک از میلی با بررسی شده فوری ریز، در موارد آرام و در موارد هم مغناطیس به یادداشتهای منتشر شده و اصلاح‌های مختلف انجام یک بررسی جراحی جراحان آرام سیال در حمامهای مختلف است. به علت استفاده از یک خم خامح صداپرس پرداخته و در کمتر کاری می‌توان مجموعه این کم‌کاری را با یک ملاحظه کرده و بیان به مقیاس آنها برداشت. هدف مطالعه حاضر اندازه‌گیری بررسی‌ها جراحی آرام می‌باشد. در مورد صدمه‌های مختلف خرم و یک آرام سیال در یک خم 90 درجه قطع به جراح گوش را بررسی کرده و سپس به خمهای مختلف از 30 درجه تا 180 درجه می‌پردازیم.

2- معادلات حاکم

معادلات حاکم بر هم پیدا کرده، فیزیکی رفتار آن پیدایی می‌تواند. این معادلات اصولاً به شورت معادلات دیفرانسیل‌ای که در پی کم‌دوز هندسی باید انگرال‌گیری شوند. مرزهای معادلات مورد مطالعه تابع است. معادلات دیفرانسیلی حاکم بر جراحی نکات سیال، معادلات ناوبری- استادکوشنی هستند. این معادلات را در یک دستگاه مختصات متفکر بر بنده‌های جراحی مغناطیسی تراکم ناپایدار دامئه، سه بعدی می‌توان معرفی کرد. چهار مدل بر اساس گسترش داده مطالعات حاکم با صورت کلی مختلفی مورد اندازه‌گیری قرار گرفته‌اند. مثلاً در مرجع\(^{(7)}\) به بررسی عضلانی جراحی سیال در یک سه راهی پرداخته شده است. در این بررسی معادلات ناوبری- استادکوشنی با استفاده از روشهای اکتشافی عددی کرده و در حالت‌های مختلف (4-13) جراحی در حمامهای مختلف ارزیابی شده‌اند که در حالت‌های مختلف هم افراد و همکارانش \(^{(4)}\) جراحی آرام را در یک دستگاه همگوناتی را به مقطع معده بررسی کرده‌اند. آنها در این بررسی خود نتایج اندادگی‌های پروپتی‌ها جراحی را که توسط یک دستگاه می‌دانند. انجام گرفته مودز و تحقیق می‌تواند راه‌انداز، تحقیقات و همکارانش \(^{(5)}\) نیز با استفاده از یک دستگاه لزیر جراحی آرام و مغناطیس را در یک دستگاه اندازه‌گیری کرده و جراحان ناهنجاری را با یک دستگاه برای در خلاص صدمه‌های دیگر نشان داده‌اند. سود و همکارانش \(^{(7)}\) هم مطالعات آزمایشگاهی گسترده‌ای بر روی یک خم 90 درجه تمعک کرده و با استفاده از یک دستگاه سیم داغ میل جراحی مغناطیسی درون یک خم 90 درجه درون یک دستگاه را مطالعه کرده‌اند. بررسی عضلانی جراحی در یک خم 90 درجه در حالت آرام توسط پنل و همکارانش \(^{(5)}\) هم دنیا شده است. آنها در این بررسی از روشهای در دست مرتبط اولیة، با دست مرتبط دوم و روش کوبنیک برای نشان‌دهی جای‌گذاری لزیر استفاده کرده و خود خود را با تناها تجربه هم‌فهرست همکارانش \(^{(4)}\) مقایسه کردن. بررسی ناباید انجام در یک خم 90 درجه یک کانال چهار گوش در اعداد رينولدز 150000 و 200000 هم کار باید و همکارانش \(^{(6)}\) را تشکیل می‌دهد. آنها در کار خود با استفاده از یک دستگاه سیم داغ پروپتی‌ها رصد را در روی محرر نقاش یکی کانال‌های سیم اکتشافی کرده و اثر ناباید انجام خوردن نمی‌توان یکی کانال‌های سیم اکتشافی کرده و اثر ناباید انجام خوردن نمی‌توان، به موجه در جراحان بررسی کردن. نامادیس و آسانی \(^{(8)}\) نیز با استفاده از یک روش حجم محدود جراحی دایم سه بعدی در تراکم ناباید را در یک خم 90 درجه و دریگ انتخابه مواد موجود در کانال‌های بررسی کردن. در همین رابطه موجود و همکارانش \(^{(9)}\) هم جراحی در خم 90 درجه و لوله خمیده 5 شکل را
زیر نوشته میشود که دارای یک شکل یکپارچه بوده و اگر کمیت
انقبالی عمومی Φ را در نظر بگیریم، خواهیم داشت:

