روش‌ی برای طراحی فن های محوری

ابراهیم‌نژادی*، مهدی‌پرستویی**

چکیده

على رغم پینه شدن های محوری کا ربردیا دی دارند، روشنی طراحی و تدوین شده‌ای برای این نوع فن‌ها کمتر به چشم‌ها می‌خوردو. خصوصاً در منابعی مثل تیاکون روشنی مدولی برای طراحی فن های محوری با عملکرد بالا و انگرایی‌های تازه‌واره است. در این مقاله مخصوص سه‌ها استفاده از روش‌های تولید محوری با روش‌های برزینه و روش‌های خروجی اعمال طراحی گردند. مسئله این روشنی دوگانه در زمینه جامعه‌نیز و مبتنی بر استانداردهای اساسی‌اند. در این مقاله به آن‌ها در مقابل برخی روش‌ها و مواقعی که به روش‌های موجود درآمده است ابهام و دیدگاه‌های موجود درآمده است و ابهام و دیدگاه‌های موجود درآمده است.

مقدمه

فن های محوری مورد استفاده زیادی در صنعت دارند این فن‌ها در سه‌ها محدودیت‌های بالاتر با عالی‌ترین و نیز محدود برای قرار‌گیری گردند. فن‌های محوری را می‌توان به سه‌چاره در حد خاص است:

نمود.

* استادیار دانشکده مهندسی مکانیک، دانشگاه صنعتی فسا
** مهندسی برق و کنترل، کارخانه‌های بزرگ‌های آهن اصفهان
استقلال

فن‌های آزادی‌فاین‌های سیرکوله، مثل پنک‌ها، فن‌های بین‌دوپلاسی‌های برگ زنده‌کننده، برگ‌های درون‌مایه‌ها گونه‌های رضا واقعیت فن‌های محوری داخل کالای‌ها مورد بررسی قرار می‌گیرند. فن‌های محوری از آبی‌فاین‌های خودم‌فاین‌هایی که از دکتران‌صفحه‌ای ناحیه استفاده می‌کنند.

۱- فقط با یک رنگ.
۲- با پرداه‌های عکسی اولیه‌رانی صورت می‌گیرد.
۳- با پرداه‌های عکسی وعده‌رانی صورت می‌گیرد.
۴- با دوپلاسی می‌کرده‌اند.

فن‌های نوع سوم از این برده‌ها ساخت دیگری به‌کار گرفته‌اند. در واقع ناحیه‌های آبی‌فاین‌های محوری از رنگ‌های مختلف تاریک‌افراپوش دیده می‌شود. فن نوع تنها برای قدرت‌های بالا مورد استفاده قرار می‌گیرد.

شکل (۱) نموده‌ای از فن‌های محوری از فن‌های با رنگ را به‌صورت می‌دهد.

طرح‌های پروانه‌های محوری و تندیس‌های مناسب پروانه‌های آواز واسط قرن نوزدهم تا پایان این قرن براساس نتایج تحقیقاتی پیاده‌اند. این‌گونه به‌کار بردن‌هایی نیز در روش‌های بسیاری از روش‌های لیفته‌گیری و درگیری ارتباطی می‌دهد.

که قدرت را مستقیماً به‌تغییر منظم‌سال ربط می‌دهد. اما عدم طراحی فن‌ها نیز ممکن است. الگوی بکار مانند بی‌پیش‌ای آن‌ها اخیر، حل عدیل کردن سیال در ترول‌های این‌کانال‌پیش‌برداری و روش‌هایی معمول در پردازش بستگی به‌کار بردن پیش‌ای جریان و روی این‌ها خطوط جریان را تجربه می‌کنند. در این‌جا، روی هوا درون‌زا می‌بایست به‌صورت بسیار وحشتناک و با قدرت بسیار می‌شود. حتی برای سیال‌های حقیقی، حل عدیل ترک و برای دستگیری در دنیای می‌شود. مراجع [۲۰۱۷] جیره‌های اسب‌رباه وشیا

روش برای طراحی ...
اضافات

زاویه خمیدگی: \(\theta \)

سیرعت محرور سیال به سرعت مطلق سیال به معرف خمیدگی ایرفوریل است و از هدف مناسبی می‌توان نشان داد که:

\[
\theta = (\beta_1 - \beta_2) + (\delta - \epsilon - i) + \frac{\delta}{2}
\]

زاویه استگر: \(\xi \)

امتداد و امتداز ایرفوریل و امتداز محور عرض از هدف مناسبی می‌توان داد که:

\[
\xi = \beta_1 - i - \frac{\delta}{2}
\]

سیرعت طول و ترا ایرفوریل هفاطمه دولپو متوازن

\[
\sigma = \frac{c}{\xi}
\]

ضریب جریان: \(\lambda \)

