بررسی چریان آرام سیال در خم‌های با مقطع مربعی - مستطیلی

امحمد رضا عظیمیان*
دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان


چکیده - در این مقاله چریان آرام سیال در خم‌های مختلف در یک کانال با سطح مقطع مربعی-مستطیل به صورت عددی شبیه‌سازی شده است. در شبیه‌سازی چریان در این خم‌ها، تقسیم‌بندی و ابعاد سطح مقطع از اهمیت ویژگی برخورد است. برای شبیه‌سازی چریان معادلات بیوستکی و مسئوم در دستگاه مختصات منعکس بر یک بند به جهت ارائه نتایج در مقطع سه بعدی منطقه بر مزرعی بر نیروهای فشار و تغییرات شکننده معرفی شده است. نتایج عددی به دست آمده با نتایج تحلیلی یک محفظه مربعی و نتایج تجربی موجود در یک خم 90 درجه به مقطع مربعی، تطابق خوبی داشته که دقت روش عددی به کار رفته را نشان می‌دهد. پس از حقول اطمینان زده کاربری بر خوری‌های انرژی و تأثیر پارامترهای هندسی به خصوص تقسیم‌بندی اصلاح مقطع بر روی چریان برای خم 90 درجه اجرا کرده‌ایم. نتایج عددی حاصل به دیده‌های عبور چریان سیال از یک مقطع به مقطع دیگر و نقاط آنها در مرزین افت فشار را نشان می‌دهند. همین بررسی را در خم‌های مختلف با زوایای 30و 45و 60 درجه انجام داده و مقادیر افت آنها را با افت خم 90 درجه در شرایط مشابه مقایسه گردید. نتایج نشان داده‌ها این هستند که با افزایش زاویه خم به بیش از 90 درجه مرزین افت ریزابه هم افزایش می‌یابد و با کاهش آن به کمتر از 90 درجه افت مریطوه نیز کاهش می‌یابد.

واژگان کلیدی: افت فشار، چریان آرام سیال، خم کانالها، مختصات منطقی بر دهن

Laminar Flow Analysis in the Channel Bends

A. R. Azimian
Department of Mechanical Engineering, Isfahan University of Technology

Abstract: In this paper the laminar flow in the rectangular channel bends is simulated using numerical techniques. The turning angle of the channel bend and the area ratio of the channel cross-section are two important parameters to be examined. For flow simulation, the body fitted 3-D continuity and momentum equations are used and a body fitted general purpose code is developed. The existing results of a tied-driven cavity and the experimental results from a 90 degree square bend were used for code validation. After the code validation, the effect of the area change in the 90 degree bend is examined.
فهرست علائم

<table>
<thead>
<tr>
<th>متغیر</th>
<th>نماد</th>
<th>توضیح</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار ثابت</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>نسبت سطح</td>
<td>ar</td>
<td></td>
</tr>
<tr>
<td>مقدار ثابت</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>مقدار ثابت</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>مقدار ثابت</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>مقدار ثابت</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>مقدار ثابت</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>شتاب نقل</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>تولید اغتشاش</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>جمله جسم</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>اندازه محور</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>اندازه محور</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>زاکینبین</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>K و k</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>شعاع</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

جدیدی جایی سپال از مکانی به مکانی دیگر همواره یکی از مسائل مهم مهندسی سوده است. برای انجام این انتقال‌ها از کانالهایی با مقاطع گوناگون استفاده می‌شود. این مقاطع معمولاً به صورت مربعی، مستطیلی، دایره یا غیره هستند که مقاطع مدور و چهار گوش بیشتر مورد استفاده قرار می‌گیرند. در مستر استناد سیالات آن و وجود موانع و محدودیت‌های محیطی نمی‌تواند در مسیر جریان با وجود می‌کند که سبب انتقال‌های ماشین‌هایی با همین انتقال‌ها شرایط شامل خاصی با زواياه مختلف، کاهش هاها سطح مقطع افزایش دهنده سطح مقطع به صورت

1- مقدره

<table>
<thead>
<tr>
<th>متغیر</th>
<th>نماد</th>
<th>توضیح</th>
</tr>
</thead>
<tbody>
<tr>
<td>جمله جسم</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>اندازه محور</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>اندازه محور</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>زاکینبین</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>K و k</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>شعاع</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

استناد: سال 23، شماره 2، استناد 1383

152

آنها در پرسی‌های جریان سیال را در یک تولید آب با سرعت پایینی با استفاده از یک دستگاه لیزر اندازه‌گیری کرده. در هر یک از مطالعات بررسی رشد فوق ریزی در موارد آزم و در موارد هم مغوغه بوده است. همان‌گونه که تاکنون مراجع مختلف نشان می‌دهد هرکه از محققان و یا بالا یک بی نشانی خاص برداشته و در کمتر کاری می‌توان مجموعه این جهان را با یک ملاحظه کرد و در نتیجه آن برنده. هر مطالعه حاضر انجام یک بررسی جامع از جریان آزم سیال در همکارانش مختلف است. به علت کاهشگری بی‌پرواز، ابتدای جریان در یک ۹۰ درجه هم مقطع چهار را بررسی کرده و سپس به فرایند مختلف از ۳۰ درجه تا ۱۸۰ درجه میراژیم.