$$\frac{\partial (\rho U)}{\partial x} + \frac{\partial (\rho V)}{\partial y} + \frac{\partial (\rho W)}{\partial z} = 0$$

(1)

در جدول (1) معادلات کمیتهای فیزیکی برای هر معادله
مشخص شده است.

برای حل معادلات حاکم بر جریان، محدوده مورد مطالعه
پایه شیب‌بندی‌های ماده در صورتی که محدوده جوید به یک مکعب
مستطیل شود، از شکل‌کارتن معادلات حاکم استفاده می‌شود.
اما در اکثر موارد محدوده مورد مطالعه شیب‌بندی وقتی را ندارد و
هندسی آن پیچیده است. در این موارد اگر از شیب‌بندی ساده‌تر
یافته استفاده شود، پایه معادلات را از فضای فیزیکی
به فضای معادلاتی ξ, η, ζ انتقال داده و معادلات را در فضای
محاسباتی حل کرد. با این تبدیل شیب‌بندی در راستای
محورهای عمومی (ξ, η, ζ) قرار می‌گیرد و تابع شیب همدار
بر مزرعه می‌باشد. این روش شیب‌بندی در جنین
شکل‌های بهبود انجام می‌شود. شکل (1) شکل بی‌شیبی و شبکه
محاسباتی را در حالی دو بعده نشان می‌دهد. همان گونه که
در شکل سمت راست دیده می‌شود شبکه محاسباتی با خطوط
تئاسبی اکتیوی دارای تبلیغ یا نیست. برای حل این معادلات شرایطی را روی
مرزهای محدوده جوید باید اعمال کرد. این شرایط به قرار زیر هستند:

روش برای شرایط مرزی وارد جریان است. در مثال حاضر
سرعت جریان به صورت یک تغییری یکنواخت با
$u = 2 \text{ cm/s}, v = 0, w = 0)$

در نظر گرفته شده است.

- شرایط مرزی

حل معادلات حاکم بر جریان در محدوده مشخص شده به
تئاسبی اکتیوی دارای تبلیغ یا نیست. برای حل این معادلات شرایطی را روی
مرزهای محدوده جوید باید اعمال کرد. این شرایط به قرار زیر هستند:

روش برای مرزی وارد محدوده جوید می‌شود. هر مکان است که
روش برای مرزی قسمتی از مرزهای بیشتر. رد جوید به طور
معمول در این مرز مقدار و توزیع تمامی کمیتهای وابسته سیال
مشخص شده است. به عنوان مثال توزیع یکنواخت کمیتهای معمولی
روش برای شرایط مرزی وارد جریان است. در مثال حاضر
سرعت جریان به صورت یک تغییری یکنواخت با
$u = 2 \text{ cm/s}, v = 0, w = 0)$

در نظر گرفته شده است.

مختصات عمومی متغیر بر مرز به صورت زیر می‌توان نوشت:

$$\frac{\partial (\rho U)}{\partial x} + \frac{\partial (\rho V)}{\partial y} + \frac{\partial (\rho W)}{\partial z} = 0$$

(2)
جدول 1- معادله کمیتهای فیزیکی در شکل عمومی معادله انتقال

<table>
<thead>
<tr>
<th>S_0</th>
<th>Γ_0</th>
<th>ϕ</th>
<th>معادله حاکم</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ρ</td>
<td>$\Gamma_0 u$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>μ</td>
<td>$\Gamma_0 v$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>μ</td>
<td>$\Gamma_0 w$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ρg</td>
<td>$\Gamma_0 \rho g$</td>
</tr>
</tbody>
</table>