در شرایط دلخواه (و درنوع پره

\[
\lambda = \frac{v_a}{\xi R}, \quad \Lambda = \frac{v_a}{\xi R}
\]

ضاوت خمیدگی ایرفوریل: \(\psi \)

در محدوده خمیدگی ایرفوریل قوسی از ادامه به می‌توان از هدف مناسبی می‌توان داد که ممکن خمیدگی ایرفوریل

که زیب و دی‌پره تاثیر طول پهن

\[
b = \frac{1}{2} c \tan \frac{\theta}{2}
\]

ضریب لیفت:

\[
C_L
\]
روشی برای طراحی...

\[C_L = \frac{L}{\frac{1}{2} \rho c v_m^2} \]

\[C_{DP} = \frac{D_p}{\frac{1}{2} \rho c v_m^2} \]

\[\Omega_s = \frac{Q^{\frac{3}{4}}}{gH} \]

\[k = \frac{\frac{\Delta P_1}{k_s}}{\frac{1}{2} \rho v_a^2} \]

\[\Delta P_{th} = \frac{1}{2} \rho v_a^2 \]

\[k = \frac{\frac{\Delta P_1}{k_s}}{\frac{1}{2} \rho v_a^2} \]

\[k = \frac{\frac{\Delta P_1}{k_s}}{\frac{1}{2} \rho v_a^2} \]

\[\Omega_s = \frac{Q^{\frac{3}{4}}}{gH} \]
اطلاعات تشکیل‌گذار از مراحل طراحی
در این بخش اطلاعات مربوط به خواص آکرودینا میکی ایرفوریلها
که در مراحل طراحی بره‌های ساکن و متحرک فن‌ها مورد استفاده قرار می‌گیرند و
علاوه بر مراحل طراحی بره‌های ساکن و متحرک با اختصاص‌دوزه می‌شوند. همچنین
اطلاعات موردنیز زیر طرح‌ها که مطابق با "آزمایش طراحی کسب شده است" نیز
درکرده‌اند.

ایرفوریل‌های مناسب برای بره‌های فن

بطورکلی انواع مختلفی از ایرفوریل‌های برای بره‌های فن‌ها محسور
استفاده‌های را رعایت می‌کنند. در فن‌های اپرا با فن‌های زیر دست‌بکار می‌شود.
ایرفوریل‌های بسته‌بندی دارای فن‌های معیاری در فن‌های مانند ایرفوریل‌های
نیم‌طیغه بسته‌بندی می‌شوند. در فن‌های بازان می‌توان از ایندکس کم‌تراز
به‌کارگیری که از ایرفوریل‌های با فن‌های مانند ایرفوریل‌های
می‌شود. دریت‌های ایرفوریل‌های آب‌بریز نیز به‌عنوان ممکن استفاده
ایرفوریل‌های بسته‌بندی در فن‌های ایرفوریل‌های سی‌سی، ایرفوریل‌های سری ۶۵ - NACA
با استفاده‌های بسته‌بندی و ایرفوریل‌های سی‌سی، ایرفوریل‌های با فن‌های

اکتاکاه‌ها از ایرفوریل‌های با فن‌های خیس‌بندی دیگر استفاده در
فن‌هایی است که در اینجا سرفاً "اطلاعات مربوط به قسمت ایرفوریل‌های
که در مراحل طراحی بره‌های ساکن و متحرک فن‌ها مورد استفاده قرار
می‌گیرند و علاوه بر مراحل طراحی بره‌های ساکن و متحرک با
اختصاص‌دوزه می‌شوند. همچنین اطلاعات موردنیز زیر
طرح‌ها که مطابق با "آزمایش طراحی کسب شده است" نیز
درکرده‌اند.
روشی برای طراحی...

برای خمیدگی ماکزیمم متناوت، عدد برونیتر میدانی 0.02 و میزان نسبی $\frac{x}{c} = \frac{0.02}{c}$ نمایش داده شده است. در حوالی عدد برونیتر میدانی 0.02، ضریب درگ بر روی لایه ای بر فریلاین ابر فروزی در حدود 0.6/5 < Re < 1.7 x 10^7، ضریب لایه و درگ تغییر چندانی باعث ریختن نمی‌کند. علاوه بر ضریب درگ بر روی لایه ای بر فریلاین، افت دراثر جریان ناتوانی در میان درظال ضریب درگ ناتوانی بیان کرد. این ضریب را می‌توان با رابطه

$$C_{D_{BF}} = a_1 C_{L}^2$$

تخمین داده کنیم a_1 بین 0.4/5 و 0.4/650 همیشه کنون و درد های بالاتری تا 15% کاهش می‌یابد.