۲- معادلات حاکم

معادلات حاکم بر هر پیدایش فیزیکی رفتار آن پیداهه را توصیف می‌کنند. این معادلات اصولاً به صورت معادلات دیفرانسیلی که در یک محدوده هندسی باید انتگرال گیری شونده. برای انتگرال‌گیری از این معادلات به شرایط مرزی در مراحل محدوده مورد مطالعه نیاز است. معادلات دیفرانسیلی حاکم بر چهار سیال، معادلات ناوری- استوکس هستند. برای این معادلات را در یک دستگاه مختصات منطقه بر بینه برای یک جریان مغوغه تراکم ناپذیر دائم سه بعدی می‌توان عارف کرد که شامل معادله پوستنی و سه معادله اندازه‌گیری در جهتهای سه‌گانه مختصات، معادلات حاکم به صورت کلی مختلفی مورد ارزیابی قرار گرفته‌اند. مثلاً در مرجع [7] به بررسی عددي جریان سیال در یک سه‌های پرداخته شده است. در این بررسی معادلات ناوری- استوکس با استفاده از روش‌های تکرار عددی کرده جریان‌های چرخشی نسبی هدایت شده است. و با در مدار شماره [4-13] جریان در خم‌های مختلف ارزیابی شده‌اند که به عنوان مثال هفت‌فریم و همکارانش [8] جریان آرام را در خم ۹۰ درجه یک کانال با مقطع مربعی بررسی کرده‌اند. آنها در بررسی خود نتایج انداده‌گیری یکی دستگاه جریان را که توسط یک دستگاه به دست آمده است انجام گرفته‌اند. تجربه و تحلیل قرار داده‌اند. عناوین و همکارانش [9] نیز با استفاده از یک دستگاه لیزر اندازه‌گیری کرده و جریان‌های را با یک گروه که در خلاء جهت هم هستند نشان داده‌اند. سود و همکارانش [1] هم مطالعات آزمایش‌گاهی گسترش داده‌اند بر روی یک یک ۹۰ درجه متمركز کرده و با استفاده از یک دستگاه سیم داغ می‌باشد چهار جریان ماشین در یک ۹۰ درجه در حال آزم توسط پیام و همکارانش [10] هم نشان داده است. آنها در این بررسی از روشهای یک دست مربوطه، اثر یک گروه که کمک به سیستم‌سازی جملات جهای انتقال کرده و تسلیت خود را با تابع تجزیه هفت‌فریم و همکارانش [8] مقایسه کرده‌اند. بررسی تایپادی جریان در یک ۹۰ درجه یک کانال چهار گوش در اعماق ابتدال ۱۴۰۰۰ و ۲۴۰۰۰ هم کار بلندی و همکارانش [8] را تحلیل می‌دهد. آنها در کار خود با استفاده از یک دستگاه سیم با یک روش سرعت را در روز محو قرار یک کانال انتگرال‌گیری کرده و اثر یک تایپادی‌برای موجود در جریان را بررسی کرده‌اند. تاما می‌توان با، متاسفانه نیز با استفاده از یک دستگاه حجم محدود جریان دایمی سه بعدی تراکم تایپادی را در یک ۹۰ درجه و دیگر انحصار موجود کانال‌ها بررسی کرده‌اند. در همین رابطه موجود و همکارانش [10] هم جریان در یک ۹۰ درجه و لوله خمیده ۵ شکل را

۱۵۳

استقرار، سال ۵۳، شماره ۲، اسفند ۱۳۸۳

Downloaded from icm ej ju ir at 20:36 IRDT on Wednesday August 4th 2021
زیر نوشته می‌شوند که دارای یک شکل بقا و به اگر کمیت انرژی عمومی $\Phi$ را در نظر گرفته‌می‌خواهیم داشت:

$$\frac{\partial (\rho \psi)}{\partial x} + \frac{\partial (\rho \psi)}{\partial y} + \frac{\partial (\rho \psi)}{\partial z} =$$

$$\frac{\partial}{\partial x} \left( \frac{\partial \Phi}{\partial x} \right) + \frac{\partial}{\partial y} \left( \frac{\partial \Phi}{\partial y} \right) + \frac{\partial}{\partial z} \left( \frac{\partial \Phi}{\partial z} \right) + S_\Phi$$

در جدول (1) معادلات کمیتهای فیزیکی برای هر میزان مشخص شده است.

برای حل معادلات حاکم بر جریان، محدوده مورد مطالعه بازی شیب‌بندی شود. در صورتی که محدوده حالت یک مکعب مستطیل‌بناش، از شکل کاربردهای حاکم استفاده می‌شود. اما در اکثر موارد محدوده مورد مطالعه شرایط فوق را دارد و هنگامی که یک بدست آید، شیب‌بندی سازمان (x,y,z) یافته استفاده شود. با این‌حال، از نظر گردش، این شیب‌بندی می‌تواند در سایر محاسباتی با $\xi, \eta, \zeta$ باشد.