اندازه حرکت در جهت x:

$$ \frac{\partial P}{\partial x} $$

اندازه حرکت در جهت y:

$$ \frac{\partial P}{\partial y} $$

اندازه حرکت در جهت z:

$$ \frac{\partial P}{\partial z} + \rho g $$

نتیجه باعث کوچکتر شدن محدوده حل می‌شود. با توجه به تعیین سطح تقارن در امتثاد عمود بر سطح تقارن گرادیان کمیتهای وابسته به سطح خرواه‌بندی در مسئله حراری سطح تقارن سطحی است که مقطع خانال را در امتثاد محور Z به دو قسمت موازی تقسیم می‌کند. لذا شرط مرزی بر معادله (3) مشخص می‌شود که این تقارن بر سطح تقارن است.

این سطح از این مقدار کمیتهای وابسته به سطح خرواه‌بندی و یا تجربه معلوم هستند. به عنوان مثال در یک جریان لازم سرعت سیال روزی دیوار بر سرعت دیوار مساوی است که با این شرط عدم لغزش می‌گویند (اگر دیوار ساکن باشد سرعت سیال هم صفر خواهد بود). در مسئله حراض سطح بالایی، پایینی و جلویی کتال نیز با $k = 1, j = 1$ مشخص می‌شوند دیواره‌های

$$ u = v = w = 0 $$

در این شرایط، سطح حراض در جریان نیز باشند، به عنوان مراتب جریان مشخص شده و در

خرموجی جریان، تعیین شرط مرزی در خروجی جریان به سادگی مز و روی لایه نیست. در این مز معمولاً اطلاعاتی در مورد کمیتهای وابسته در دست نیستند. به همین علت در روشهای CFD مز خروجی را جامعی در نظر می‌گیرند که تغییرات کمیتهای وابسته در آنها ناجی و یا صفر است. لذا در این مز از شرط گرادیان سقط در راستای خروجی جریان استفاده می‌شود که در مثال حاضر نیز از این شرط به صورت زیر استفاده شده است.

$$ \frac{\partial \phi}{\partial n} = 0.0 $$

که در آن n جهت عمود بر مرز خروجی است.

سطح تقارن: در سیستم‌های هندسه‌ای یک و یا دو سطح تقارن ممکن است وجود داشته باشد. این سطح به شرط اینکه سطح تقارن جریان نیز باشد، به عنوان مراتب جریان مشخص شده و در

![شکل محاسباتی](image)
یکی از معمول‌ترین مسائلی است که به عنوان مسئله نمونه برای امتحان کردن یک برنامه رایانه‌ای به کار می‌رود. به بهتری زیاد جریان به همراه وجود جریان‌های نامشخصی متفاوت در مقاطع این میدان جریان باعث می‌شود که این مثال محک مقدسی برای آزمایش برنامه باشد. این هدف ممکن است که طول وحده آن یک متر است. سرعت صفحه فرکانس حفره بکتر به ثانیه بوده و عدد رنولدز منظوره این سرعت و طول وحده بکتر 1000 انتخاب شده است. یکشک شکست پنکخانه با پس از مطالعه اثر تعداد نقاط شکست، یک شکست پنکخانه با مجدداً نمونه برای حل دستگاه معادلات از الگوریتم SIMPLE [15] استفاده می‌شود. استفاده معادلات جبری از لحاظ تاریخی با مهگرایی TDMA ادامه می‌پذیرد. معماری همگرایی بر حسب حداکثر نرمال شده خطای معادلات تصحیح شکست به صورت زیر تعریف می‌شود.

\[\text{RES}_P = \max \left(\frac{\Delta m_i^*}{m_i^*} \right) \]

(4)

که در معادله (4) صورت کسر باید داشته و در صورت کسر باید دشته با جرمی کلی وارد \(m_i^* \) دیب جرمی کلی وارد شد به میدان جریان است. جزئیات برنامه الگوریتم در مرجع [15] آمده است.

گفتگوی است که در روش حل عددی بکار رفته در این مطالعه از شکست تلفیقيه برای تمام کمیتها استفاده کرده و برای واسطه کردن معادلات اندازه حرکت و معادله تصحیح فشار از روش رای-چو [16] استفاده شده است.