نتایج داده شده در فرقوین برای یک ابر فروزی مجزا دقیق است. در حالی که برای برداشتن افزایش میزان می‌دهد $\frac{C_L}{C_{D_{BF}}}$. در صورتی که ضریب لایه و این ضریب لایه مجزا باعث می‌شود، شکل (2) نسبت ضریب لایه واقعی به ضریب لایه مجزا باعث می‌شود [4]. همچنین به دلیل طول عدد برونیتر، هیکل یک نیروی نیروهای در کنترل، اثرات درکنترل (در طول برخی از این رابطه) را برای درکنترل، روش بکارگیری در این مورد برای منابعی کارگیری می‌باشد که در آن جریان نزدیک، شعاع و با دوران آزاد مانند منابعی می‌تواند به همین اساس طراحی می‌گردد.

طلسبت بهره‌های بعضاً عوامل متعددی بستگی دارد. روابط تجربی متعددی برای محاسبه طلسبت بیشتر در اینجا است که از آن جمله در مراجع [6، 7، 8] آورده شده است. رابطه‌ای که توسط رویالی بیشتر داده، به شرح نیلی می‌باشد:

$$\frac{\cos \beta}{c} - \frac{\tan \beta_1 - \tan \beta_2}{c} = 0.4$$

(14)
استقلال

جهت محاسبه طول بیشتر، در دقتی نهایی بدون یبرهای ساق‌روپرداز و یک‌باره برای یک‌باره ساق‌روپرداز خروجی به‌ترتیب می‌توان از معادلات ۵و۶ استفاده نمود. توجه کنید که فرآیند جریان ورودی در این دقتی نهایی بدون یبرهای ساق‌روپرداز خروجی به‌ترتیب می‌توان از معادلات ۵و۶ استفاده نمود.

در این نسشت، تولید است. لازم به توضیح است که حدبالت‌های دریکره‌بره منحراف‌ساز لیور در این دقتی نهایی یک‌باره به‌ترتیب می‌توان از معادلات ۴ و ۵ استفاده نمود.

معادلات ۶و۷ مساوی است. در این نسشت، تولید است. لازم به توضیح است که حدبالت‌های دریکره‌بره منحراف‌ساز لیور در این دقتی نهایی یک‌باره به‌ترتیب می‌توان از معادلات ۴ و ۵ استفاده نمود.

در این نسشت، تولید است. لازم به توضیح است که حدبالت‌های دریکره‌بره منحراف‌ساز لیور در این دقتی نهایی یک‌باره به‌ترتیب می‌توان از معادلات ۴ و ۵ استفاده نمود.

همچنین، در فرآیند لیفت و درک حاصل از اساده کردن معالات منحنی، پس از حذف عبارات کوچک‌ساز می‌باشد:

\[K_{th} = \frac{2}{\lambda} (\varepsilon_s + \varepsilon_p) \]

\[C_D = \frac{1}{\rho R} \cos^3 \beta_m \]

\[C_L = \frac{2}{\rho} (\varepsilon_s + \varepsilon_p) \cos \beta_m - \tan \beta_m \]

که در آن‌ها، زاویه بین سرعت متوسط جریان، \(\beta_m \) و آندازه‌گیری‌های \(v_m \) و \(\beta_m \) می‌باشد.
روشی برای طراحی …

استاد‌ریپم:

\[\tan \beta_m = \left[1 - \frac{1}{2} \left(\varepsilon_s - \varepsilon_p \right) \lambda \right] / \lambda = \frac{1}{2} (\tan \beta_1 + \tan \beta_2) \] (18)

همچنین با استفاده از روابط سرعت ورودی و خروجی می‌توان نوشته:

\[\tan \beta_1 = \frac{(1 + \varepsilon_p \lambda)}{\lambda}, \quad \tan \beta_2 = \frac{(1 - \varepsilon_s \lambda)}{\lambda} \] (19)

با استفاده از روابط (15) و (16) داریم:

\[\frac{K_R}{K_{th}} = \frac{C_{Dp} + C_{Dsf}}{C_L} \left(\frac{\lambda}{\cos^2 \beta_m \lambda} \right) = \frac{C_D}{C_L} \left(\frac{\lambda}{\cos^2 \beta_m \lambda} \right) \] (20)

و \[X = \frac{K_R}{K_{th}}, \quad \lambda = \frac{\lambda}{X} \]

با جایگذاری در رابطه فوق واینکه \(\beta_m \) به دست می‌آید:

\[\frac{K_R}{K_{th}} = \frac{C_D}{C_L} \left[\frac{\lambda}{X} + \frac{X}{\lambda} - (\varepsilon_s - \varepsilon_p) + \left(\frac{\varepsilon_s - \varepsilon_p}{4X} \right) \right] \] (20)

۱- معادلات طراحی پره‌های ساکن:

با روشی مشابه‌ی نحوه بسته‌ی اوردن معادلات، معادلات پره‌های ساکن قبل از پرتو (P) و پره‌های ساکن بعد از پرتو (S) در سیستم بدست می‌آید:

\[\beta_{mS} = \tan^{-1} \frac{\varepsilon_s}{2}, \quad \beta_{mp} = \tan^{-1} \left(\frac{-\varepsilon_p}{2} \right) \] (21)

\[C_{LS} = \frac{2}{\sigma} \varepsilon_s \cos \beta_{mS}, \quad C_{LP} = \frac{2}{\sigma} \varepsilon_p \cos \beta_{mp} \] (22)

\[C_{DS} = \frac{1}{\sigma} k S \cos^3 \beta_{mS}, \quad C_{Dp} = \frac{1}{\sigma} k P \cos^3 \beta_{mp} \] (23)

1. Prerotor ; 2. Straightener
استقلال

با استفاده از ارتباط کارتر [9]، زاویه انحراف سیال بصورت زیر تعیین می‌شود:

\[\delta = \frac{m \theta}{\sqrt{\sigma}} \] (24)

از طرفی با اعمال رابطه، فوق دروابط، (2) داریم:

\[\theta = \frac{\beta - \beta_0 - i \frac{\beta}{1 - \frac{m}{\sqrt{\sigma}}}}{1 - \frac{m}{\sqrt{\sigma}}} \] (25)

که در آن مقادیر ثابتی است. در برخی حالت‌ها برای پره‌های ساکن m=0.19 و برای پره‌های ساکن قبل از رتور، m=0.26 پیشنهاد می‌شود که مقادیر 1 نیز در بررسی نظرگرفته شوند. لذا:

\[\theta_s = \frac{\beta_1}{1 - \frac{0.26}{\sqrt{\sigma}}} \quad , \quad \theta_p = \frac{\beta_2}{1 - \frac{0.19}{\sqrt{\sigma}}} \] (26)

همچنین از ارتباط (3)، زاویه استگن برای پره‌های ساکن به‌شرح دیل است:

\[\xi_s = \frac{\beta - \theta}{2} \quad , \quad \xi_p = \frac{\theta}{2} \] (27)

شکل (2) محقق تغییرات تلفیقی بر حسب ضرب، جریان را برای پره‌های ساکن نمایش می‌دهد. پس از زیاده کردن معادله، منش و ضریب افت برش‌های ساکن بصورت زیر در می‌آید:

\[\frac{k_s}{K_{th}} C_L = \frac{\lambda}{\cos^2 \beta_{ms}} \frac{\epsilon_s}{\epsilon_s + \epsilon_p} \quad , \quad \frac{k_p}{K_{th}} C_L = \frac{\lambda}{\cos^2 \beta_{mp}} \frac{\epsilon_p}{\epsilon_s + \epsilon_p} \] (28)

ویا می‌توان یک غربال، ضریب افت فشار در روش پره‌ی دارد استفاده از:

\[\frac{k_s}{K_{th}} = [\frac{\Lambda}{X} (0.032 + 0.01 \frac{\epsilon_s}{\epsilon_s + \epsilon_p}) \frac{\epsilon_s}{\epsilon_s + \epsilon_p}] \] (29)
روشی برای طراحی...

\[
\frac{K_p}{K_{th}} = \left[\frac{\lambda}{X} \right] \left[\frac{\varepsilon_p}{\varepsilon_s + \varepsilon_p} \right] M_s
\]
جدول ۱- تغییرات بر حسب \(X_D \) بر حسب \(\eta \)

<table>
<thead>
<tr>
<th>(X_D)</th>
<th>۰.۴</th>
<th>۰.۵</th>
<th>۰.۷</th>
<th>۰.۷۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>زاویه، راس مخروط (درجه)</td>
<td>۱۸</td>
<td>۱۷</td>
<td>۱۴</td>
<td>۱۲</td>
</tr>
</tbody>
</table>

ضریب افت ناشی از ناحیه‌ی انتهایی رتور، \(\eta \) \(X_D \) با مشخصات جدول ۱، محاسبه می‌شود.

\(\eta \) جهت تعیین، راندمان کل در دو رابطه زیر بررسی می‌شود:

\[
\eta_T = \frac{K_{th} - K_R - K_S - K_P - K_D}{K_{th}}
\]

(۲۱)

قدرت فن نیروتیک تعیین، از رابطه زیر محاسبه می‌شود:

\[
p = \frac{1}{2} \rho \frac{v^2}{a} K_{th} \eta \rho \Omega = \frac{1}{2} \rho \frac{v^2}{a} K_{th} \left(\frac{2 \pi N}{60} \right) \Lambda \left(1 - X_B \right)^2
\]

(۲۲)

که در آن \(N \) دوره محور بر حسب دور در دقیقه است.

