یک روش انتکاری نوین برای مسئله هزینه - زمان پروژه‌ها، با احتمال ارزش زمانی پول

مسعود ربانی *, کامران رضایی و نسیم صیدفرش لاهیجی **
گروه مهندسی صنایع، دانشکده فنی، دانشگاه تهران

چکیده - مسئله تعادل بین هزینه و زمان، یکی از مهم‌ترین مباحث در مدیریت پروژه و مورد علاقه پیمانکاران پروژه‌های هست. هدف مسئله تعادل بین هزینه و زمان، تحلیل حساسیت هزینه‌های پروژه، نسبت به تغییرات مدت زمان انجام فعالیت‌ها به منظور به دست آوردن بهترین ترکیب کاهش زمانی فعالیت‌ها به‌طوری‌که مجموع هزینه‌های پروژه می‌نماید. در الگوریتم‌های انتکاری ارائه شده در این مقاله، تصمیم گیری در زمینه کاهش زمان فعالیت‌ها بر مبنای می‌نمای حساسیت پروژه نشان دهنده فعالیت صورت می‌گیرد. اما از آنجایی که پروژه‌های دارای بازه‌های زمانی طولانی‌اند، می‌توان گفت که نرخ پرهره بر آن‌ها تأثیرگذار است. در این مقاله، یک روش انتکاری نوین به منظور به دست آوردن بهترین ترکیب کاهش زمانی فعالیت‌ها با احتمال ارزش پرهره و با هدف می‌نمای حساسیت کردن ارزش فعّلی هزینه‌های پروژه‌های ارائه شده است.

واژگان کلیدی: کوئست سازی زمان پروژه‌ها، تعادل بین هزینه و زمان، ارزش زمانی پول، نرخ پرهره، ارزش فعّلی

A New Heuristic Algorithm for Time-cost Trade-off Problem Taking into Account Monetary Value

M. Rabbani, K. Rezaie and N. Seid Foroush Lahiji
Industrial Engineering Dept., Faculty of Engineering, University of Tehran

Abstract: Time-cost trade-off is one of the most important subjects in project management and of interest to contractors. The goal of time-cost trade-off is sensitivity analysis of project costs to changes in activity duration in order to obtain the best combination of activity duration decrease, in a way that the sum of project costs is minimized. In the heuristics presented in this area, time crushing is on the base of the minimum cost slope of activities. But since projects are usually performed over...
فهرست علائم

<table>
<thead>
<tr>
<th>Cij</th>
<th>(مدل ۱ و ۲) ۱ ۱ ۱ افزایش هزینه مجموعی مورد نیاز برای اجرای فعالیت i در زمان معمولی اجرای فعالیت j</th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>dij</td>
<td>(مدل ۱ و ۲) ۱ ۱ ۱ زمان اجرای فعالیت i در زمان فشرده اجرای فعالیت j</td>
<td>i</td>
<td>j</td>
</tr>
<tr>
<td>Dij</td>
<td>(مدل ۱ و ۲) ۱ ۱ ۱ زمان معمولی اجرای فعالیت j</td>
<td>i</td>
<td>j</td>
</tr>
<tr>
<td>Ei</td>
<td>(مدل ۱ و ۲) ۱ ۱ ۱ زمان شروع از گره i (زمان عملي)</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>(مدل ۱ و ۲- رابطه ۱ و ۲) هزینه بالاتری یک دوره</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kx</td>
<td>(مدل ۲ و رابطه ۱) نرخ بهره</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>(مدل ۱ و ۲- رابطه ۱ و ۲ تعداد فعالیت‌ها)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPV COST</td>
<td>(الگوریتم بهینه‌سازی) ارزش فوقه‌های فعالیت i در صورت فشرده‌سازی فعالیت j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rij</td>
<td>(مدل ۱ و ۲- رابطه ۱ و ۲) شیب هزینه فعالیت i (افراش)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

۱- مقدمه

کوتاه سازی زمان پروژه‌ها یک مقوله جدید در مدیریت پروژه‌ها است. در میان طرح‌های پروژه‌هایی که معمولاً زودترین زمان تکمیل آن‌ها بررسی می‌شود، زمان پروژه درنظر گرفته می‌شود. از سوی دیگر، زمان تکمیل پروژه، بر اساس یک سری از معیارهای داخلی و خارجی تعیین می‌شود که در اثر موارد، زمان تکمیل تغییر محاسبه شده به اساس معیارهای، طواعل و یا انتزاعی تغییر محاسبه شده در زمان این افرایپی و افزایش، این سوال به افعال زمانهای پروژه‌های اصلی را می‌توان در روش‌هایی که از حلقه ۱- کوتاه سازی زمان تکمیل پروژه‌ها از طریق بازگردی منطقی

استقبال، سال ۲۴، شماره ۱، جلد اول، شهریور ۱۳۸۴

۳۲
شابک (اجرای برخی از فعالیت‌های بحرانی به صورت موازی)
2- کوتاه‌سازی مدت زمان اجرای فعالیت‌های بحرانی با صرف هزینه‌های بیشتری، شامل:

- کوتاه‌سازی یا فشرده‌سازی زمان پروره به عنوان کاهش زمان انجام فعالیت‌های معیاری بحرانی به سرمایه‌گذاری و صرف هزینه‌های بیشتر به منظور دستیابی به منابع اضافی و یا ممنوع‌کردن کارایی بالاتر (شامل نیروی انسانی، مواد اولیه، تجهیزات و مانند آثار و سرمایه‌های) است.

در زمان بندی پروره‌ها، جون فعالیت‌های پروره به معنی‌بر اساس زمان دقیقه‌های زمان پروره در مدت زمان انجام فعالیت‌ها را به عنوان نتایج انجام در مدت زمان هر روزه دارد. از طرف دیگر، هزینه‌های پروره در قابلیت نتایج از زمان پروره و در تبادل زمان انجام فعالیت‌های آن باید مورد ارزیابی نشوند. در زمان اجرای فعالیت‌های همبستگی پروره به تغییر در مدت زمان، زمان مورد نیاز به کوتاه‌سازی زمان پروره و اسکار. از نظر مجموعه مدل‌های پروره که این مدل‌ها به عنوان مدل‌های زمانی باکش فعالیت‌های پروره است که معمولاً شامل تخمین برای میزان هزینه مورد نیاز برای دستیابی به این زمان نیز می‌باشد. در به یک تحلیل حساسیت هزینه نسبت به تغییرات مدت زمان انجام فعالیت‌ها این مدل می‌تواند به هدف آن داشته او به تعداد کاهش زمان انجام فعالیت‌ها به کمک این مدل کاهش زمان انجام فعالیت‌ها است که مجموعه هزینه‌های پروره بیشتری در زمان انجام فعالیت‌ها به هزینه‌های مصرفی و دیگر مستقیم و بسیار مستقیم پروره، تبادل این مدل‌ها

از مدل ریاضی کلاسیک گزینه (مدل 1) استفاده می‌شود:

\[
\text{Minz} = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{n} R_{ij} \ast (D_{ij} - y_{ij}) + H \ast (E_{n} - E_{1})
\]
منابع یک عفاییت بر سایر عفاییت‌ها، عنوان کرده‌اند که تکنیک‌های رایانه‌ای به دلیل مستقل در نظر گرفتن فعالیت‌ها، برای پروژه‌های ساخت و ساز مناسب تیم‌سازی.