5-5 برنامه

برای حصول اطمینان از صحت عملکرد برنامه رایانه‌ای تهیه شده آن را برای جریان‌های که اطلاعات تجربی با تحلیل آنها در دست استفاده اجرای کرد و تحلیل آن با هم مقایسه کرده و رای آزمون برنامه جریان آزم درون یک حفره را که تحلیل آن را باید هم‌است که صورت عددی حل کرده و نتایج حاصل را با هم مقایسه کنیم. در ضمن روش‌های مختلف میانی (هیردردی، هیردردی دوم و بایک) برای جمله جامعی به هم مقایسه شده‌اند. برای تایید برنامه رای آزم در بکر خم 90 درجه که اطلاعات تجربی آن هم موجود است. اجرای کرده و در اینجا هم روش‌های مختلف میانی را به کار برده و با نتایج تجربی مقایسه کرده و تاثیر حبخ جهایی به دست آمده با تحلیل کارایی برنامه رایانه‌ای را به اثبات رسیده‌اند.

که ذیلا به جزئیات آنها می‌پردازیم.

5-1 جریان آزم در حرکت مکری با سطح فوران توربینی

جریان آزم در پی بکرنا سطح مکری با سطح فوران توربینی
شکل 2- توزیع سرعت طولی در خط مرکزی حفره مکبی محاسبه شده

با دو روش عدی و مقایسه بر مرجع [17] تجربی بررسی کرده‌اند. بر اساس مدل آزمایشی آنها مقطع کانال مریعی با طول 6 سانتی‌متر به و طول قسمت‌های افقی و عمودی کانال به ترتیب 18 و 12 متر مستقیم. دو قسمت افقی و عمودی کانال توسط یک چند بانکی با عضویت 9/2 سانتی‌متر به هم متصل می‌شوند. جریان سیال از قسمت افقی کانال وارد شده و از قسمت عمودی آن خارج می‌شود. طبق مدل تجربی هامپر، عدد ریویس جریان بر اساس سرعت متوسط ورودی و قطر هیدرولیکی مقطع کانال 1970 انتخاب شده است. پس از مطالعه اثر تعداد نقاط شبه در حالت عدی از شبکه‌ای با تعداد نقاط 16×16×15 استفاده شد که شبکه فوق در محور دیوارها و خم کانال متراکم شده است. به علت وجود یک سطح مقیاس تنویم شده کانال به هنگام حل در نظر گرفته شد. وجود جریان‌های تناوبی پیچیده در مقطع بین کانال، به خصوص در خم 2 و به علت نیرویی گریز از مرکز و گرداب‌های فشار به وجود می‌آید. باعث می‌شود که ترتیب عدیدی به دست آمده در این کانال وابستگی زیادی به نمایش ماتایی ارائه شده داشته باشد. شکل 4- توزیع سرعت هم راستای کانال را در دو موقعیت از مقطع خروجی خم کانال نشان می‌دهد. در این شکل هم به صفحه Z/b=1 و به صفحه Z/b=5/6 میانی واقع بین صفحه تقسیر و دیوار مرزی مرتبط می‌شود. در این
شکل ۳- توزیع سرعت در راستای طولی و در خط مرکزی حفره مکعبی در دو روندز مختلف افتیاس از مرجع[۱۸]

شکل ۴- مقایسه توزیع سرعت در دو موقعیت خروجی خم با نتایج مرجع[۴]

بررسی نتایج ارایه شده توسط یاو و همکارانش [۹] نتایج مشابهی را نشان می‌دهد. در نتایج ارایه شده توسط آنها هم نتایج حل عدید با استفاده از روش‌های بالا دست مربی اول، بالا دست مربی دوم و کووریک با نتایج تجربی مرجع [۴] مقایسه شده‌اند. شکل (۵) را ببینید. همان‌گونه که از این شکل دیده می‌شود نتایج حاصل از روش‌های بالا دست مربی اول، بالا دست مربی دوم و کووریک با نتایج تجربی را به خوبی دنبال می‌کنند. این همان نتیجه‌ای است که از بررسی شکل (۴) یک می‌توان ملاحظه کرد که نتایج مربوط به حالت هیریت مربی دوم به نتایج تجربی مرجع [۴] بسیار تندیکنند و نابرابری در بررسی‌های انجام شده فقط از هیریت مربی دوم در محاسبات استفاده شده است.