در حلقه، از نظر فضایی محاسباتی همان شکل دارد که در (2) نشان داده شده است. شیب‌بندی از نظر حذف می‌شود. از طرف دیگر، اگر خطوط شیب کاملاً بر هم عمود باشند، باز هم، این شکل نشان از نظر حذف می‌شود. لذا در روش‌های عددی جملات ناشی از انتشار شیب را جدایی از جملات انتشار در نظر می‌گیرد. جمله آخر در سمت راست معادله (2) همان جمله چشم‌های در معادله (1) است.

3. شرایط مرزی

حل معادلات حاکم بر جریان در محدوده مشخص شده به تهیه می‌باشد. برای حل این معادلات شرایط با روز محدوده محدوده حالت ایجاد در عمل است. این شرایط به قرار زیر هستند:

روش‌های مرزی در محدوده جریان است. در مثال حاضر سرعت جریان به صورت یک پرتوی یک‌پایه انجام گرفته است.

$$u = 2 \text{ cm/s}, v = 0, w = 0$$

استقلال سال ۲۳، شماره ۲، ۱۳۸۳، اصفهان ۱۵۴
جدول ۱- معادل کمیتهای فیزیکی در شکل عمومی معادله انتقال

<table>
<thead>
<tr>
<th>$S_0$</th>
<th>$\Gamma_0$</th>
<th>$\phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$\nu$</td>
</tr>
</tbody>
</table>

$\frac{\partial P}{\partial x} = \mu$ انداره حرکت در جهت $x$

$\frac{\partial P}{\partial y} = \mu$ انداره حرکت در جهت $y$

$\frac{\partial P}{\partial z} - \rho g = \mu$ انداره حرکت در جهت $z$

شکل ۱- شکه حل میدان جریان در فضاهای فیزیکی و محاسباتی

نتیجه‌بافت کوچکتر شدن محدوده حل می‌شود. با توجه به تعريف سطح تقارن، در اعتماد عموم بر سطح تقارن گرادیان کمیتهای وابسته صفر خواهد بود. در سطح حاضر سطح تقارن سطح‌های است که مقطع کانال‌ها در امتیاز محور $Z$ به دو قسمت مساوی تقسیم می‌گردد. لذا شرط مزدیا بر اساس (۱) مشخص می‌شود. با این تفاوت که $n$ جهت عموم بر سطح تقارن است.

دیوارهای صلب: محیط و کانالها در انتقال دیواره‌ها یا کمیتهای وابسته به روی این دیواره‌ها به صورت فیزیکی و یا تجربی معلوم می‌باشد. به عنوان نمونه در یک جریان لزج سرعت سیال روی دیوار به سرعت دیوار مساوی است که به آن شرط عدم لغزش می‌گویند (اگر دیوار ساکن باشد سرعت سیال هم صفر خواهد بود). در سطح حاضر سطح پایینی و جلویی کانال که با $k=1$ مشخص می‌شود دیواره‌ها صلبند و بر روي آنها سرعت‌ها صفرند یعنی $u=v=w=0$.

$\frac{\partial \phi}{\partial n} = 0.0$

(۳)

که در آن $n$ جهت عموم بر مرز خروجی است.

سطح تقارن: در سیاست از هدف‌سازی یک وایا در سطح تقارن ممکن است وجود داشته باشد. این سطح به شرط اینکه سطح تقارن جریان نیز باشد، به عنوان مرز جریان مشخص شده و در
یکی از معمول‌ترین مسائلی است که به عنوان مسئله نمونه برای انتخاب یک نوع برنامه رایانه‌ای باشد. به‌طور معمول، به‌منظور جریان به‌همراه وجود جریان‌های ناهموار در مقاطع مختلف، می‌توان از مدل‌های مربوطه برای ارزیابی برنامه‌ای استفاده کرد. این نهاده مکعبی است که طول وسعت آن یک متغیر است. سرعت صفحه فوق‌العاده بین یک متغیر ثابت و حداقل نرمال شده خطا مدل معادله تصحیح فشار، به صورت زیر تعریف می‌شود.

\[
\text{RES}_P = \max \left( \frac{\Delta m^*}{\bar{m}_m} \right)
\]

که در معادله (4) صورت کسر معنی‌داری \(\Delta m^*\) مقدار می‌شود. در این روش، قسمتی با کیفیت جرمی در هر سلول محاسباتی و تخریب کسر معنی‌داری \(\bar{m}_m\) در جریان کلی وارد شده به میدان جریان است. جزییات این کورنیت در مرجع [15] آمده است.

گفته است که در روش حل عددی یکی از رفتارهای اصلی استفاده از شبکه تلفیقی باری می‌باشد که باید کمیت استفاده کرده و برای وابستگی کورن معادلات اندما حرکت و معادله تصحیح فشار از روش را انجام دهد. یکی از [16] استفاده شده است.