«گاردین» و «ستوارت»[۱۷] ارتباط بین ورودی، جریان تقید، کنترل هزینه و زمان بنا بر پروژه‌ای از طرف نظر کامد می‌تواند بر اثر فعالیت خالص[۱۸] بکارگردن یا مورد بررسی قرار داده و اسکریپت‌های تکنیک‌های سرمایه‌گذاری مانند ارزش فعالیت‌ها برای کنترل مستمر سلامت پروژه پیش‌بینی داده‌اند. (سون) و (لیستنر)[۱۸] در مقاله خود یک روش ارتباطی را برای تعیین اقطاس تریک عفاییت‌ها به شکل مکرر داده‌اند. این روش مکرر ارزش ارزش پروژه‌ها که معنی‌دار و هزینه‌ها را متعادل کنند ارائه داده‌اند.

در تحلیل‌های ارتباطی که انتخاب در زمینه تعادل بین هزینه و زمان ارائه‌شده، مسئله ارزش زمانی پول چندان در نظر گرفته نشده است. اما در آنالیز که پرورده، به خصوص برخوردها در پیشنهادات، معمولاً در پی بهبود زمان طولانی تعبیه می‌شود. می‌توان گفت که نخست به کمک می‌تواند از اصل تاثیر گزار، بر پروژه‌ها بوده و در تصمیم‌گیری به منظور انتخاب فعالیت‌ها برای فرد و سازی مؤثر باشد. در مقاله‌های حاضر، عامل نخست به عنوان یک عامل تاثیرگذار در مسایل تعادل بین هزینه و زمان مطرح شده و برای پروژه‌گرایان کلاسیک مسئله هزینه- زمان و دلالت نرخ بهره، تأثیر این عامل در تصمیم‌گیری برای انتخاب فعالیت‌ها به منظور فرد و سازی مورد ارزیابی قرار گرفته و نهایتاً یک ارتباط باعثه به‌طور موجد ارتباط باعثه به‌طور مجدد مجموع ارزش فعالیت‌ها ارائه شده است.

۲- الگوریتم هزینه- زمان با احتساب ارزش زماني پول در الگوریتم کلاسیک هم‌سال تعادل بین هزینه و زمان، تصمیم گیری در مورد فرد و سازی مسیر به‌راعی برای انتخاب شیب هزینه‌آ صورت می‌گیرد. شیب هزینه یک عفاییتی در قابل تغییر هزینه‌های مسیر به‌راعی یک تغییر یک

و همچنین داشته‌اند که بر مبنای نظریه‌ها و احتمالات است. تعداد بینهایت راه برای ایده‌ریزی حالت بسیار مسایل تعادل بین هزینه و زمان در حالت طغیان ارائه کرده‌اند[۸] همچنین داشته‌اند که بر مبنای نظریه‌ها و احتمالات است. تعداد بینهایت راه برای ایده‌ریزی حالت بسیار مسایل تعادل بین هزینه و زمان در حالت طغیان ارائه کرده‌اند[۸]

و ارائه‌های شده است که بر مبنای نظریه‌ها و احتمالات است. تعداد بینهایت راه برای ایده‌ریزی حالت بسیار مسایل تعادل بین هزینه و زمان در حالت طغیان ارائه کرده‌اند[۸]

و ارائه‌های شده است که بر مبنای نظریه‌ها و احتمالات است. تعداد بینهایت راه برای ایده‌ریزی حالت بسیار مسایل تعادل بین هزینه و زمان در حالت طغیان ارائه کرده‌اند[۸]
فشاره‌سازی این مجموعه انتخاب می‌شود.

5- فعالیت انتخاب شده برای فشاره‌سازی مجموعه A با کاندید فشاره‌سازی B، بر اساس معیار شیب هزینه مقایسه شده و فعالیتی که در آن شیب کمتری است انتخاب می‌شود. در مدل ریتی (1) با میانگین $\Delta t_i j (com)$ به میزان $\Delta t_i j$ و همایش $\Delta t_i j$ دست کنید. از ریتی R_{ij} است انتخاب می‌شود.

با پیاده‌سازی مراحل الگوریتم در روش شکه تهیه‌کننده یک

مجموعه جواب برای زمان اجرای فعالیت‌های پروژه به دست می‌آید که بر اساس این مجموعه جواب می‌توان مجموعه هزینه‌های پروژه را به صورت زیر محاسبه کرد:

مجموعه هزینه‌های پروژه به‌صورت هزینه بالاسری پروژه + مجموعه هزینه‌های فشاره‌سازی + مجموعه هزینه‌های مستقیم یا به یک می‌توان آن را در قابل (راسته 1) پیمان کرد:

$$\text{Cost} = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{n} R_{ij} \cdot (D_{ij} - y_{ij}) + H_{ij} \cdot (E_{ij} - E_{i-1})$$

حال در صورت طولانی بودن بهزیستی زمانی پروژه، مسئله ارزش زمانی پول که در آن وجود تأخیر، به وجود می‌آید، اهمیت بیاند. این می‌تواند به عنوان یک عامل تأثیرگذار بر تصمیم‌گیری در مورد فشاره‌سازی فعالیت‌ها در مسائل تعادل بین هزینه و زمان مانند قرار گیری در این حالت به دلیل وجود تأخیر به ویژه هزینه‌های مستقیم انجام فعالیت‌ها، بهترین نتیجه می‌باشد. به عنوان یک عامل تصمیم‌گیری در مورد فشاره‌سازی در هزینه‌های تأخیرگذار بر تصمیم‌گیری تبدیل می‌شود. بنابراین معیار تصمیم‌گیری یکی می‌باشد تغییر یافته که این مسئله را می‌توان در قابل (راسته 1) پیمان کرد:

$$\text{Cost} = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{n} R_{ij} \cdot (D_{ij} - y_{ij}) + H_{ij} \cdot (E_{ij} - E_{i-1})$$

در نتیجه، در انتخاب زمان اجرای فعالیت، معیار تصمیم گیری در

1- فعالیت‌های مسیر بحرانی مشخص شده و R_{ij} و T_{ij} در مدل مجموعه تعیین می‌شود.