۶- نتایج

پس از حصول اطلاعات از صحت عملکرد برنامه که در یک حفره مکعبی و همچنین یک خم ۹۰ درجه که نتایج تجربی آن در دسترس بود اینک جریان آرام در کانالی با مقطع مربعی و خم‌هایی با زواوی مختلف مورد بررسی قرار گرفت. زاویه این خمها به ترتیب ۴۰، ۸۰، ۱۲۰، ۱۵۰ و ۱۸۰ درجه‌اند. این آزمایش‌ها در یک خم ۹۰ درجه که اطلاعات تجربی آن هم موجود است، بررسی می‌کرد. خم ۹۰ درجه کاربرد زیادتری داشته
شکل ۵- توزیع سرعت در مقطع خروجی خم ۹۰ درجه اثبات از مرجع [۷]

و بنا براین بیشتر مورد توجه است. سپس به دیگر جمله‌ها می‌پردازیم.

البته شیان‌درک که در همه این خصوص مقطع کانال مورد بررسی مربع و یا مستقل است، برای تجزیه و تحلیل بیشتر جریان پرتوپلیهای سرعت در چهار مقطع مختلف خم ۹۰ درجه ترسیم شده است. همان‌گونه که در شکل (۱) بی‌دیده می‌شود این پرتوپلیهای برای چهار مقدار مختلف K (۱۴۷۵۳۷) رسوم شده‌اند. ایندیسی است که موقایت گروه‌ها را در راستای محور z مختص می‌سازد به طوری که K=k۱ در ورود دیوار صلب قرار دارد و با افزایش مقدار آن به K=۲،۳،۴،۵ محدودیت پیشی و رطوبی به حالت در شکل (۲) می‌شود که مشابه شده‌اند. نزدیک دیوار صلب بوده و K=۱۷۵ مترک مطلق بر محور قطعات کانال است.

در نزدیک چشمه‌ها به علت اثر دیواره‌های کاش باعث سرعت جریان در ورود به کانال می‌شود به دلیل تغییرات در داخل حجم جریان و حتی جریان هیجانی می‌شود به مسیر بیوجور و نحوه موجود. نزدیک پرتوپلیهای سرعت که در ورودی به صورت سهمی و توسعه یافته‌اند به کلی تغییر شکل می‌دهند.

در شکل (۸) چگونگی شکل گیری و توسه شکل جریان در مقطع خروجی خم ۹۰ درجه از ورود خم و در فواصل زاویه‌ای مساوی ۳۰ درجه به بردارهای سرعت نشان داده شده‌اند. همان‌گونه که در این شکل دیده می‌شود در استحافات ورود جریان به داخل خم هیچ جریان ثابتی در وجود ندارد و بنابراین به سمت جلو و در فاصله‌ای به انتهای ۳۰ درجه از مقطع ورودی توشیک شکل می‌باشد.
شکل ۶- پروپلرهای سرعت در مقطع طولی خم ۹۰ درجه

گرداپایی که محور آن نزدیک چنداره مقابل سطح پیچ می‌شود گرداپایی این قسمت می‌شود و به دو گرداپایی پیچ‌شونده می‌شوند. این به مقطع نزدیک آثاری از شکل قیری گرداپای سو می‌شود. این نزدیک متر ماشین سازندگان صناسی می‌کند. به چشم ما خورده. در حقيقة با وجود گرداپایی خم، یک گرداپای ساده و یکی قیری نشکلی می‌شود و به مروارید گردان این خم مانند این گرداپایی قیری به گرداپایی ضعیفتی شکسته شده.

شکل ۷- خطوط جریان در مقطع خروجی خم ۹۰ درجه

و پس از خروج از خم کانال صفرهای لزجت باعث ممکن شدن این گرداپای با ضعیف شدن و سپس توسعه یافتن جریان به سمت خروج می‌شوند.