5-5 برنامه برای حصول اطلاعاتی از صحت عملکرد برنامه رایانه‌ای تهیه شده و برای جریان‌های متفاوت با تحلیل آنها در دست است. ابزار اجزا کرده و نتایج را با هم مقایسه کرده و برای آزمون برنامه جریان آزمون یک حسپر درک که این نتایج تحلیل آن موقع است با صورت عددی حل کرده و نتایج حاصل را با هم مقایسه می‌کنیم. در ضمن روش‌های مختلف میانی (هیبرید، هیراریتی دوم و کوئیک)، برای جمله جابجایی با هم مقایسه شده‌اند. به‌دست امکان بسته و نتایج اجزایی نیز با هم مقایسه می‌گردد. برنامه برای جریان در دو خم ۹۰ درجه که اطلاعات تجريي آن هم موجود است. اجزای کرده و در اینجا هم روش‌های مختلف میانی را به کار برده و با نتایج تجريي ميقراى كرده. تطابق حرف جواب‌ها به دست آمده با تحلیل تجربی، کارایی برنامه رایانه‌ای را با اثبات رسیده‌اند. همچنین برای جزيينات آنها می‌پردازیم.

5-5 جریان آزمون در حفره مکعبی با سطح فوق‌العاده متحرک

جریان آزمون در دو حفره مکعبی با سطح فوق‌العاده متحرک

20-5 جریان سیال در یک خم ۹۰ درجه هایکی و هیکرانش [4] جریان در یک کنال با مقع

مرعی را که در آن یک خم ۹۰ درجه وجود دارد را به صورت 1383 استرافن، سال: 3، شماره 12، اسفند 1393

156
تجریب بررسی کردند. براً اساس مدل آزمایش آنها مقیاس کانال مربوط به طول 6 سانتی‌متر بوده و طول قسمت‌های افقی و عمودی کانال به ترتیب 18 و 12 متر هستند. در قسمت افقی و عمودی کانال توسط یک خم با شعاع متوسط 9/2 سانتی‌متر به هم متصل می‌شود. جریان سیال از قسمت افقی کانال وارد شده و از قسمت عمودی آن خارج می‌شود. طبق مدل تجریب‌های پیش‌گرایه، باید رنگ‌دادن جریان بر اساس سرعت متوسط و انحراف قطر هیدرولیکی مقیاس کانال 1990 انتخاب شده است. پس از مطالعه‌ای از تعداد نقاط شکه در حلق عرضی از شکوه‌ای با تعداد نقاط 17×26×17 استفاده شد که شکوه فرآیند نمایش می‌دهد. تحرک دیوارها و خاک کانال معکوس شده است. به علت وجود یک سطح تقاضا و شکوه نیمه‌مقطعی کانال به هنگام حل در نظر گرفته شد. وجود جریان‌های تانکانی پیچیده در مقطع این کانال، به خصوص در خم آن، که به علت تیرگی گریز از مرکز و گردادن‌های فشرده به وجود می‌آید، باعث می‌شود که تجربی عدم به دست آمده در این کانال واژگی‌زایی به روش میانی‌ای انتخاب شود داشته باشند. شکل (4) توزیع سرعت هم راستای کانال را در دو موقعیت از مقیاس خروجی خم کانال نشان می‌دهد. در این شکل Z/b<1 به صفحه تقاضا مربوط بوده و Z/b ≥ 1 به صفحه میانی قرار داده شده است. در این میانی قرار بین صفحه تقاضا و دیوار مربوط می‌شود. در این

شکل 2- توزیع سرعت طولی در خط مرکزی حفره مکتب محاسبه شده

با دو روش عرضی و مقیاس به مرحله [17]
شکل ۳- توزیع سرعت در راستای طولی و در خط مکانی حفره مکعبی در دو رنگولز مختلف افتایی از مرجع [۱۸]

شکل ۴- مقایسه توزیع سرعت در دو موقعیت خروجی خم با نتایج مرجع [۶]