2- هزینه‌های مسیر مشترک در سیره‌های بحرانی و مجموعه فعالیت‌های غیر مشترک در سیره‌های بحرانی R_{ij} و T_{ij} در مدل مجموعه تعیین می‌شود.

3- برای فعالیت‌های این مجموعه، فعالیتی که دارای کمترین R_{ij} می‌باشد، در مدل مجموعه تعیین می‌شود.

4- در فعالیت‌های این مجموعه، فعالیتی مناسب از فعالیت‌ها که بتواند به طور همزمان، زمان همه مسیرهای بحرانی را تقابل دهند، مشخص شود. مقدار R_{ij} که مجموعه R_{ij} های موجود در فعالیت‌هاست، به عنوان شب هزینه هر تکرار محاسبه می‌شود. همچنین $\Delta t_i j (com)$ مقدار بسته به عنوان $\Delta t_i j$ بازیگر مشخص شده در تکرار R_{ij} در $\Delta t_i j (com)$ می‌باشد. از این تکرار موجود در R_{ij} می‌توان است، به عنوان مناسب R_{ij} تکرار که دارای کمترین R_{ij} است.
مورد فشرده‌سازی عامل‌ها از میان‌می‌شوند به میان‌می‌شوند
ارزش فیل‌های مجموع زیرش: تغییر می‌باشد:

اثبات: فرض می‌شود که فشرده‌ساز در دو می‌باشد.

به‌طوری‌که Rk1 > Rm1

Rk1 > Rm1 ⇒ Rk1 * Δtk1 > Rm1 * Δtmp

Ek + yk! > Em + ymp + 1 + Kx > 1 ⇒ (1 + Kx)Ekk + yk! > (1 + Kx)Em + ymp

⇒ \(\frac{1}{(1 + Kx)Ekk + yk!} < \frac{1}{(1 + Kx)Em + ymp} \) (1)

درج شده است. همچنین رخ بهره برای باشد، فعالیت Rm1 < Rk1

برای فشرده‌سازی انتخاب می‌شود و انتخاب فعالیت‌ها بندون توجه به میزان Δk1 و Δtmp صورت می‌گردد.

درخ رخ بهره، Δ1، میزان زمان فشرده‌سازی برای محاسبه ارزش فیل‌ها به‌عمل می‌آید. در صورتی که فشرده‌سازی فیل‌ها، است

\(\Delta tk1 = \Delta tk1 \Rightarrow Dtk1 - yk! = Dmp - ymp \) که

ارزش فیل‌های زیرش فشرده‌سازی فعالیت‌ها. در صورت فشرده‌سازی

فیل‌ها به‌پایه به صورت زیر محاسبه می‌شود:

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

به‌پایه به صورت زیر محاسبه می‌شود:

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \leq \frac{C_{mp}}{(1 + Kx)^{Ekk + yk!}} + \frac{C_{mp}}{(1 + Kx)^{Ekk + yk! + ymp}} \]
جدول ۱- مشخصات در فعالیت m_p و k_l

<table>
<thead>
<tr>
<th>m_p</th>
<th>k_l</th>
<th>فعالیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_m</td>
<td>D_k</td>
<td>زمان عادی فعالیت</td>
</tr>
<tr>
<td>d_m</td>
<td>d_k</td>
<td>زمان فشرده فعالیت</td>
</tr>
<tr>
<td>y_m</td>
<td>y_k</td>
<td>زمان واقعی انجام فعالیت پس از فشرده سازی</td>
</tr>
<tr>
<td>Δt_{op}</td>
<td>Δt_{kl}</td>
<td>جدایی زمان فشرده سازی فعالیت به طوری که سری‌های زیپ در آن است.</td>
</tr>
<tr>
<td>R_m</td>
<td>R_k</td>
<td>شیب هزینه فعالیت</td>
</tr>
<tr>
<td>C_m</td>
<td>C_k</td>
<td>هزینه معاملی انجام فعالیت</td>
</tr>
</tbody>
</table>

به دو قسمت فعالیتهای مبایی m_p و k_l و فعالیتهای بعد از m_p و k_l تقسیم می‌شوند:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{C'(ij)(m_p)}{(1+K_x)^{E(i)(mp)+y(i)(mp)}} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{C'(B)(ij)(mp)}{(1+K_x)^{E(i)(mp)+y(i)(mp)}}$$

$$+ \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{C'(A)(ij)(mp)}{(1+K_x)^{E(i)(kl)+y(i)(kl)}}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{C'(ij)(kl)}{(1+K_x)^{E(i)(kl)+y(i)(kl)}} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{C'(B)(ij)(kl)}{(1+K_x)^{E(i)(kl)+y(i)(kl)}}$$

$$+ \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{C'(A)(ij)(kl)}{(1+K_x)^{E(i)(kl)+y(i)(kl)}}$$

زمان فشرده سازی فعالیتهای به پیک مربوط می‌کند که مربوط می‌باشد. با توجه به اینکه $\Delta t = D - y$ به یک سری‌های زیپ در آن است. فعالیتهای قبل از m_p در شبکه و آخرين عبارات باید به m_p در شبکه به جز فعالیت k_l است. ارزش k_l فعالیتهای های معاملی در صورت فشرده سازی k_l فعالیت:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{C_{ij}}{(1+K_x)^{E(i)+y(i)}} + \frac{C_{mp}}{(1+K_x)^{E(m)+y(mp)}}$$

$$+ \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{C_{ij}(kl)}{(1+K_x)^{E(i)+y(i)+y(kl)}} + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{C_{ij}(kl)}{(1+K_x)^{E(i)+y(i)+y(kl)}}$$

اگر در آن اولین عبارات ارزش Δt مربوط می‌شود که در شبکه و آخرين عبارات، ارزش Δt مربوط می‌باشد. با توجه به اینکه در صورت m_p و k_l باید به پیک مربوط می‌باشد. با توجه به اینکه:

$$E_{i(mp)} + y_i(mp) < E_{i(kl)} + y_i(kl)$$

با توجه اینکه ۱ است و پس از معکوس $(1+K_x)^{E(i)(mp)+y(i)(mp)} < (1+K_x)^{E(i)(kl)+y(i)(kl)}$
بنابراین ملاحظه می‌شود که عملیه در ارژش طبقه‌بندی شیب هریمه، ارژش طبقه‌بندی هریمه‌ای معمولی نیز بکار رول تأثیر می‌کند. برای تصمیم تبریک است. اما به طرف درجه دیگر میزان افزایش دو فعالیت می‌باشد. این داده از ارژش طبقه‌بندی در ارژش هریمه‌ای بالاتر ایجاد می‌شود.