۶-۷ اثرات سطح مقطع کانال در خم ۹۰ درجه

به منظور ارزیابی اثرات شکل سطح مقطع کانال، جهت حالت دیگر را برای خم ۹۰ درجه بررسی کردیم. در هر حالت مقطع
شکل 8- پدیده‌های سرعت در مقاطع مختلف خم 90 درجه از ورودی تا خروجی

مرجعی خم 90 درجه به گونه‌ای به یک مقاطع مستطیلی تغییر مصرفی می‌کند که یکی از ابزارهای به‌کارگیری در شکل داده شده که قطر هیدرولیکی مقاطع مستطیلی حاصل با قطر هیدرولیکی مقاطع مرجعی برای استفاده از این ترتیب عدد ثابت و سرعت متوسط ورودی همه این کانال‌ها ثابت باقی می‌ماند.

این حالات به قرار زیرند:

احلی: از حالات اول که آن را با نسبت اضلاع (2) معرفی می‌کنیم. به‌طور مثال کالرها در راستای محور 3 به مقدار 3 سانتی‌متر کاهش داده و ارتفاع مقاطع کانال را به مقدار 6 سانتی‌متر افزایش می‌دهیم. در نتیجه قطر هیدرولیکی آن همانند قبل (مقاطع مرجعی) ثابت می‌ماند. نتایج حاصل از اجرای برنامه برای
صرویت یک گردباده واحد و کشیده تبدیل شود. زیرا این در گردباده دو گردباده با محصور گردنگر محصور شده‌اند. شکل‌هایی (10) و (12) را ببینید. این بررسی پیچیده‌گنه و میزان کنگانگون مطرح در گردباده آرام در یک خم 90 درجه را نشان داده و مهم‌تر نهایت چه بیشتر آنها را کوچک‌تر می‌کند.

پیش از این بررسی در حال کار دو اصل تا جوی هم مورد مطالعه قرار گرفتند. طوری که در این حرکت (3) یک (شکل سوم) و در حالت دیگر (شکل چهارم) (ار(4) مشابه نطق مقدار آن است. دیگر به بررسی هر یک از این حالات نیز می‌پردازیم.

شکل سوم: در این حالت که آنرا با نسبت اضلاع (34) معرفی می‌کنیم بهنیا کانال را در راستای محور ۲ کاهش داده و ارتفاع مقطع گوش گرفتن را به کنار آوریلی گوش گرفتن می‌دهم که در طریق هیدرولیکی آن همان‌ندل قفل (مقطع مربعی) ثابت گردید. نتایج حاصل از اجرای برنامه برابر این حالت به صورت یک گردباده مساحت خص مقطع قانون خارجی خم و سطح نتایج را کانال قرار دارد.

شکل چهارم: در این حالات که آنرا با نسبت اضلاع (ار(4) معرفی می‌کنیم بهنیا کانال را در راستای محور ۲ افرازی آنها و ارتفاع مقطع گوش گرفتن را به کنار آوریلی گوش گرفتن می‌دهم که در طریق هیدرولیکی آن همان‌ندل قفل (مقطع مربعی) ثابت گردید. نتایج حاصل از اجرای برنامه برابر این حالت به صورت یک گردباده مساحت خص مقطع قانون خارجی خم و سطح نتایج را کانال قرار دارد.

از ناحیه که تعود گردباده این بار در راستای محور قانون دارای تحرک است در امتداد دیگر، گردباده گردباده با حالت قبل نگاری کلی حاصل گردباده را جایی تغییر کنده و گردباده در مقطع گردباده برابر این بار به این شکل می‌شود که امتداد گسترش آن به سمت سطح نتایج است. شکل (11) را ببینید.