\(\eta \) به‌همراه دو رابطه (۲۱) و با جایگزینی روابط ضرب افت، داریم:

\[
\eta = 1 + C_1 - \frac{C_2}{\Lambda} + C_3 \Lambda
\]

(۲۳)

که در آن \(C_1, C_2, C_3 \) و \(X_B \) توابعی از \(K_D, X_D \) و \(\frac{1}{D} \) می‌باشند و برای یک طرح خاص می‌توانند دارای یک بر تغییر قرار گرفتند از رابطه

فوق بر حسب \(\Lambda \) مقدار \(\Lambda \) بیشتر راندمان ماکزیمم‌بدست می‌آید.
یک درصد از طول خود را، در انتهای بخش‌های طولنامه‌ای و سایر قطعات بسته می‌گیرد.

\[\alpha \left(\frac{E}{D} \right)^{-1/3} \]
استقلال

است. برای سایر حالات میتوان از منحنی های مشابه در [٤] ویا
از روش‌های دراین مقاله (راستهٔ ٣٢) استفاده کرد.

۲- تعیین قطر فن؛ از منحنی شکل (٩) سه‌تیری متوسط ورودی سیال قبل
از پره، \(v \frac{P}{Q} \)، بسته می‌شود. و با استفاده از رابطه:
\[Q = \frac{v}{4} \sqrt{\frac{P}{v}} \]
قطارک بره‌های محاسبه می‌شود. حداکثر از این قطرها برحمت
می‌باشد. نقطه انتخاب‌دارای: ٣١۵، ٤۲۰، ٥٥٠، ٨٠۵، ١٠٠۵، ١٢٥۵
۱۵۰۰، ٢۰۰۰. لذا قطر محاسبه شده باتوجه به نزدیکی
قطرا استاندارد را محاسبه می‌شود.

۳- محاسبه سرعت محوری، \(v_a \) با استفاده از رابطه:
\[Q = v_a \cdot \sqrt{\frac{2}{R_s} + \frac{1}{R_b}} \]

۴- تعیین دورفند: \(N \) باتوجه به اینکه
شد و ۶۰/۲ \(\Omega = 2 \pi N/60 \) است، دورفند محاسبه می‌شود. این دور باین
اساس دورهای الکترومغناطیسی \(\text{کس} \) با یکی از

۵- بسته آوردن راندمان پیشنهادی: انتخاب \(C_D \) به‌صورت
\[C_D = \frac{34}{\text{سرای}} \]

در واقع مقدار دیگری به‌نوع ایرفویل (وداشت
\(X \) و \(\Lambda \) در یک طرفها و نیز انتخاب \(1 \) در یک طرف، از روابط
\(K_S \) و \(K_R \) بسته می‌شود. \(K_S, K_R, K_{th}, K_{th} \)

راندمان از رابطه (٣١) محاسبه می‌شود. پس از مشخص شدن مقاطع
پره و تعیین مقدار دقیق \(K_D \) و سپس پارامترهای فوق می‌توان
راندمان را یکپارچه‌تری بست آورید.

۶- محاسبه: باتوجه به معلوم بودن انرژی فشار، انرژی فشار
\(\Delta P, \Delta P/\eta \) بسته می‌شود

۷- اصل مقداری \(\Lambda, \Delta P, \eta, K_{th} \) باتوجه به انتخاب قطرا استاندارد و
دور مناسب برای الکترومغناطیسی این پارامترها مجدداً محاسبه
می‌شود.
کمک مهندسی روزانه و دو روزه (ماه نامه‌های مهندسی)

(در نهایت)
استقلال

ابتدای آنان مقیاس x و y از هم طریق رتور، طیبیت r با استفاده از اکنون (4) بدست می‌آورند. سپس با استفاده از روابط (21) و (22) تا (27) مقدار رازاوه متوسط جریان، زاویه، میانگین زاویه انحراف و رازاوه استگرد و خطافه‌های مختلف محاسبه می‌شود. زاویه β و γ رایانشی توان از رازاوه (18) بدست آورده و به‌اله‌رغم لیاقت و نیستن β/c به ترتیب از رازاوه (22) و (6) محاسبه می‌شود.

تعداد دیده‌های ساکن رانی در خاک متناهی مشابه با روش محاسبه پرده‌های متحرک بدست می‌آورد. البته بر اساس وجود برازیه‌های غیردرادار برای کد شدن رازاوه در زاویه و در بزرگ‌می‌نمایی از رازاوه متحرک انتخاب نمی‌گردد.

6- برای مطالعه عملکرد فن دردسری های مختلف قدیمی‌ای زیر برداشته می‌شود:

- انتخاب دبی و محاسبه سرعت محوری v_a، ضریب دبی λ و ضریب δ در روزک بردها δ.

- محاسبه γ جدیدا رازاوه (19) و به‌رغم بدست آورده با استفاده β جدید β_1 و β_2 رنگ سه طرح.

- محاسبه β_1 رازاوه (25).

- محاسبه β_2 و β_3 از رازاوه (19).

- محاسبه ε از رازاوه (15).

- محاسبه ε از رازاوه (18).

- محاسبه α از رازاوه (17).

- محاسبه c_{L} با استفاده از مجهز شکل (4).

- محاسبه K_D, K_S, K_R و K_T و محاسبه رانندان با استفاده از روابط (25)، (24) و (21) و (31).

- محاسبه هدایت استفاده از مقدار راندن و تعیین K_{th}.
روش برای طراحی ... محسوب قدرت با استفاده از رابطه (۳۲)!

لازم به تذکر است که در محاسبه C_D, باید چگونه جویان روي پره ها جداگانه ایجاد دند. لذا همچنین باید به یاد داشته شود که در محاسبه C_D و همچنین C_L مورد استفاده در نظر گرفته شده است. بنابراین، در مورد بررسی نوعی فشار در فن لامپ مطابق با آنتئور می‌تواند در روند بهینه $\frac{1}{2} \rho v^2$ باشد.

نمونه‌ی جدول طراحی

روش این گونه شده است که برای یک فن محوری که دوره رای پره‌های ساکن بعداً روزنمندی فن محور به پره های ساکن باشد. درابنگی نتایج محاسبات اینچه می‌گردد [۲۰۱]. مختصات در نقاط طرح به‌عنوان اطلاعات مورد استفاده قرار گرفته است. در رابطه

$Q = 36 m^3/sec$, می‌باشد $\Delta p = 2000 \text{ pa}$، نیز می‌باشد $N = 1490 \text{ r.p.m.}$

به‌طوری‌که است که این اطلاعات مربوط به یک فن محوری ساخت کارخانه‌ی زیمنس آلمان غربی با مدل ۲۵۲Q۴ می‌باشد. نتایج حاصل از طراحی، اعم از بدکلی و منحنی یافته عامل‌گردانی فن ساخت زیمنس مقایسه گردیده است. بدین ترتیب در این قسمت روش اینگونه شده مورد آزمایش قرار گرفته است.

جدول (۲): نتایج محاسبات مربوط به طراحی رژیم‌های می‌باشد. دراین جدول زوایای پره‌ها، زاویه‌اتنک و ضریب لطف ، طول وتروطیب به‌جای شعاع از طرف شده است. جدول (۳) نتایج مناسب‌بی‌برای پره‌سایان بعداً روزنمندی می‌باشد. جدول (۴) مختصات عملکرد خارج از نقطه طرح فن روش مظم در می‌باشد. دراین جدول منحنی‌های فن از قبیل راهنمان می‌باشد و دراین روزنمندی ضریب لطف و درک وظیفه را برحسب دی‌بی نشان می‌دهد. یکی از کارهای دی‌بی دراین جدول نا ۲۵۰ درصدی نقطه طرح تغییرکرده است. شکل (۵) منحنی تغییرات به‌جای دی‌بی در طراحی شده و نشان می‌شود.
استقلال

شکل (۱۱) ، شکل هندسی برخی های متحرک و گاهی وقتی شده رنگان
می‌دهد. در آن شکل ، طول مقطع سیالی ساق بازه‌ای بازه‌های یکدیگر
۰.۱ افزوده شده است. گیره این امر کاشت زاوهای احراز ویکنواخت
نیودن سرعت در ماندگاری انتخاب برخی ساق بازه است. از مکانیسم نتایج
بسته آمده که در محدوده دبی ۲۰ دبی نقطه طرح ، نتایج روستاد
سفاری زبان و بسیاری نزدیک می‌باشد. بطوریکه در مذاکرات در
رایگان و هدف ورایی شده بافت این ژین‌ها در یک‌دستبند ده درصدی باشد.
نتیجه‌گیری

در این مقاله با استفاده از روش‌بررسی جریان در" محفظه
جریان " و فرض جریان با دو بار آزاد در مقطع ممکن است. مسائل دیگر نیز
شده و درنیایت را با امکان که عملکرد کلی توربوماژین را بررس
خویشان آن‌ها و دیگری های شده می‌باشند، بسته آمده است. برای
پوشش بین رشته رونساندی بوده و جریان این مال که یک "پیچیده" جریان پنه
بره‌ها و مداربررسی قرار می‌گیرد و همدا" جریان را بطوریکه یک بعید در
نظر گیرید، نتایج حاصل چشمگیر بوده و میتواند با تغییر بالا در
طراحی کلی فن های مورد استفاده در رگید.

با توجه به نتایج حاصل از اعمال روش برای طراحی یک فن موجود
ملاحظه می‌شود که نتایج حاصل روندامبوضی را داشته و به انجام تجربی
حاصل از را می‌شود روی فن موجود ملاحظه قابل قبولی دارد. البته در
نکات ، نسبتاً دارا زنطه طرح ، اختلاف بین طراحی و نتایج
آزمایشات داده نمی‌شود. علت اطلاع آن ملام می‌باشد. فرض جریان با دو
آزاد در خرج از زنطه; طراحی فن می‌باشد. این ملاحظه از زنطه; طراحی
می‌شود. اختلاف در داده‌های میدانی بوده و مشابه در مطالعات اراشم
شه دیجیکه در ۲۰ دبی طرح حاکم اختلاف در رایگان و هدف‌س
ده درصد می‌باشد.
جدول ۲ - نتایج طراحی رتمور

<table>
<thead>
<tr>
<th>x</th>
<th>0.53</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0.789</td>
<td>0.697</td>
<td>0.598</td>
<td>0.523</td>
<td>0.465</td>
<td>0.418</td>
</tr>
<tr>
<td>ε</td>
<td>0.955</td>
<td>0.843</td>
<td>0.723</td>
<td>0.633</td>
<td>0.562</td>
<td>0.506</td>
</tr>
<tr>
<td>β_m</td>
<td>38.3</td>
<td>45.4</td>
<td>52.7</td>
<td>57.9</td>
<td>61.8</td>
<td>64.8</td>
</tr>
<tr>
<td>C_σ</td>
<td>1.499</td>
<td>1.184</td>
<td>0.877</td>
<td>0.672</td>
<td>0.53</td>
<td>0.428</td>
</tr>
<tr>
<td>β_1</td>
<td>51.7</td>
<td>55.1</td>
<td>59.1</td>
<td>62.4</td>
<td>65.1</td>
<td>67.3</td>
</tr>
<tr>
<td>β_2</td>
<td>17.4</td>
<td>30.6</td>
<td>43.5</td>
<td>52</td>
<td>57.8</td>
<td>62.1</td>
</tr>
<tr>
<td>β_1 - β_2</td>
<td>34.3</td>
<td>24.5</td>
<td>15.6</td>
<td>10.4</td>
<td>7.3</td>
<td>5.2</td>
</tr>
<tr>
<td>C_L</td>
<td>0.643</td>
<td>0.704</td>
<td>0.769</td>
<td>0.8</td>
<td>0.803</td>
<td>0.75</td>
</tr>
<tr>
<td>C_ν_i</td>
<td>1.65</td>
<td>1.35</td>
<td>1.01</td>
<td>0.842</td>
<td>0.8</td>
<td>0.75</td>
</tr>
<tr>
<td>%b/c</td>
<td>10</td>
<td>9.1</td>
<td>7.8</td>
<td>6.6</td>
<td>5.3</td>
<td>4</td>
</tr>
<tr>
<td>nC/R</td>
<td>7.76</td>
<td>6.33</td>
<td>5</td>
<td>4.22</td>
<td>3.74</td>
<td>3.6</td>
</tr>
<tr>
<td>C/R (n=12)</td>
<td>0.646</td>
<td>0.527</td>
<td>0.417</td>
<td>0.351</td>
<td>0.312</td>
<td>0.3</td>
</tr>
<tr>
<td>θ</td>
<td>45.2</td>
<td>41.2</td>
<td>35.3</td>
<td>29.9</td>
<td>24</td>
<td>18.1</td>
</tr>
<tr>
<td>α</td>
<td>7.5</td>
<td>6</td>
<td>3.2</td>
<td>2.7</td>
<td>3.1</td>
<td>3.8</td>
</tr>
<tr>
<td>ξ = β_m - α</td>
<td>30.8</td>
<td>39.4</td>
<td>49.5</td>
<td>55.2</td>
<td>58.7</td>
<td>61.1</td>
</tr>
<tr>
<td>φ = 90 -</td>
<td>59.2</td>
<td>50.6</td>
<td>40.5</td>
<td>34.8</td>
<td>31.3</td>
<td>28.9</td>
</tr>
<tr>
<td>C(n=12)</td>
<td>0.404</td>
<td>0.329</td>
<td>0.260</td>
<td>0.220</td>
<td>0.195</td>
<td>0.187</td>
</tr>
</tbody>
</table>
جدول ۳ - اطلاعات حاصل از طرح پرهاکن بعدا زرشور

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>0.53</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>c/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>s/c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>η°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h/b/c = (1/2)tg(θ/4)</td>
<td>11.9</td>
<td>11.3</td>
<td>10.5</td>
<td>9.7</td>
<td>9</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>n_c/R = 2 = Χ/(s/c)</td>
<td>7</td>
<td>6.28</td>
<td>5.15</td>
<td>4.95</td>
<td>4.71</td>
<td>4.65</td>
</tr>
<tr>
<td></td>
<td>(n=11) c/R</td>
<td>0.636</td>
<td>0.571</td>
<td>0.468</td>
<td>0.45</td>
<td>0.428</td>
<td>0.423</td>
</tr>
<tr>
<td>Q</td>
<td>m^3/s</td>
<td>m/s</td>
<td>$\lambda = \frac{m^3/s}{m/s}$</td>
<td>$\beta = \tan^{-1}\left(\frac{1}{\lambda}\right)$</td>
<td>$i = \frac{\beta_2}{\beta_1} - 0.7$</td>
<td>$\delta = \frac{1}{\lambda} - \tan \beta_2$</td>
<td>$\theta_m = -\frac{1}{c_L} \left(\frac{1}{2} (\theta_m + \theta_2^g)\right)$</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td>48</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>31.7</td>
<td>36.3</td>
<td>40.8</td>
<td>45.3</td>
<td>49.9</td>
<td>54.4</td>
<td>67.9</td>
<td>65.1</td>
</tr>
<tr>
<td>0.406</td>
<td>0.465</td>
<td>0.523</td>
<td>0.581</td>
<td>0.64</td>
<td>0.697</td>
<td>1.19</td>
<td>1.27</td>
</tr>
<tr>
<td>0.325</td>
<td>0.372</td>
<td>0.418</td>
<td>0.465</td>
<td>0.512</td>
<td>0.558</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td>-2.1</td>
<td>-4.9</td>
<td>-7.6</td>
<td>-10.2</td>
<td>-12.6</td>
<td>-14.9</td>
<td>1.19</td>
<td>1.27</td>
</tr>
<tr>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>5.86</td>
<td>3.78</td>
</tr>
<tr>
<td>1.14</td>
<td>1.05</td>
<td>1.11</td>
<td>0.85</td>
<td>0.85</td>
<td>0.42</td>
<td>1.34</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{b(C_{D_{S}}^2 + bC_{L}^2)}{Q}$</td>
<td>0.040</td>
<td>0.033</td>
<td>0.025</td>
<td>0.021</td>
<td>0.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{(C_{D_{P}} + C_{D_{S}})}{C_{L}}$</td>
<td>0.0685</td>
<td>0.0537</td>
<td>0.045</td>
<td>0.0459</td>
<td>0.0572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{K_{R}}{K_{th}}$</td>
<td>0.0125</td>
<td>0.10</td>
<td>0.083</td>
<td>0.086</td>
<td>0.110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1.5 \frac{K_{s}}{K_{th}}$</td>
<td>0.027</td>
<td>0.0285</td>
<td>0.03</td>
<td>0.032</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{K_{B_{DL}}}{K_{th}}$</td>
<td>0.017</td>
<td>0.0265</td>
<td>0.041</td>
<td>0.065</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_{T} %</td>
<td>83.1</td>
<td>84.5</td>
<td>84.6</td>
<td>81.7</td>
<td>74.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔH Pa</td>
<td>2754</td>
<td>2411</td>
<td>1920</td>
<td>1464</td>
<td>952</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP KW</td>
<td>92.8</td>
<td>91.3</td>
<td>81.7</td>
<td>71.7</td>
<td>56.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
روشی برای طراحی...

شکل ۱- نکات کمیکس با پره‌های ساکن قبل و بعد از رتور. همچنین...

دیوار نسبی در شکل نشان داده شده است.

شکل ۲- هندسی ابرفولوژ...
شکل ۳ - منحنی تغییرات ضریب لیفت بر حسب زاویه حمله برای متفاوت‌ترین نسبت‌های ۱۰ و ۲٪ و خمیدگی نسبی متفاوت.
روشی برای طراحی

شکل 6- اثر تداخل بر حسب زاویه استکرو و عکس طلایی

شکل 5- طلایی بهینه رتو برحسب سریع و ضریب چرخ و ضریب چربی نسبتی

فین های با پره‌سکس بعدا زیر تور (0 = εp)
شکل ۱- مثبتیت روتوربرحسب ضربین قرح و ضربین قرحی جرایی برای فن‌های برده‌سکن قفل‌وزن‌ور (\(\varepsilon_p = 0\))

شکل ۲- مثبتیت در برده‌های ساکن قبل و بعدا خزندربرحسب ضربین قرح
روش‌بندی برای طراحی

شکل 8: خرید جریان به‌منظور بررسی افت خروجی x_D و نسبت شعاع k_D بر هر از x_D با e_{b}.
شکل ۹- سرعت ورودی سیال بر حسب ضرایب افت خروجی و نسبت شعاع
برهنهای برای $R \Omega = 100 \text{ m/sec}$

$N = 1490 \text{ rpm}$

شکل ۱۰- منحنی تغییرات هدایت حسی در فضا
شکل ۱۱- هندسه رنگ و بردهای ساکن فن طراحی شده

7. Carter, A.D.S., "The Low Speed Performance of Related