هم برای است و بنابراین تنها در تصمیم می‌باشد.

\[\Delta t = \Delta t \Rightarrow E_n(mp) - E_i(mp) = E_n(ek) - E_i(ek) \]

\[H^*(E_n(mp) - E_i(mp)) = H^*(E_n(ek) - E_i(ek)) \]

\[(1 + K)E_n(mp) - E_i(mp) = (1 + K)E_n(ek) - E_i(ek) \]

بنابراین با توجه به اینکه، ملاحظه می‌شود که محاسبات تصمیم گیری برای تعیین فعالیت به وسیله فعالیت سازی، با باید از حداقل شیب هریمه‌ای معمولی و ارژش طبقه‌بندی هریمه‌ای فعالیت‌ها به ویژه قرار گرفتن ارژش‌های فعالیت تغییر یابد. و در صورتی که فعالیت‌های بالاتر را برای میزان افزایش دو تأثیرگذار در نظر گرفته، بنابراین می‌باشد تصمیم گیری از حداقل شیب هریمه‌ای معمولی که به دلیل وجود نرخ بهره در قابل ارژش فعالیت باید می‌شود، تغییر می‌باشد. که

\[C_{kl} = \frac{C_{kl}}{(1 + K)}E_{mp} + y_{mp} \leq \frac{C_{kl}}{(1 + K)}E_{ek} + y_{ek} \]

\[\left(\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \right) + \left(\sum_{i=1}^{n} \sum_{j=1}^{n} R_{ij} \right) (D_{ij} - d_{ij}) + \frac{H^*}{(1 + K)}E_{ei+y_{ij}} \]

\[\text{کردن، ضرب } \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij}(mp) + \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij}(kl) \]

\[(6) \]

\[(7) \]

\[(8) \]

\[(9) \]

\[(n) \]

\[(\text{می‌شود:)} \]

\[(\text{کمتر از میزان افزایش است.)} \]

\[(\text{برای کمیت‌های مقایسه عبارات، نتیجه می‌شود:)} \]

\[(\text{در صورت فشاره سازی فعالیت، میزان افزایش در)} \]

\[(\text{کمتر از میزان افزایش است.)} \]

\[(\text{به این معنی که با فشاره سازی، میزان افزایش فعالیت هریمه‌ها،}} \]

\[(\text{نسبت به حالت عدم فشاره افزایش می‌باشد.}} \]

\[(\text{به همین ترتیب}} \]

\[(\text{در صورت جمع عبارات،}} \]

\[(\text{و (8) زیر باید داشته باشد:)} \]

\[(\text{برای کنترل}} \]

\[(\text{در کل و mp}} \]

\[(\text{روی مسیر بحرانی که موجب اختلاف در}} \]

\[(\text{می‌شود، می‌توان در مورد علامت}} \]

\[(\text{اظهار نظر}} \]

\[(\text{کردن.}} \]

\[(\text{استقلال، سال 24، شماره 1، جلد اول، شهريور 1384}} \]

\[38 \]
مجموعه A: فعالیت‌های مشترک در مسیرهای بحرانی و مجموعه B: فعالیت‌های غیر مشترک در مسیرهای بحرانی

3- فعالیت‌های مجموعه A مشخص می‌شوند.

4- در بین فعالیت‌های مجموعه B، ترکیبی‌های مناسب از فعالیت‌ها که به‌طور همزمان، زمان همه مسیرهای بحرانی را تمقیم دهند، مشخص می‌شوند. اگر فعالیت‌های موجود در ترکیب با یکدیگر مقایسه شده و مناسب می‌شود، ترکیب در نظر گرفته می‌شود.

\[
\text{Min} z = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} (d_{ij} - d_{ij}) + H * (E - E_{i}) + \frac{1}{1 + Kx_{ij}^{*}}
\]

\[
\text{St:}
\begin{align*}
E - E_{i} &\leq T \\
E_{j} - E_{i} &\geq y_{ij} \\
d_{ij} &\leq y_{ij} \leq D_{ij} \\
E &\geq E_{i} - \Delta t
\end{align*}
\]

نیازهای هنرین طور که ملاحظه می‌شود، ایده‌گیری نامناسبی در الگوریتم کلی سبب هزینه- زمان به گونه‌ای که تفسیر ناخوانده شده، به عنوان یک عامل ناپذیرفتگی در تصمیم‌گیری به منظور به دنبال سازی فعالیت‌ها در نظر گرفته می‌شود. بنابراین مسئله الگوریتم کلی مفهومی در قالب الگوریتم در مورد مشخص می‌شود:

"دستورالعمل 1: در صورتی که تهاجم مسیر بحرانی در شبکه وجود داشته باشد:

1- فعالیت‌های مسیر بحرانی را مهم‌ترین با مربوط به هر کدام مشخص کردی، به ازای کاهش زمان به میزان

\[
T = \min \Delta t : \Delta t \in \{ \text{فعالیت‌های مسیر بحرانی} \}
\]

برای فعالیت‌های مسیر بحرانی، ارزش فعالیتهای هنری مستقیم اجرای طرح در زمان معمولی، ارزش فعالیتهای هنری باалسری و ارزش فعالیتهای هنری سازی و مجموع ارزش فعالیتهای هنرین مجموعه PVCOSta

\[
\text{PVCOSta} = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} (d_{ij} - d_{ij}) + H * (E - E_{i}) + \frac{1}{1 + Kx_{ij}^{*}}
\]

دستورالعمل 2: در صورتی که جنگسال بحرانی در شبکه وجود داشته باشد:

1- مسیرهای بحرانی و فعالیت‌های هر مسیر مشخص می‌شود:

2- فعالیت‌های مسیر بحرانی به دو مجموعه تقسیم می‌شوند:
به جواب نهایی را طولانی تر می‌کنیم. از طرف دیگر در صورتی که کاهش زمان در مرحله بیان می‌توان فعالیت‌ها را کاهش داد تا معنی‌داری زیر بحثی در آستن باشند. در اماکنی از مقدار جمع‌آوری ارزش فعالیت‌ها می‌تواند در بسته وپیش از اینکه کدامیک می‌شود که این مستند را می‌تواند در قابلیت دو بیان کرد.