برون‌بهاش طولی گردباده که در شکل (15) نشان داده شده‌اند. دارای یک‌خانکی کمربند بوده و اثرات شدید ورود گردباده از صفحات دیگر به یک اثر اصلی به پیام افزایش یافته است و همان گونه که می‌گردد در نتیجه به سمت محور نتایج رانده شده است. با مقایسه این در نتیجه می‌توان پیشینه کرد که در نسبت اضلاع برگردن ممکن است دو گردباده اصلی به
شکل ۹- پروفیلهای سرعت در مقاطع طولی خم ۹۰ درجه

ار \[\simeq 2 \]

سطح نقارن

شکل ۱۰- خطوط جبران در مقاطع خروجی خم ۹۰ درجه

شکل ۱۱- پروفیلهای سرعت در مقاطع طولی خم ۹۰ درجه

ار \[\simeq 10/5 \]
شکل 12 - خطوط جریان در مقطع خروجی خم 90 درجه

ار = 3

شکل 13 - پروپلرهای سرعت در مقطع طولی خم 90 درجه

شکل 14 - خطوط جریان در مقطع خروجی خم 90 درجه
تبدیل می‌شود، شکل (۱۶) را بینیند. در ضمن ازگردایه چرخشی که در مجاورت دیواره خارجی خم و نزدیک سطح نظر کنال تکرار می‌شود نیست.

ضریب افت فشار به بعد را از معادله زیر به دست می‌آوریم:

\[\xi = \frac{2\Delta p}{\rho U^2} \]

در جدول (۲) نتایج به دست آمده برای حالات اولیه وچار، حالت فوق که چمعاً بنج حالت مختلف می‌شوند، ارائه شده‌اند. بررسی نتایج این جدول نشان می‌دهد که برای یک عده‌ای، مشخص حداکثر افت فشار در مقطع مربوط اتفاق افتاده و

۲-۶ افت فشار و استحکام افزایش در خم‌های ۹۰ درجه

پس از بررسی کمی وکیفی فوق اینکه به بررسی میزان استحکام انرژی در گذش از خم ۹۰ درجه می‌پردازیم. برای این کار افت فشار را از ورودی تا خروجی خم ۹۰ درجه محاسبه کرده و
جدول ۲- افت نشار و ضریب افت نشار به‌*</translation>
شکل 17- اف. پروفیلهای سرعت در مقاطع طولی خم ۳۰ درجه

شکل 17- ب. پروفیلهای سرعت در مقاطع طولی خم ۶۰ درجه

شکل 17- ج. پروفیلهای سرعت در مقاطع طولی خم ۱۲۰ درجه

شکل 17- د. پروفیلهای سرعت در مقاطع طولی خم ۱۵۰ درجه
شکل 17- گریفتهای سرعت در مقاطع طولی خم 180 درجه

شکل 18- عکس- خطوط جریان در مقلع 90 درجه خم 90 درجه

شکل 18- ب- خطوط جریان در مقلع 90 درجه خم 120 درجه

شکل 18- ج- خطوط جریان در مقلع 90 درجه خم 150 درجه

شکل 18- د- خطوط جریان در مقلع 90 درجه خم 180 درجه
جدول ۳- ضریب افت فشار بی‌بی بعد در خم‌های مختلف

<table>
<thead>
<tr>
<th>خم‌های مختلف</th>
<th>۱۸۰</th>
<th>۱۵۰</th>
<th>۱۲۰</th>
<th>۹۰</th>
<th>۶۰</th>
<th>۳۰</th>
<th>۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>جرم‌های</td>
<td>۰/۰۸۰۵۶</td>
<td>۰/۰۶۶۹</td>
<td>۰/۰۵۸۹</td>
<td>۰/۰۵۲۳</td>
<td>۰/۰۲۲۱</td>
<td>۰/۰۳۰۹</td>
<td>۰/۰۳۷۹</td>
</tr>
<tr>
<td>۰/۰۱۰۰</td>
<td>۱/۰۱۱۱</td>
<td>۱/۰۱۱۱</td>
<td>۱/۰۱۱۱</td>
<td>۱/۰۱۱۱</td>
<td>۱/۰۱۱۱</td>
<td>۱/۰۱۱۱</td>
<td>۱/۰۱۱۱</td>
</tr>
</tbody>
</table>

جدول ۴- ضریب افت فشار بی‌بی بعد در خم ۹۰ درجه با شعاع انحنای مختلف(افتابی از مرجع[۱])