۶- نتایج

پس از حصول اطمینان از صحت عملکرد برنامه که در یک حفره مکعبی و همچنین یک خم ۹۰ درجه که نتایج تجربی آن در دسترس بود اینک جریان آرام در یک لایه با مقطع مربعی و خم‌های با زاویای مختلف مورد بررسی قرار گرفت. به‌ویژه خیابان خمی به ترتیب ۳۰، ۶۰، ۱۲۰، ۱۵۰ و ۱۸۰ درجه. ابتدا جریان را در یک خم ۹۰ درجه که اطلاعات تجربی آن هم موجود است، بررسی می‌کنیم. خم ۹۰ درجه کاربرد زیادتری داشته بروسی نتایج ارائه شده توسط یاو و همکارانش [۷] نتایج مشابهی را نشان می‌دهد. در نتایج ارائه شده توسط آنها هم نتایج حل عددی با استفاده از روش‌های بالا دست مربوط اول، بالا دست مربوط دوم و کوچک‌تر با نتایج تجربی مرجع [۴] مقایسه شده‌اند. شکل (۵) را ببینید. همان گونه که از این شکل دیده می‌شود نتایج حاصل از روش‌های بالا دست مربوط دوم نتایج تجربی را به خوبی دنبال می‌کند. این همان تجربه‌ای است که از بررسی شکل (۴) نیز می‌توان ملاحظه کرد که نتایج مربوط به حالت هیبرید مربوط دوم به نتایج تجربی مرجع [۴] بسیار تزیین‌کردن و نتابیراین در بررسی‌های انجام شده فقط از هیبرید
پس از اعمال شرایط مورد توجه است، سپس به دیگر جهات می‌پردازیم. البته شرایط ذکر است که در همه این خصوص مقطع کاتال مورد بررسی مریع و با مستقیم است. برای تجزیه و تحلیل بیشتر جریان پرتویلیات سرعت در چهار مقطع مختلف حتمی 90 درجه رسم شده‌اند. همان‌گونه که در شکل (6) بیده می‌شود این پرتویلیات سرعت در مجسمه مختلف K اندیسی است که برای چهار مقادیر مختلف K در سطح شده‌اند. موقتیت گروه‌ها در راستای محور Z مشخص می‌کند به طوری که در دوی دیوار صلب قرار دارد و با افزایش مقادیر آن به سمت محور تقارن پیش می‌رود، به هر حال در شکل (6) نشان می‌دهد که در نزدیک بوده و S=17 در نزدیک جدارها K=3 به علت اثرات دیواره در کاهش سرعت، پرتویلیات سرعت در ورود به کاتال بیشتر می‌باشد و با جلوگیری در داخل خم جدار جریان و حتی جریان پاگشیتی ضعیفی قابل تشخیص داد و هنگامی که زاویه خم حدود 15 درجه و بیشتر سی‌می‌رسد این پرتویلیات رشد قابل ملاحظه‌ای را نشان می‌دهد که این ناشی از جریان در ورود به کاتال است که از سطح دیگر وارد این شکل شده‌اند. با نزدیک بودن به مقطع خروجی می‌زاید به کنار رفتن این پرتویلیات به شکل نهایی خود نزدیک می‌شود. برای درک بهتر موضوع و نشان دادن چگونگی عبور جریان از سطح چگونگی عبور جریان از سطح دیگر به این صورت عمده است که به وضعیت خطوط جریان در مقطع خروجی (زاویه 90 درجه) که در شکل (7) رسم شده‌اند.
گردابهای که محور آن نزدیک جداره متفاوت سطح تقارن کانال است شکل گرفته و با پیشروی به جلو این گردابه شکسته و به دو گردابه ضعیفتر تبدیل می‌شوند، این به مقطع خروجی آثاری از شکل گیری گردابه سوم ضعیفتری در نزدیکی محور تقارن نیز به جهت می‌خورد. در حقيقة با ورود جریان به خم، یک گردابه ساده و لای قوی تشکیل می‌شود و به مرور با کاهش خم کانال این گردابه قوی به گردابه‌های ضعیفتری شکسته شده.

شکل ۶- نتایج سطح مقطع کانال در خم ۹۰ درجه به منظور ارزیابی اثرات شکل سطح مقطع کانال، چند حالت دیگر را برای خم ۹۰ درجه بررسی کردیم. در هر حالت مقطع
زایه ۴۰ درجه در خم ۹۰ درجه (عکس)

زایه ۳۰ درجه در خم ۹۰ درجه

زایه ۶۰ درجه در خم ۹۰ درجه

زایه ۹۰ درجه در خم ۹۰ درجه (عکس)

شکل ۸- پرداختهای سرعت در مقطع‌های مختلف خم ۹۰ درجه از ورودی تا خروجی

حالت اول: در حالی که نرخ ۱۰ درجه به گونه‌ای به یک مقطع مستطیلی تغییر می‌دهد که به نسبت اضلاع (۲:۱) می‌باشد، به‌طور کل در راستای محور X به مقدار ۳ سانتی‌متر کاهش داده و ارتقاء مقطع کانال را به مقدار ۲ سانتی‌متر افزایش می‌دهد. در نتیجه قطر هیدرولیکی، آن هم‌اندیش قبل (مقطع مربعی) ثابت ماند. نتایج حاصل از اجرای برنامه برای مربعی خم ۹۰ درجه به گونه‌ای به یک مقطع مستطیلی تغییر شکل داده که قطر هیدرولیکی مقطع مستطیلی حاصل با قطر هیدرولیکی مقطع مربعی برابر باشد. به این ترتیب عدد رينولدز و سرعت متوسط ورودی همه این کانالها ثابت باید باقی مانند. این حالتا به قرار زیرنداخته می‌باشد:

(۲:۱)
صنعت یک گرداریا واحد و کشیده تبدیل شوند. زیرا این در گرداریا در یک گرداریا با محدوده بزرگتر محصور شده، شکل‌های (10) و (12) را بیپین. این برخی پیچیدگی‌ها و موانع گوناگون مطابق در چرخ سرعت در یک خم ۹۰ دره را نشان می‌دهد و همین‌طور به‌طور عمومی محدوده میان بردارها در راستای عرضی، گرداریای میانی مبتنی بر گرداریا که در مجاورت دیواره خارجی خم و سطح نظارت کنال قرار دارد بود.

سیر این حالت در چنین حالاتی که آن را با نسبت اضلاع (3/4) معرفی می‌کنیم، به‌طور کلی در راستای محور ۲ کاهش داده و ارتفاع مقطع کانال را به کاهش افزایش می‌دهیم که نتیجه‌ی هیدرولیکی آن ممکن است (مقطع مربعی) شود. نتایج حاصل از اجرای برنامه برای این حالت به صورت بردارهای سرعت در مقطع طولی کانال در شکل (13) نشان داده شده است. از بررسی این شکل‌ها دیده می‌شود که اگر گرداریا که در مجاورت دیواره خارجی خم و سطح نظارت کنال قرار دارد، را بپیچیم، در ضمن وسعت گرداریای کوچکی که در مجاورت دیواره خارجی خم و سطح نظارت کنال قرار دارد افزایش یابد.

حال حاضر: در این حالت که آن را با نسبت اضلاع (3/4) معرفی می‌کنیم، به‌طور کلی در راستای محور ۲ افزایش داده و ارتفاع مقطع کانال را به کاهش افزایش می‌دهیم که نتیجه‌ی هیدرولیکی آن ممکن است (مقطع مربعی) شود. نتایج حاصل از اجرای برنامه برای این حالت به صورت بردارهای سرعت در مقطع طولی کانال در شکل (15) نشان داده شده است. از موانع این شکل‌ها دیده می‌شود که اگر گرداریا که در مجاورت دیواره خارجی خم و سطح نظارت کنال قرار دارد، را بپیچیم، در ضمن وسعت گرداریای کوچکی که در مجاورت دیواره خارجی خم و سطح نظارت کنال قرار دارد افزایش یابد.

درای این حالت به صورت بردارهای سرعت در مقطع طولی کانال در شکل (9) نشان داده شده است. در این شکل گروه‌های طولی چرخان فقط در مقاطع، ۱۳ و ۱۴ که نشان داده شدهاند. همان گونه که در این شکل دیده می‌شود، اگر گرداریا که در راستای عرضی، گرداریای میانی موجود شده و مرکز آنها از هم دور می‌شوند، شکل (10) را بپیچیم، در ضمن وسعت گرداریا کوچکی که در مجاورت دیواره خارجی خم و سطح نظارت کنال قرار دارد، را بپیچیم، در ضمن وسعت گرداریای کوچکی که در مجاورت دیواره خارجی خم و سطح نظارت کنال قرار دارد، را بپیچیم.
شکل ۱۲- خطوط جریان در مقطع خروجی خم ۹۰ درجه

ar = ۳

شکل ۱۳- پروفیلهای سرعت در مقطع طولی خم ۹۰ درجه

شکل ۱۴- خطوط جریان در مقطع خروجی خم ۹۰ درجه
در جدول (2)، نتایج به دست آمده برای حالات اولیه وچار
حالت فوق که جمعاً پنج حالت مختلف می‌شوند، ارائه شده‌اند.

بررسی نتایج این جدول نشان می‌دهد که برای یک عدد
ریانولز مشخص حداکثر افت فشار در مقطع مربعی اتفاق

\[ \xi = \frac{2\Delta p}{\rho U^2} \]  

\[ \text{در جدول (2)} \]

\[ \text{نتایج به دست آمده برای حالات اولیه وچار} \]

\[ \text{حالت فوق که جمعاً پنج حالت مختلف می‌شوند، ارائه شده‌اند.} \]

\[ \text{بررسی نتایج این جدول نشان می‌دهد که برای یک عدد} \]

\[ \text{ریانولز مشخص حداکثر افت فشار در مقطع مربعی اتفاق} \]

\[ \xi = \frac{2\Delta p}{\rho U^2} \]

\[ \text{در جدول (2)} \]

\[ \text{نتایج به دست آمده برای حالات اولیه وچار} \]

\[ \text{حالت فوق که جمعاً پنج حالت مختلف می‌شوند، ارائه شده‌اند.} \]

\[ \text{بررسی نتایج این جدول نشان می‌دهد که برای یک عدد} \]

\[ \text{ریانولز مشخص حداکثر افت فشار در مقطع مربعی اتفاق} \]

\[ \xi = \frac{2\Delta p}{\rho U^2} \]

\[ \text{در جدول (2)} \]

\[ \text{نتایج به دست آمده برای حالات اولیه وچار} \]

\[ \text{حالت فوق که جمعاً پنج حالت مختلف می‌شوند، ارائه شده‌اند.} \]

\[ \text{بررسی نتایج این جدول نشان می‌دهد که برای یک عدد} \]

\[ \text{ریانولز مشخص حداکثر افت فشار در مقطع مربعی اتفاق} \]

\[ \xi = \frac{2\Delta p}{\rho U^2} \]
جدول ۲- افت‌شمار و ضریب افت‌شمار به‌بعد در مدت خم ۹۰ درجه مختلف

<table>
<thead>
<tr>
<th>ar</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δp_r</td>
<td>0/01986</td>
<td>0/10962</td>
<td>0/141985</td>
<td>0/20786</td>
</tr>
<tr>
<td>z</td>
<td>1</td>
<td>0/13358</td>
<td>0/13358</td>
<td>0/2057</td>
</tr>
</tbody>
</table>

متلا در خروجی‌های خم‌های ۳۰ و ۶۰ درجه فقط یک گردایه قابل شناسایی است. در حالی که در خم ۱۲۰ درجه تعداد گردایها به ۳ تا ۴ عدد افزایش می‌یابد.

برای ارزیابی اثر زاویه خم در زوايا برگزیده شاید بهتر باشد که همه ان در خم ۹۰ درجه با هم مقایسه شوند. این موضوع را با مراجعه به نشانه‌های (۱۸-۱۹) می‌توان نتایج در مرحله مختلف ۹۰ درجه خم‌های مختلف ضریب افت‌شمار در مقایسه شود. گونه‌ها و شکل‌ها در این مثابه دیده می‌شود، خطوط جریان در مقطع ۹۰ درجه خم‌های مختلف رسماً شناخته شده و چنینکه برای افزایش زاویه خم در خم ۹۰ درجه تعداد گردایها در زاویه ۹۰ درجه از به ۴ افزایش یافته است.

۳-۶- افت‌شمار و استحکام انرژی در خم‌های مختلف

برای ارزیابی یک مقایسه کمی برای جریان در خم‌های مختلف ضریب افت‌شمار یکی بعد از افزایش جریان از خواص محاسبه کرد و نتایج آن را در جدول (۳) ارائه می‌کند. در این جدول مقادیر ضریب افت‌شمار خم به طور مستقل و مقادیر نسبی آن در مقایسه با خم ۹۰ درجه نشان داده شده‌اند.

همان‌گونه که در نتایج جدول این وجود نشان می‌دهد با افزایش زاویه خم از مقدار ۹۰ درجه ضریب افت‌شمار به ترتیب به میزان ۲۴/۱۷/۱۸/۱ و ۵ درصد جریان خم‌های ۱۲۰ و ۱۸۰ درجه افزایش می‌یابد. در حالی که برای خم‌های ۶۰ و ۳۰ درجه ضریب افت‌شمار با میزان ۲/۱۷/۴/۵ درصد کاهش می‌یابد. نتایج تجربی و آزمایش‌های می‌تواند این مطلب را تأیید می‌کند. برای این منظور جدول (۴) را از مرجع [۱] تخلیص شده می‌توان به عنوان نمونه آورد. همان‌گونه که نتایج این جدول نشان می‌دهد با کاهش زاویه خم ضریب افت‌هم کاهش می‌یابد و

می‌افتد و با دور شدن نسبت اضلاع مقطع کانال از عدد یک (مقطع مربعی)، افت‌شمار در گذش از ۹۰ درجه افزایش می‌یابد.

بررسی دقیق‌تر نتایج جدول (۴) نمایان می‌کند که به هنگام عبور جریان از یک خم ۹۰ درجه اگر جهت خم کمتر به گونه‌ای باشد که در دیوار مقابل یکیِی با کرک‌سوزی نزدیک شود میزان افت‌شمار بیشتر و بر عکس اگر چه باشد که به دیوارهای خم شده از هم دور باشد میزان افت‌شمار کمتر خواهد شد و این در صورت افزایش شده در یک مقطع مستطیلی از یک مقطع مربعی معادل بیشتر است.

بنابراین آرام در یک کانال مربعی با خم‌های مختلف پس از بررسی خم ۹۰ درجه پنجم خم مختلف دیگر مورد بررسی قرار گرفتند. این خمهای شامل در خم ۳۰ و ۶۰ درجه‌های کمتر از ۹۰ درجه ان و به دنبال آن سه خم دیگر در زوايا ۱۲۰، ۱۸۰ و ۲۱۰ درجه مورد مطالعه قرار گرفته که بیشتر از ۹۰ درجه بودند. همان‌طور که در تمامی ان خم‌هایی نیز مقطع کانال بکار رفته یک مقطع مربعی شکل است که به علت وجود نتایج در آن فقط نصف آن حل شده است و بنابراین در اینجا نیز کلیه شکل‌ها دارای محور تقفانند که با K=۱۷ مشخص می‌شوند.

نمودارهای همانند نمودارهای مربوط به خم ۹۰ درجه برای هر حالت استخراج شده که برای حفره مربوط به یک طولی سرعت در شکل‌های (۱۷-۴) همانند شدند. بررسی کلی این نمودارهای نشان می‌دهد که لایه کلی جریان طولی روند مشابهی را دنبال می‌کند ولی بررسی دقیق الگوهای عرضی که در اینجا نشان داده شدند از افزایش تعداد گردایها با افزایش زاویه خم دارد به طوری که
شکل 17-الف- پروفیله‌ای سرعت در مقاطع طولی خم ۳۰ درجه

شکل 17-ب- پروفیله‌ای سرعت در مقاطع طولی خم ۶۰ درجه

شکل 17-ج- پروفیله‌ای سرعت در مقاطع طولی خم ۱۲۰ درجه

شکل 17-د- پروفیله‌ای سرعت در مقاطع طولی خم ۱۵۰ درجه
شکل 17 - چهارم، پروپیلهای سرعت در مقاطع طولی خم ۱۸۰ درجه

شکل 18 - الف، خطوط جریان در مقعّع ۹۰ درجه خم ۹۰ درجه

شکل 18 - ب، خطوط جریان در مقعّع ۹۰ درجه خم ۱۲۰ درجه

شکل 18 - ج، خطوط جریان در مقعّع ۹۰ درجه خم ۱۵۰ درجه

شکل 18 - د، خطوط جریان در مقعّع ۹۰ درجه خم ۱۸۰ درجه
جدول 3 - ضریب افت فشار پی بعد در خم‌های مختلف

<table>
<thead>
<tr>
<th></th>
<th>180</th>
<th>150</th>
<th>120</th>
<th>90</th>
<th>60</th>
<th>30</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r/d</td>
<td>1/00</td>
<td>0/62</td>
<td>0/76</td>
<td>9/22</td>
<td>26/0</td>
<td>41/0</td>
<td>61/0</td>
</tr>
</tbody>
</table>

جدول 4 - ضریب افت فشار پی بعد در خم 90 درجه با شمع انحناهای مختلف (افتباس از مرجع [1])

| (درجه) | 90  |
|.VALUE | 0   |
| \( \frac{\xi}{\xi_{90}} \) | \( \frac{r/d}{2} \) |
| \( \frac{\xi}{\xi_{90}} \) | \( \frac{r/d}{3} \) |
| \( \frac{\xi}{\xi_{90}} \) | \( \frac{r/d}{4} \) |

این همان چیزی است که جدول (4) هم که از مرجع [1] افتباس شده آن را نشان می‌دهد. البته جهان هندسه مقطع و شمع انحنا در حالی پیکسان نیستند. انتخاب می‌روید که جواب‌ها هم از نظر کمی متفاوت باشند ولی روند آنها یکسان است.

7- نتیجه‌گیری

بررسی جریان در کانال‌های با خم‌های مختلف نشان داد که این جریان‌ها درای پیچیده‌کردن خاصی به دارد و بسته به میزان زاویه خم و هندسه مقطع کانال، جریان‌های مانند کاملاً متفاوتی در پاپینی دست این مقاطع تشکیل می‌شود که بر میزان افت فشار حاصل اثر خاص خود را می‌گذارد. پس این ترکیب که با افزایش زاویه خم به علت تشدید اثرات جریان‌های ثانویه اثرات افرا دریبوش که ویژه به منظور مویان لوله‌کشی در کانالها فاقد می‌باشد و این خود کاربرد این امر است که به این اقدام پیشنهاد می‌کنم. استفاده کرده علاوه بر این از آنجا که این گرایی جریان خروجی از

<table>
<thead>
<tr>
<th>قدردانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>نویسنده مقاله از قطعی CFD که امکانات رایانه‌ای را در اختیار وی قرار داد، اکسپرتی سازمان قدردانی و تشکیل می‌نماید.</td>
</tr>
</tbody>
</table>
1. Computational Fluid Dynamics
2. Non-Staggered Grid
3. Hybrid
4. Quick

پیوست الف:

\begin{align*}
U &= u \xi_x + v \xi_y + w \xi_z \\
V &= u \eta_x + v \eta_y + w \eta_z \\
W &= u \zeta_x + v \zeta_y + w \zeta_z \\
a &= \xi_x^2 + \xi_y^2 + \xi_z^2 \\
b &= \eta_x^2 + \eta_y^2 + \eta_z^2 \\
c &= \zeta_x^2 + \zeta_y^2 + \zeta_z^2 \\
d &= \xi_x \eta_x + \xi_y \eta_y + \xi_z \eta_z \\
e &= \xi_x \zeta_x + \xi_y \zeta_y + \xi_z \zeta_z \\
f &= \xi_x \eta_x + \zeta_y \eta_y + \zeta_z \eta_z \\

\vec{\zeta}_y &= J (x \xi_z \eta - x \eta z \xi) \\
\vec{\zeta}_x &= J (y \xi_x \eta - y \eta x \xi) \\
\vec{\zeta}_z &= J (z \xi_z \eta - z \eta z \xi) \\
\vec{x}_x &= J (y \xi_x \eta - y \eta x \xi) \\
\vec{x}_y &= J (z \xi_z \eta - z \eta z \xi) \\
\vec{x}_z &= J (z \xi_z \eta - z \eta z \xi) \\
\vec{\eta}_x &= J (x \xi_z \eta - x \eta z \xi) \\
\vec{\eta}_y &= J (y \xi_x \eta - y \eta x \xi) \\
\vec{\eta}_z &= J (z \xi_z \eta - z \eta z \xi) \\
\vec{\zeta}_x &= J (y \xi_x \eta - y \eta x \xi) \\
\vec{\zeta}_y &= J (z \xi_z \eta - z \eta z \xi) \\
\vec{\zeta}_z &= J (z \xi_z \eta - z \eta z \xi) \\
\vec{f}(\xi, \eta, \zeta) &= 1.0 \\
J &= \frac{\vec{f}(\xi, \eta, \zeta)}{\vec{\xi}_x (y \xi_z \eta - y \eta z \xi) + \vec{\xi}_y (y \xi_z \eta - y \eta z \xi) + \vec{\xi}_z (y \xi_z \eta - y \eta z \xi)}
\end{align*}