\[
\begin{align*}
\sum_{i=1}^{n} R_{ij}(D_{j} - y_{ij}) + R_{ik}(D_{k} - y_{ik}) + H(E_{i}(k) - E_{j}(i)) + (1 + K_{x})E_{i}(y_{ij}) - (1 + K_{x})E_{j}(y_{ij}) &= 0 \\
H(E_{i}(k) - E_{j}(i)) + (1 + K_{x})E_{i}(y_{ij}) - (1 + K_{x})E_{j}(y_{ij}) &= 0 \\
\Rightarrow (1 + K_{x})E_{i}(y_{ij}) - (1 + K_{x})E_{j}(y_{ij}) &= 0 \\
\Rightarrow (1 + K_{x})E_{i}(y_{ij}) &= (1 + K_{x})E_{j}(y_{ij}) \\
\Rightarrow E_{i}(y_{ij}) &= E_{j}(y_{ij}) \\
\end{align*}
\]

به معنی ارزش فعالیت‌ها می‌تواند در بسته وپیش از اینکه کدامیک می‌شود که این مستند را می‌تواند در قابلیت دو بیان کرد.

\[
\begin{align*}
\Delta t_{kl} &> \Delta t_{mp} \Rightarrow D_{k} - y_{kl} > D_{mp} - y_{mp} \\
E_{n}(k) - E_{l}(k) &< E_{n}(mp) - E_{l}(mp) \\
\Rightarrow (1 + K_{x})E_{i}(y_{ij}) - (1 + K_{x})E_{j}(y_{ij}) &= 0 \\
\Rightarrow (1 + K_{x})E_{i}(y_{ij}) &= (1 + K_{x})E_{j}(y_{ij}) \\
\Rightarrow E_{i}(y_{ij}) &= E_{j}(y_{ij}) \\
\end{align*}
\]

به معنی ارزش فعالیت‌ها می‌تواند در بسته وپیش از اینکه کدامیک می‌شود که این مستند را می‌تواند در قابلیت دو بیان کرد.

\[
\begin{align*}
\Delta t_{kl} &> \Delta t_{mp} \Rightarrow D_{k} - y_{kl} > D_{mp} - y_{mp} \\
E_{n}(k) - E_{l}(k) &< E_{n}(mp) - E_{l}(mp) \\
\Rightarrow (1 + K_{x})E_{i}(y_{ij}) - (1 + K_{x})E_{j}(y_{ij}) &= 0 \\
\Rightarrow (1 + K_{x})E_{i}(y_{ij}) &= (1 + K_{x})E_{j}(y_{ij}) \\
\Rightarrow E_{i}(y_{ij}) &= E_{j}(y_{ij}) \\
\end{align*}
\]

به معنی ارزش فعالیت‌ها می‌تواند در بسته وپیش از اینکه کدامیک می‌شود که این مستند را می‌تواند در قابلیت دو بیان کرد.

\[
\begin{align*}
\Delta t_{kl} &> \Delta t_{mp} \Rightarrow D_{k} - y_{kl} > D_{mp} - y_{mp} \\
E_{n}(k) - E_{l}(k) &< E_{n}(mp) - E_{l}(mp) \\
\Rightarrow (1 + K_{x})E_{i}(y_{ij}) - (1 + K_{x})E_{j}(y_{ij}) &= 0 \\
\Rightarrow (1 + K_{x})E_{i}(y_{ij}) &= (1 + K_{x})E_{j}(y_{ij}) \\
\Rightarrow E_{i}(y_{ij}) &= E_{j}(y_{ij}) \\
\end{align*}
\]

به معنی ارزش فعالیت‌ها می‌تواند در بسته وپیش از اینکه کدامیک می‌شود که این مستند را می‌تواند در قابلیت دو بیان کرد.

\[
\begin{align*}
\Delta t_{kl} &> \Delta t_{mp} \Rightarrow D_{k} - y_{kl} > D_{mp} - y_{mp} \\
E_{n}(k) - E_{l}(k) &< E_{n}(mp) - E_{l}(mp) \\
\Rightarrow (1 + K_{x})E_{i}(y_{ij}) - (1 + K_{x})E_{j}(y_{ij}) &= 0 \\
\Rightarrow (1 + K_{x})E_{i}(y_{ij}) &= (1 + K_{x})E_{j}(y_{ij}) \\
\Rightarrow E_{i}(y_{ij}) &= E_{j}(y_{ij}) \\
\end{align*}
\]

به معنی ارزش فعالیت‌ها می‌تواند در بسته وپیش از اینکه کدامیک می‌شود که این مستند را می‌تواند در قابلیت دو بیان کرد.

\[
\begin{align*}
\Delta t_{kl} &> \Delta t_{mp} \Rightarrow D_{k} - y_{kl} > D_{mp} - y_{mp} \\
E_{n}(k) - E_{l}(k) &< E_{n}(mp) - E_{l}(mp) \\
\Rightarrow (1 + K_{x})E_{i}(y_{ij}) - (1 + K_{x})E_{j}(y_{ij}) &= 0 \\
\Rightarrow (1 + K_{x})E_{i}(y_{ij}) &= (1 + K_{x})E_{j}(y_{ij}) \\
\Rightarrow E_{i}(y_{ij}) &= E_{j}(y_{ij}) \\
\end{align*}
\]

به معنی ارزش فعالیت‌ها می‌تواند در بسته وپیش از اینکه کدامیک می‌شود که این مستند را می‌تواند در قابلیت دو بیان کرد.
که همانند حالت (ج) اظهار نظر قطعی، بسته به میزان
پیک میزان فشارده نشوند. در مورد ارزش و میزان
بالاتری، نمی‌توان نظر قطعی را ابراز کرد. همان‌طور که
ملاحظه می‌شود، عدم فشارده سازی فعالیت‌ها به یک میزان
موجب تبدیل ارزش فعالیت های بالاتری به یک عامل
مؤثر می‌شود.

در صورت مقایسه ارزش فعالیت های فشارده سازی، و
حالت زیر مورد بررسی قرار می‌گیرد:

\[R_{mp} \geq R_{kl} \]

در این حالت، شرایط زیر را باید مورد بررسی قرار داد:

\[R_{mp} * \Delta R_{mp} > R_{kl} * \Delta R_{kl} \]

\[\Rightarrow R_{mp} * (D_{mp} - y_{mp}) > R_{kl} * (D_{kl} - y_{kl}) \]

\[\text{چون فعالیت} \, k \, \text{در شبکه قبل از فعالیت} \, mp \, \text{قرار دارد} \]

\[\frac{R_{mp} * (D_{mp} - y_{mp})}{(1 + K_x)E_{mp} + y_{mp}} > \frac{R_{kl} * (D_{kl} - y_{kl})}{(1 + K_x)E_{kl} + y_{kl}} \]

\[\text{ب:} \]

\[R_{mp} * \Delta R_{mp} = R_{kl} * \Delta R_{kl} \Rightarrow R_{mp} * (D_{mp} - y_{mp}) = R_{kl} * (D_{kl} - y_{kl}) \]

\[\text{به همین ترتیب} \]

\[R_{mp} * (D_{mp} - y_{mp}) > R_{kl} * (D_{kl} - y_{kl}) \]

\[\Rightarrow R_{mp} * (D_{mp} - y_{mp}) > R_{kl} * (D_{kl} - y_{kl}) \]

\[\frac{R_{mp} * (D_{mp} - y_{mp})}{(1 + K_x)E_{mp} + y_{mp}} < \frac{R_{kl} * (D_{kl} - y_{kl})}{(1 + K_x)E_{kl} + y_{kl}} \]

\[\text{به همین ترتیب} \]

\[R_{mp} * \Delta R_{mp} < R_{kl} * \Delta R_{kl} \]

\[\Rightarrow R_{mp} * (D_{mp} - y_{mp}) < R_{kl} * (D_{kl} - y_{kl}) \]

\[\text{به همین ترتیب} \]

\[R_{mp} * (D_{mp} - y_{mp}) < R_{kl} * (D_{kl} - y_{kl}) \]

\[\Rightarrow R_{mp} * (D_{mp} - y_{mp}) < R_{kl} * (D_{kl} - y_{kl}) \]

\[\text{در این حالت بسته به میزان} \, R_{mp} \, \text{و} \Delta R_{mp}, \, R_{kl}, \, R_{mp}, \, \text{و} \Delta R_{mp} \]

\[\text{فصل کن دو فعالیت در روش مسیر بحرانی، می‌تواند دو} \]

\[\text{حالت} \, \text{پا} \text{ایجاد شود} \]

\[R_{mp} \leq R_{kl} \]

\[D_{mp} - y_{mp} < D_{kl} - y_{kl} \Rightarrow R_{mp} * \Delta R_{mp} < R_{kl} * \Delta R_{kl} \]

\[\Rightarrow R_{mp} * (D_{mp} - y_{mp}) < R_{kl} * (D_{kl} - y_{kl}) \]

\[\text{حالت} \, \text{پا} \text{ایجاد شود} \]

\[R_{mp} \leq R_{kl} \]

\[D_{mp} - y_{mp} < D_{kl} - y_{kl} \Rightarrow R_{mp} * \Delta R_{mp} < R_{kl} * \Delta R_{kl} \]

\[\Rightarrow R_{mp} * (D_{mp} - y_{mp}) < R_{kl} * (D_{kl} - y_{kl}) \]

\[\text{حالت} \, \text{پا} \text{ایجاد شود} \]
و تبعین مجموعه جواب به کمک الگوریتم کلاسیک مسابل تعدادین هزینه و زمان و سپس محاسبه ارزش فیلز هزینه‌ها با نظری‌گری ترخ بهره‌برد 14%، بر اساس نتایج به دست آمده از الگوریتم کلاسیک است.

با مقایسه نتایج حاصل از اکثر الگوریتم پیشنهادی با الگوریتم کلاسیک مسابل تعدادین هزینه - زمان نکات قابل توجه زیر حاصل می‌شود:

1- اساس کار الگوریتم پیشنهادی همانند الگوریتم کلاسیک، مسئله تعادل بين هزینه و زمان بر مبنای حکمت بر روی مسیر برخی و کاهش زمان فعالیت ثانی به مبنای کاهش زمان کل روزه و بودن و هنگام تصمیم گیری متفاوت است.

2- میزان تعادل هزینه و زمان در الگوریتم پیشنهادی، به دلیل وجود ترخ بهره، حداقل ارزش فیلز هزینه‌ها (مجموع ارزش فیلز هزینه‌های مستقیم اجرا در زمان معلام) ارزش فیلز هزینه‌های بالا را ارزش فیلز هزینه‌های فشرده‌سازی است.

3- الگوریتم پیشنهادی مجموع ارزش فیلز هزینه‌های کمتری بوده می‌باشد. در این الگوریتم کلاسیک مسئله تعادل بين هزینه و زمان دخالت داده شود.

4- مجموعه جواب ایجاد شده توسط الگوریتم پیشنهادی متفاوت با مجموعه جواب ایجاد شده توسط الگوریتم کلاسیک مسئله تعادل بين هزینه و زمان است.

5- به دلیل وجود نرخ بهره در ترتیب کمتر، محدود مجموع ارزش فیلز هزینه‌های ایجاد شده برای فعالیت‌های انتهايی شبکه تمایل الگوریتم پیشنهادی به فشرده‌سازی فعالیت‌های انتهايی مسیر بحرانی بیشتر است.

6- در صورت تغییر نرخ بهره، تغییری در مجموعه جواب به دست آمده حاصل نمی‌شود. اما به دلیل تغییر مقدار $1 + Kx$ مقدار ارزش فیلز هزینه‌ها تغییر می‌کند. در این حالت به دلیل قرار گرفتن $1 + Kx$ در مخرج، هر چه مقدار نرخ بهره افزایش یابد، ارزش فیلز هزینه‌ها کمتر و هر چه نرخ بهره کاهش یابد.

و این در حالی است که در صورت فشرده‌سازی زمانها به پک‌های سازی میزان این دو عبارت مساوی یابد. بنابراین

$$\sum_{i=1}^{n} \frac{C_i(A_k)(n)}{(1 + Kx)^{(E_{ism} + x_{ism})}} + \sum_{i=1}^{n} \frac{C_i(B_k)(n)}{(1 + Kx)^{(E_{ism} + y_{ism})}} \leq \text{or} >$$

$$\sum_{i=1}^{n} \frac{C_i(A_k)(n)}{(1 + Kx)^{(E_{ism} + x_{ism})}} + \sum_{i=1}^{n} \frac{C_i(B_k)(n)}{(1 + Kx)^{(E_{ism} + y_{ism})}}$$

که هر ارزش به توجه گرفت که در صورت فشرده‌سازی فشرده‌سازی، میزان ارزش فیلز هزینه‌های معمولی افزایش می‌یابد.

مان‌طور که ملاحظه می‌شود، در صورت عدم فشرده‌سازی فعالیت‌ها به یک میزان، به دلیل مؤثر بودن ارزش فیلز‌های بالاتر، تغییر در فشرده‌سازی معمولی‌های فشرده‌سازی و تغییر در فشرده‌سازی معمولی‌های فشرده‌سازی، این یک نیاز به میزان فشرده‌سازی خواهد داشت که فشرده‌سازی زمان‌ها به یک میزان صورت گیرد.

4- نتایج عددي و ارزیابی مقایسه

به منظور بررسی بهتر نتایج حاصل از اجرای این الگوریتم و مقایسه آن با الگوریتم کلاسیک مسابل تعدادین هزینه و زمان و مدل ریاضی ارائه شده، (جادوی 2 مثال) که اطلاعات اولیه در جدول (3) ایجاد شده است، در این زمینه ارائه شده که نتایج آنها در جدول (2) نشان داده شده است. ذكر این نتایج ضروری است که در کلیه این مسائل میزان نرخ بهره به 14% در نظر گرفته شده است. این جدول سنتون سموم راست، الگوریتم نتایج به دست آمده از جدول مدل ریاضی ارائه شده (جادوی 2) سنتون وسط، الگوریتم حل مسئله و کاهش میزان فعالیت‌ها به روش الگوریتم پیشنهادی و تبعین مجموعه جواب و ارزش فیلز هزینه‌ها و سنتون سمت چپ، الگوریتم حل مسئله، کاهش میزان فعالیت‌ها

استقلال، سال 24، شماره 1، جلد اول، شهریور 1384

42
جدول 2- ارزیابی مقایسه‌ای الگوریتم پیشنهادی با روش‌های کلاسیک

<table>
<thead>
<tr>
<th>شماره</th>
<th>الگوریتم کلاسیک</th>
<th>الگوریتم پیشنهادی</th>
<th>مقدار</th>
<th>مسئله</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>y_{11} = 12 y_{24} = 6 y_{36} = 10</td>
<td>y_{12} = 17 y_{24} = 6 y_{36} = 10</td>
<td>0.7370</td>
<td>ارزش فعال هزینه مجموع معنی‌دار از حل</td>
</tr>
<tr>
<td></td>
<td>y_{13} = 11 y_{25} = 15 y_{45} = 9</td>
<td>y_{13} = 11 y_{25} = 15 y_{45} = 9</td>
<td>0.0028</td>
<td>ارزش فعال هزینه بالاتری از حل</td>
</tr>
<tr>
<td></td>
<td>y_{14} = 12 y_{24} = 12 y_{36} = 12</td>
<td>y_{14} = 12 y_{24} = 12 y_{36} = 12</td>
<td>1.2828</td>
<td>ارزش فعال هزینه کل سازی از حل</td>
</tr>
<tr>
<td></td>
<td>y_{21} = 10 y_{46} = 9</td>
<td>y_{21} = 10 y_{46} = 9</td>
<td>1.5605</td>
<td>ارزش فعال مجموع هزینه‌ها از حل</td>
</tr>
</tbody>
</table>

2	y_{12} = 14 y_{34} = 6	y_{12} = 14 y_{34} = 6	0.7379	ارزش فعال هزینه مجموع معنی‌دار از حل
	y_{13} = 14 y_{36} = 12 y_{57} = 4	y_{13} = 14 y_{36} = 12 y_{57} = 4	0.0097	ارزش فعال هزینه بالاتری از حل
	y_{24} = 6 y_{45} = 8 y_{67} = 3	y_{24} = 6 y_{45} = 8 y_{67} = 3	0.8129	ارزش فعال هزینه کل سازی از حل
	y_{25} = 10 y_{46} = 9	y_{25} = 10 y_{46} = 9	1.5605	ارزش فعال مجموع هزینه‌ها از حل

3	y_{11} = 11 y_{23} = 6 y_{36} = 10	y_{11} = 11 y_{23} = 6 y_{36} = 10	0.8628	ارزش فعال هزینه مجموع معنی‌دار از حل
	y_{14} = 17 y_{26} = 6 y_{56} = 4	y_{14} = 17 y_{26} = 6 y_{56} = 4	0.1015	ارزش فعال هزینه بالاتری از حل
	y_{16} = 11 y_{35} = 6 y_{64} = 4	y_{16} = 11 y_{35} = 6 y_{64} = 4	1.2828	ارزش فعال هزینه کل سازی از حل
	y_{21} = 12 y_{34} = 12 y_{56} = 7	y_{21} = 12 y_{34} = 12 y_{56} = 7	2.1613	ارزش فعال مجموع هزینه‌ها از حل

4	y_{12} = 9 y_{23} = 4 y_{36} = 12	y_{12} = 9 y_{23} = 4 y_{36} = 12	1.0004	ارزش فعال هزینه مجموع معنی‌دار از حل
	y_{13} = 8 y_{24} = 3 y_{45} = 3	y_{13} = 8 y_{24} = 3 y_{45} = 3	0.1015	ارزش فعال هزینه بالاتری از حل
	y_{14} = 12 y_{35} = 7 y_{56} = 7	y_{14} = 12 y_{35} = 7 y_{56} = 7	1.8773	ارزش فعال هزینه کل سازی از حل
	y_{21} = 2.9935	y_{21} = 2.9935	3.2397	ارزش فعال مجموع هزینه‌ها از حل

استناد: سال 24، شماره 1، جلد اول، شهریور 1384
<table>
<thead>
<tr>
<th>شماره مسئله</th>
<th>تفاوت</th>
<th>شماره مسئله</th>
<th>تفاوت</th>
<th>شماره مسئله</th>
<th>تفاوت</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-2</td>
<td>3</td>
<td>1-2</td>
<td>4</td>
<td>1-2</td>
</tr>
<tr>
<td>2</td>
<td>1-3</td>
<td>3</td>
<td>1-2</td>
<td>4</td>
<td>1-2</td>
</tr>
<tr>
<td>3</td>
<td>1-3</td>
<td>3</td>
<td>1-2</td>
<td>4</td>
<td>1-2</td>
</tr>
<tr>
<td>4</td>
<td>1-3</td>
<td>3</td>
<td>1-2</td>
<td>4</td>
<td>1-2</td>
</tr>
</tbody>
</table>

جدول 3 - اطلاعات و داده‌های اولیه مثال‌های حل شده

<table>
<thead>
<tr>
<th>Rij</th>
<th>Cij</th>
<th>dij</th>
<th>Dij</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.5</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>0.5</td>
<td>1.4</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>0.8</td>
<td>1.5</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>1.2</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>0.8</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>1.2</td>
<td>1.3</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>2</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>0.9</td>
<td>1.1</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rij</th>
<th>Cij</th>
<th>dij</th>
<th>Dij</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>0.4</td>
<td>1.1</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>0.9</td>
<td>1.5</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>1.1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0.4</td>
<td>1.3</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>1.5</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1.4</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>0.9</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1.7</td>
<td>1.3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>0.5</td>
<td>0.8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1.1</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rij</th>
<th>Cij</th>
<th>dij</th>
<th>Dij</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.8</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>0.8</td>
<td>1.2</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>1.1</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>1.2</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>1.1</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>1.6</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1.4</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rij</th>
<th>Cij</th>
<th>dij</th>
<th>Dij</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>1</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>0.2</td>
<td>1.1</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>1.6</td>
<td>0.3</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>0.7</td>
<td>1.2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>0.7</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1.8</td>
<td>1.1</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>1.3</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

استقلال سال 24 شماره 1، جلد اول، شهریور 1384
ارزش فعلي هزینه‌ها افزایش می‌یابد. 7 در صورت وجود محدودیت برای ارزش فعلي سرمایه، اجرای مراحل کورنمنی تا زمان رسیدن به آستانه محدودیت انجام می‌شود. در این حالت در صورتی که زیاد بودن نرخ بهره، به دلیل کمتر شدن ارزش فعلي هزینه‌ها، مراحل کورنمنی برای فشرده سازی فعالیت‌ها بیشتر تخلیه می‌شود.

8- نتایج به دست آمده از کورنمنی پیشنهادی و مدل ریاضی ارائه شده (مدل 2) پیکان است که دلیل این مسئله را می‌توان مقصد پیکان فشرده سازی در فعالیت‌های هم‌نیاز کرده و شناسایی کلاسکیفیک ورودی مسائل برنامه‌ریزی غیرخطی موجود برای انتخاب فعالیت‌ها برای فشرده سازی دانست.

5- جمع بندی

با توجه به نتایج کورنمنی‌ها و مدل‌های ریاضی ارائه شده، مشخص می‌شود که مسئله ارزش زمانی پول‌ها تا حد زیادی بر تصمیم‌گیری‌های مربوط به کاهش زمان بوده و انتخاب فعالیت‌ها در هر مرحله جهت فشرده سازی، مؤثر بیانگر بیانگر مقایسه کلاسیکفیک ورودی کورنمنی با کلاسیکفیک کلی مسئله تعادل بین هزینه و

<table>
<thead>
<tr>
<th>Rij</th>
<th>Cij</th>
<th>dij</th>
<th>Dj</th>
<th>شماره ضریع</th>
<th>تفاوت</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.7</td>
<td>8</td>
<td>10</td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>11</td>
<td>14</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>1.1</td>
<td>4</td>
<td>7</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.8</td>
<td>10</td>
<td>12</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.9</td>
<td>3</td>
<td>6</td>
<td>4-5</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>1.8</td>
<td>7</td>
<td>9</td>
<td>5-6</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1.2</td>
<td>8</td>
<td>10</td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>10</td>
<td>12</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>9</td>
<td>12</td>
<td>1-4</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>1.1</td>
<td>12</td>
<td>14</td>
<td>2-5</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.8</td>
<td>4</td>
<td>6</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>1.7</td>
<td>9</td>
<td>11</td>
<td>3-5</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>1.8</td>
<td>7</td>
<td>9</td>
<td>5-6</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.9</td>
<td>12</td>
<td>13</td>
<td>5-7</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>1.5</td>
<td>7</td>
<td>10</td>
<td>6-7</td>
<td></td>
</tr>
</tbody>
</table>

زمان، می‌توان گفت که این کورنمنی به دلیل در نظر گرفتن نرخ بهره به عنوان یک عامل تأثیرگذار بر تصمیم گیری و تغییر معیار تصمیم گیری به مجموع ارزش فعلي هزینه‌ها به دلیل تغییر هزینه‌های مستقیم و بالارسانی اعمال، وضعیت واقعی را نشان داده و اطلاعات کامپیوتری را در هر مرحله از فشرده سازی زمان فعالیت‌ها در اختبار مسیری قرار می‌دهد. از طرفی چون عامل نرخ بهره در هر مرحله از مراحل کورنمنی دخالت داده می‌شود، می‌توان ملاحظه کرد که مراحل این کورنمنی کاملاً با مراحل کورنمنی کلاسیکفیک مسائل تعادل بین هزینه و زمان متغیر می‌باشد و به دلیل تعادل در فشرده سازی فعالیت‌های انتهایی مسیر حرارتی، نتایج کاملاً مشابه با کورنمنی کلاسیکفیک مسائل تعادل بین هزینه و زمان را در هر مرحله ارائه می‌دهد. این مسئله به خصوص در مواردی که محدودیت ارزش فعلي سرمایه در دسترس برای هزینه‌های مستقیم و فشرده‌سازی وجود دارد و فشرده‌سازی زمان بر طبق محدودیت سرمایه و هم‌بودن تغییرات انجام می‌شود، بسیار حائز اهمیت است. همچنین ملاحظه می‌شود که هر چه شیب‌های بزرگ‌تر شده و باره زمانی طولانی‌تر شود، نتایج متغیری تری از

استقلال، سال ۱۴بهمن، شماره ۱۴، جلد اول، شهریور ۱۳۸۴
الگوریتم کلاسیک مسائل تولید بین هزینه و زمان به دست می‌آید و هر چه راه بهره‌برداری پیش‌بینی‌های مناسب و بررسی سازنده‌ای که بررسی هر دو نزدیکی به بهره‌رانی در تولید زمان بندی و فشرده‌سازی پروژه‌ها، ابزار می‌باشد برای مدیران و برنامه‌ریزی پروژه‌ها باشد.

و از همان

1. time crashing
2. CPM
3. PERT
4. scheduling
5. due date
6. time crashing

7. time-cost trade-off
8. time-cost-quality trade-off
9. primal-dual
10. machine learning
11. NPV

مراجع

2. حاجی شرکتی، ع.، مدیریت و کنترل پروژه، انتشارات دانشگاه صنعتی اصفهان، اصفهان، 1375

3. نادری بورج، م. برای برنامه‌ریزی و کنترل پروژه، انتشارات سازمان برنامه و پژوهش، تهران، 1376

6. Goodman, Louis J. & Love, Ralph N., Project Planning and Management; an Integrated Approach, Published in cooperation with the East-West center of Hawaii by program on research, 1980

استقلال، سال 24، شماره 1، جلد اول، شهریور 1384

46