<table>
<thead>
<tr>
<th>شعاع انحنای</th>
<th>۹۰</th>
<th>۶۰</th>
<th>۴۵</th>
<th>۲۲.۵</th>
<th>۱۵</th>
<th>۴</th>
<th>۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>(درجه)</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
</tr>
<tr>
<td>جرم‌های</td>
<td>۰/۰۵۱۰</td>
<td>۰/۰۳۲۲</td>
<td>۰/۰۲۱۱</td>
<td>۰/۰۰۹۱</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
</tr>
<tr>
<td>۰/۰۱۰۰</td>
<td>۰/۰۳۲۲</td>
<td>۰/۰۲۱۱</td>
<td>۰/۰۰۹۱</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
</tr>
<tr>
<td>۰/۰۰۰۰</td>
<td>۰/۰۳۲۲</td>
<td>۰/۰۲۱۱</td>
<td>۰/۰۰۹۱</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
</tr>
<tr>
<td>۰/۰۰۰۰</td>
<td>۰/۰۳۲۲</td>
<td>۰/۰۲۱۱</td>
<td>۰/۰۰۹۱</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
<td>۰/۰۰۰۰</td>
</tr>
</tbody>
</table>

این خم‌ها ممکن است که بر وسایل پایین دست آنها الگوی شده‌اند. این به‌صورت مثال در جریان‌های که وارد یک انتقال محوری می‌شود جریان‌های ناحیه‌ای در بر حسب زدن مخلوط‌ها و سوخت می‌توانند یک نکته باشند در صورتی که در یک شبیره با رودی یک تور این اتم مشابه آمار مخربی بر جاری گذارد. یک ۷-نتیجه‌گیری بررسی جریان در گالاتی‌ها با خم‌های مختلف نشان داد که این جریان‌ها دارای پیچیدگی‌های خاصی به وجود می‌آورند، این حس و هندسه مقطع کالر، جریان‌های ناحیه کاملاً مختلف در پایین دست این مقاطع تشکیل می‌شود که بر میزان افت فشار حاصل آن‌ها می‌خورد که می‌گذرد. بهین تریب که بر افزایش زاویه جرم‌های می‌خشد تریب دیدگان اثرات جریان‌های ناحیه اثرات آنها بیشتر شده و میزان تغییرات از در کالرها گرافی می‌باشد و این خوردن گویای این ۷-نتیجه‌گیری است که یک می‌باشد از قدرت پیش‌بینی استفاده کرد. علاوه بر این از آن‌ها که کلیه جریان خروجی از وی قرار داده، صورت‌های چهاربخشی و شکر می‌نرم‌دید.
1. Computational Fluid Dynamics
2. Non-Staggered Grid
3. Hybrid
4. Quick

\[
\begin{align*}
U &= u\xi_x + v\xi_y + w\xi_z \\
V &= u\eta_x + v\eta_y + w\eta_z \\
W &= u\zeta_x + v\zeta_y + w\zeta_z \\
a &= \xi_x^2 + \xi_y^2 + \xi_z^2 \\
b &= \eta_x^2 + \eta_y^2 + \eta_z^2 \\
c &= \zeta_x^2 + \zeta_y^2 + \zeta_z^2 \\
d &= \xi_x\eta_x + \xi_y\eta_y + \xi_z\eta_z \\
e &= \xi_x\zeta_x + \xi_y\zeta_y + \xi_z\zeta_z \\
f &= \xi_x\eta_x + \xi_y\eta_y + \xi_z\eta_z \\
\xi_y &= J(x\zeta_z - x\xi_z) \\
\eta_y &= J(x\zeta_x - x\xi_x) \\
\zeta_y &= J(x\zeta_x - x\xi_x) \\
\xi_z &= J(y\zeta_z - y\xi_z) \\
\eta_z &= J(y\zeta_x - y\xi_x) \\
\zeta_z &= J(y\zeta_x - y\xi_x) \\
J &= \frac{\partial(\xi, \eta, \zeta)}{\partial(x, y, z)} = \frac{1.0}{x\xi_y(y\xi_z - y\xi_z) + x\eta_y(y\eta_z - y\eta_z) + x\zeta_y(y\zeta_z - y\zeta_z)}
\end{align*}
\]

در معادلات بالا متغیرها از دسته معادلات زیر به دست می‌آیند: