اثر تراکم استگنا و تفکیک منطقه‌ای در پراورد و توزیع مکانی بارندگی روزانه

(مطالعه موردی بر روی بارندگی جنوب غرب ایران)

بهرام تفیان، سیما رحیمی بندرآبادی **، حمید طاهری شهروانی *** و جعفر غیومان ****

پژوهشکده حفاظت خاک و آبخیزداری

(دریافت مقاله: ۸۲/۳/۲۱ - دریافت نسخه نهایی: ۸۲/۳/۲۴)

چکیده - بارندگی یکی از متغیرهای اقلیمی است که به عنوان محوری برخه‌های هیدرولوژی اهمیت زیادی برخوردار است. اسکوئن در مطالعات

برآورد و پیش بینی سیالاب در حوزه‌های منطقه و بزرگ و یا مطالعات آلودگی، علاوه بر تغییرات زمانی بارندگی، نیاز به بررسی تغییرات مکانی آن

نیز است. برآورد تغییرات مکانی بارندگی روزانه بدون توجه به مقایسه و انواع روش‌ها و مناسبی، می‌تواند باعث ایجاد خطأ در تعیین

ورودی مدل‌های بارش-روش‌های باشد. میانگینی از جمله بایسه‌ای به‌عنوان نویز مکانی بارندگی است. دراین تحقیق، جنگل زیست‌محیطی برای برآورد

توزیع مکانی بارندگی روزانه جنوب غرب ایران مورد توجه قرار گرفت. برای مقایسه و ارزیابی روش‌ها، از تکنیک اعتبار استاتیستیکی

(CV) استفاده شد. ارزیابی روش‌های مختلف برای برآورد بارندگی روزانه نشان داد که روش TPS یا توان ۲ در ۲ در تراکم منشا تابع استاتیستیکی

بارندگی مناسب است. به طور کلی، تحلیل منطقه دقت میانگینی را افزایش می‌دهد که این افزایش دقت در روش منطقه بندی خوش‌آمیزی بیشتری از

منطقه بندی بر اساس مرز حوزه‌های آبخیز دیده می‌شود.

واژگان کلیدی: تحلیل خوش‌آمیزی، تراکم استگنا، میانگینی، زمین آمر، بارندگی روزانه، اعتبار استاتیستیکی، ایران

The Effect of Station Density and Regional Division on Spatial Distribution of Daily Rainfall

B. Saghaifian, S. Rahimi Bandarabadi, H. Taheri Shahrabani and J. Ghayoomian

Soil and Watershed Conservation Research Institute

Abstract: Rainfall is one of the most important climatic variables in the hydrology cycle. In flood estimation as well as environmental pollution studies in medium to large watersheds not only must temporal pattern of rainfall be known, but also the knowledge of its spatial distribution is required. Estimation of daily rainfall distribution without comparison and selection of

59
کرده، اگر چه محاسبات این روشهای سریع و آسان است ولی معمولاً و اشکالات آنها گاهی متوجه به ارائه نتایج غیرقابل قبول و با دقت کم می‌شوند. از معمای این روشهای می‌توان به موارد زیر اشاره کرد. در روش میانگین حساسی مداوم مدل‌گذاری ایستگاه‌ها در نظر گرفته شده و پارامترهای نهایی بر اساس پارامترهای مداوم در اطراف مجاور به‌دست آمده است. برای کاهش و تهیه مدل‌گذاری در منطقه زیادی و شرایط شبکه باران معیارهای مذکور به قابل اعتمادی نواهد. پژوهشگری که کشفیه‌های بارشی مورد بررسی قرار گرفته است و در مورد عکس فاصله، اگر چه به نقطه به وسیله مستقیم در نظر گرفته می‌شود ولی توزیع‌های و مدل‌های نسبت نسبت در محاسبات لحاظ نمی‌شود و در نتیجه نتایج به چنین فاصله‌ای می‌رسد.

1- مقدمه

پردازش مدار بارندگی در بسیاری از مطالعات هیدرولوژیکی اجتناب ناپذیر است. لیکن به دلیل عدم امکان پرورش کامل ایستگاه‌های اندازه‌گیری، بارندگی‌ها در مدت مناطق مایع ایستگاه‌ها باید مورد بررسی قرار گیرد. ضعف در تغییرات بارندگی‌ها روانه می‌شود از عوامل مهم ایجاد خطای در پارامترهای به روش‌های مدل‌های پارامترهای درکاربردهای پیشرفته و طراحی باشند. به علاوه در پردازش بیان آب دفته در بارندگی توزیع مکانی بارندگی‌های فراوانی دارد. روش‌های مختلفی برای بارندگی توزیع مکانی بارندگی‌ها وجود دارد. از جمله روشهای کلاسیک معمول می‌شود تا به روش میانگین حسابی، تا چهارمیتریک و روش استفاده از خطوط هم باران اشتهاره

Feinstein, S. 1384

Keywords: Cluster Analysis, Station Density, Interpolation, Geostatistics, Daily Rainfall, Cross Validation, Iran

کرده، اگر چه محاسبات این روشهای سریع و آسان است ولی معمای و اشکالات آنها گاهی متوجه به ارائه نتایج غیرقابل قبول و با دقت کم می‌شوند. از معمای این روشهای می‌توان به موارد زیر اشاره کرد. در روش میانگین حساسی مداوم مدل‌گذاری ایستگاه‌ها در نظر گرفته شده و پارامترهای نهایی بر اساس پارامترهای مداوم در اطراف مجاور به‌دست آمده است. برای کاهش و تهیه مدل‌گذاری در منطقه زیادی و شرایط شبکه باران معیارهای مذکور به قابل اعتمادی نواهد. پژوهشگری که کشفیه‌های بارشی مورد بررسی قرار گرفته است و در مورد عکس فاصله، اگر چه به نقطه به وسیله مستقیم در نظر گرفته می‌شود ولی توزیع‌های و مدل‌های نسبت نسبت در محاسبات لحاظ نمی‌شود و در نتیجه نتایج به چنین فاصله‌ای می‌رسد.

1- مقدمه

پردازش مدار بارندگی در بسیاری از مطالعات هیدرولوژیکی اجتناب ناپذیر است. لیکن به دلیل عدم امکان پرورش کامل ایستگاه‌های اندازه‌گیری، بارندگی‌ها در مدت مناطق مایع ایستگاه‌ها باید مورد بررسی قرار گیرد. ضعف در تغییرات بارندگی‌ها روانه می‌شود از عوامل مهم ایجاد خطای در پارامترهای به روش‌های مدل‌های پارامترهای درکاربردهای پیشرفته و طراحی باشند. به علاوه در پردازش بیان آب دفته در بارندگی توزیع مکانی بارندگی‌های فراوانی دارد. روش‌های مختلفی برای بارندگی توزیع مکانی بارندگی‌ها وجود دارد. از جمله روشهای کلاسیک معمول می‌شود تا به روش میانگین حسابی، تا چهارمیتریک و روش استفاده از خطوط هم باران اشتهاره

Feinstein, S. 1384

Keywords: Cluster Analysis, Station Density, Interpolation, Geostatistics, Daily Rainfall, Cross Validation, Iran
Downloaded from jcme.iut.ac.ir at 3:48 IRDT on Wednesday August 14th 2019
میانگین متحرک وزنی روبه متحرک، روبه چندجمله‌ای و کریگینگ را بایرا براندمگی روز 16 اسفند 1369 (28 فروردین 1991) در جنوب غرب ایران و با استفاده از داده‌های ایستگاه‌های هوایی اسکندریه (۴۷ ایستگاه) آزمون کردیم. این آنها به این ترتیب رسیده که روش میانگین متحرک وزنی با توان 3 بیشترین دقت برای براندمگی روز 16 اسفند ارائه می‌کند.

در این تحقیق، روش‌های روانه و میانگین متحرک TPSS و وزنی (WMA) در تحلیل توزیع مکانی بارش روزهای 16 اسفند 1369 (پیک شبکه متاکمتر با اضافه کردن ایستگاه‌های عواد و نیرو) مورد بررسی قرار گرفت. پژوهش در مادری که بزرگ‌ترین توان و نتایج حاصل با تأثیر روغن روغنی ثابت می‌داند و همکاران (۱۳) برای ایستگاه‌های هوایی، وزنی و مادری که بررسی می‌شود به‌طور گسترده نتایج روغن روغنی از مناطق بررسی همبستگی مکانی نشان دهنده است. این آنها نشان داشته شده است.

۳- روش‌های میانیایی

در این منطقه، مقایسه میانگین و همکاران (۱۲) چند روش میانیایی شامل: میانگین متحرک رو به متحرک، رو به چندجمله‌ای و کریگینگ را برای براندمگی روز 16 اسفند ماه 1369 (۲۸ فروردین 1991) با استفاده از داده‌های ایستگاه‌های هوایی اسکندریه (۴۷ ایستگاه) آزمون کردیم. نتایج آنها نشان داد که روش میانگین متحرک وزنی (WMA) و پرکشین ۳ را برای براندمگی روزهای 1369 (پیک شبکه متاکمتر) با استفاده از روش‌های روانه و میانگین متحرک وزنی و روش میانگین متحرک وزنی با نتایج بهترین روشنگری و همکاران (۱۲) به ازای تراکم بیشتر ایستگاه‌های در منطقه مقایسه می‌شوند. در طرح (۳) نتیجه پرکشین براندمگی در روز 16 اسفند نشان داده شده است. بررسی توزیع براندمگی در این منطقه با

۴- منطقه مورد مطالعه

منطقه مورد مطالعه در جنوب غربی ایران و شامل استان‌های خوزستان، بوشهر، چهارمحال و بختیاری و کرمانشاه و بوشهر و قم‌شهری از استان‌های اصفهان، هرمزگان، فارس، یزد و کرمان است. شکل (۱) این منطقه بین طول‌های جغرافیایی ۴۷ و ۳۳ درجه شمالی و درجه‌های غربی ۱۸ و ۷۱ درجه ۵۷ و ۸۶ درجه شمالی و غرب است. لیست‌های آبریز کره، خداکردن، کاوان...
هدف نامین تیزه‌های مطالعات ارژیایی وضعیت آب‌گیری باران‌های سیاسی ناشی از جنگ کویت و انفجار جاهایی نفت کویت، در ایران صورت گرفته است. روز ۱۶ اسفند به دلیل بارندگی بیشتر و فراکی بودن باری بر وی بروز مکانی انتخاب شد. معادله کلی میان‌بانی به صورت معادله زیر است: تفاوت روش‌های مختلف در پرداز فاکتور ورتی معادله زیر است:

\[
Z + \sum_{i=1}^{n} \lambda_i Z(x_i)
\]

که در آن:
\[\lambda_i : مقدار بارندگی برای در معوقیت موجود \]
\[Z(x) : مقدار بارندگی مشاهده شده در معوقیت \]
\[i \in [1, n] : تعداد کل این‌ها\]

برای پرداز نا این مقدار معوج، معادله زیر باید برازش باشد:

\[
\sum_{i=1}^{n} \lambda_i = 1
\]

در روش WMA به هر یک از استگاه‌ها وزنی بر اساس فاصله
و مقدار بارندگی برای معوقیت موجود تخصیص می‌یابد. این
وزن توسط میان‌بانی و توان دیگر کشور می‌شود. به طوری که
توجه به پیوستگی اثر نقاط دورتر از نقاط مورد تخمین را کاهش
می‌دهد و نقاط کوچکتر وزنه‌ها به طور یکنواخت ترین
 نقاط همسایه توزیع می‌شوند. در این روش مقدار فاکتور وزنی
معادله (1) با استفاده از فرمول زیر محاسبه می‌شود:

\[
\lambda_i = \frac{D_i - \alpha}{\sum_{j=1}^{n} D_j - \alpha}
\]

در این روش، D_i: استگاه iام، \alpha: وزن استگاه یک‌میلیمتری،
FA: فاصله استگاه iام تا نقطه معوج،
D_i: فاصله بین استگاه یک‌میلیمتری تا نقطه معوج.

که در نتیجه کوچکی‌ترین تیزه‌ای R توان یک لاینک است که تابع

 intend که تابع کورواریانس آن به صورت زیر است [12]:

استقالال، سال ۲۳، شماره ۱، جلد اول، شهروز ۱۳۸۴
کمتر مقادیر براورد شده نسبت به مقادیر مشاهده‌ای است. در MBE و MAE شرایط که
است که مدل مورد نظر متغیر را آن طور که هست، براورد می‌کند. نشان دهنده میانگین خطای براورد و
데نده اختلاف میانگین مقادیر مشاهده ای و میانگین مقادیر
براوردی است و لذا درجه براورد بالا دست ۱۰ یا یک‌پایین دست ۵
را بیان می‌کند.

۵- تحلیل خروجی‌های روشهای مختلف برای رده بندی مشاهدات یک جامعه به
چندین گروه موجود است. انتخاب یک روشه به معنی بودن یا
مفهوم برون تعداد گروه‌ها. تعادل گروه‌های هدف و نوع
متغیرهای مورد انتخاب یگری است. تحلیل خروجی‌های براوردی
تعیین گروه‌های مشابه در داخل مشاهدات مورد استفاده قرار
می‌گیرد. [۱۶] تحلیل خروجی‌های براوردی می‌تواند از
توسعه مباحث استفاده شده است. [۱۶- ۱۷] در این مقاله از
تحلیل خروجی‌های مدلهای مربوط به دیلی مشخص برون تعادل
گروه‌ها از قبل استفاده شده. در این روش با محاسبه فاصله هر
فرآیند افزایش شروع و سپس گروه‌ها بر اساس فاصله
بحث به یک تсанیم تبدیل می‌شود. پس از تعیین فاصله که
موجود به یکی از روش‌های مثبت برای مقایسه اختلاف و جرد
رش مشابه تعداد دیگر لازم گروه‌های همگن
با یکی از روش‌های نزدیک‌ترین همسایه، ارتقاء بین گروه‌ها
دورترین همسایه، مبنا و استخراج می‌شود. برای
آزمون صحت گروه بندی از روش تحلیل باین تکثیر
تعادل شده. این روش زمانی که تعادل و اعضای گروه‌ها
مشخص باشد برای بیشترین صحبت گروه‌ها استفاده
می‌شود. [۲۰]

C (h) = h^k \cdot \log (h) \quad (4)
C (h=0) = 0

که در آن:
h : فاصله بین جفت ایستگاه‌ها.
C (h) : تابع کوواریانس.
0 : پارامتر پراپار
m-1 = K

در روش کریگینگ نیز مقادیر وزن هر ایستگاه بر اساس تحلیل
تیم تغییر می‌محاسبه می‌شود. این روش در منابع [۱] و [۱۰] به
تفصیل شرح داده شده است.

۴- روش و معیار ارزیابی
روشهای مختلف میانیابی بر اساس روش اعتبار سنجی
تقاطعی ارزیابی می‌شوند. این روش یک نقطه به صورت
مقوی حذف شده و با اعمال روش میانیابی مورد نظر برای آن
تقاطع مقادیر براورد می‌شود. مس مقدار حذف شده به جای
خود برگرفتاده شده و به همین ترتیب براورد دیگری در
ظرت مجزا برای براورد صورت می‌گیرد. در پایان یک جدول
با دو ستون مقادیر واقعی و براورد شده، به دست می‌آید. [۱۱]

1) MAE (MSE معیار میانگین قدر مطلق خطای روشهای میانیابی BE)
2) میانگین خطای انحراف (MSE)

در جدول [۰] از میانگین مقربرین قدر مطلق خطای (MAE)
و میانگین خطای انحراف (MSE) روشهای میانیابی را براورد
کرد.

MAE = \frac{1}{n} \sum_{i=1}^{n} |Z_e (xi) - Z(xi)| \quad (5)
MSE = \frac{1}{n} \sum_{i=1}^{n} (Z_e (xi) - Z(xi))^2 \quad (6)

که در آن:
MAE : میانگین مطلق خطای (خطا).
MSE : میانگین خطای انحراف (انحراف).

اصول مناسب‌ترین روش دارای کمترین مقدار MAE و
MSE است [۱۵]. این از محاسبه مقدار خطای انحراف، هر
چقدر این دو معیار به صورت تنوعی یکسان‌شاند، نشان دهنده اختلاف

ستلال، سال ۲۴، شماره ۱، جلد اول، شهریور ۱۳۸۴

۶۵
بهلول و سمت زاید منطقه و تغییرات زاید ارتقاء و بارندگی در منطقه، این فرض که تغییرات متغیرهای بارش‌های صورت گرفته و بهبود ساختار بارشی را باید تأثیر بارش‌های جدید و تغییرات بارشی را با مدل‌های محاسباتی محاسبه کند. بنابراین منطقه این اثرات تغییرات بارش‌های صورت گرفته و بهبود ساختار بارشی را با مدل‌های محاسباتی محاسبه کند. بنابراین منطقه این اثرات تغییرات بارش‌های جدید و تغییرات بارشی را با مدل‌های محاسباتی محاسبه کند.
جدول 1- مقایسه حالاتی مختلف از نظر تعداد و تراکم استگانه‌های پاران سنجی

<table>
<thead>
<tr>
<th>تراکم (تعداد در هر 100 هزار کیلومتر مربع)</th>
<th>مساحت کل (km²)</th>
<th>وضعیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5000 lí</td>
<td>حالات 1</td>
</tr>
<tr>
<td>6</td>
<td>5000 lí</td>
<td>حالات 2</td>
</tr>
<tr>
<td>6</td>
<td>347 lí</td>
<td>حالات 3</td>
</tr>
</tbody>
</table>

جدول 2- مقادیر (به میلیمتر) حاصل از روشهای میانی‌ای برای پاران‌های روز ۱۶ اسفند ۱۳۹۱

<table>
<thead>
<tr>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMA-3</td>
</tr>
<tr>
<td>TPSS-3</td>
</tr>
<tr>
<td>TPSS-2</td>
</tr>
</tbody>
</table>

جدول 3- نتایج تریال تغییر بدبینهای مختلف منطقه در روشهای میانی‌ای

<table>
<thead>
<tr>
<th>میانگین میلیمترهای بار (میلیمتر)</th>
<th>MBE (میلیمتر)</th>
<th>MAE (میلیمتر)</th>
<th>نواحی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basin-3</td>
<td>1.5</td>
<td>1.5</td>
<td>A</td>
</tr>
<tr>
<td>Basin-4</td>
<td>1.5</td>
<td>1.5</td>
<td>B</td>
</tr>
<tr>
<td>Basin-5</td>
<td>1.5</td>
<td>1.5</td>
<td>C</td>
</tr>
</tbody>
</table>

میلیمتر مربع و سیل ۱۷۱۹۷۶۶ میلیمتر مربع و با شعاع تأثیر ۲/۸ درجه جغرافیایی است و برای واحد C با روش کلاسیک، مدل کروی با مقدار ۴/۵۰۰۰ میلیمتر مربع و سیل پرداز ۴/۷۲ میلیمتر مربع و با شعاع تأثیر ۳/۷۵ درجه جغرافیایی بهترین انطباق را دارد. میانگین ۷۱٪ پس از شناسایی مناطق همگن A و B با روش کلاسیک، نقشه توزیع بارش برای روز ۱۶ اسفند ۱۳۹۱ در سه ناحیه با GIS و B به ترتیب ۳/۷۵ و ۱/۵۰۰۰ میلیمتر و برای واحد C به ترتیب ۱۵/۰۰۰۰-۱۴/۰۰۰۰ میلیمتر است، که نسبت به روش TPSS در این واحدها دقت کمتری دارد. لازم به ذکر است که بهترین مدل تطیف شده با واریوسی در ۸۷۶/۱ مدل کروی و با مقدار C، اثر قطعه‌ای برای بارش ۱۳۸۴ استقلال، شماره ۲۴، صفحه ۲۴.
نمودار مقایسه مشاهده‌ای و برآوردی در حالت 3 (الف) روش 3 و (ب) روش 2 Case TPSS-2

$R^2 = 0.5$

$R^2 = 0.71$
روش
شکل 5- نمودار تغییرات MBE و MAE در تراکم‌های مختلف برای بارندگی روز ۱۶ اسفند ۱۳۶۹

شکل ۶- نقشه تقسیم منطقه بر اساس حوزه‌های اصلی منطقه

استقلال، سال ۲۴، شماره ۱، جلد اول، شهریور ۱۳۸۴
تیم تغییر نمایی بارندگی روز ۱۶ اسفند ۱۳۶۹ در ۳۲ کل منطقه مورد مطالعه برای بررسی عمقتر و انتخاب روش مناسب‌بینی، این روش‌ها برای بارندگی‌های روز ۲۲ اسفند ۱۳۶۹ نیز که دارای پراکنش و فراگیری کم‌تری نسبت به روز ۱۶ اسفند ۱۳۶۹ است، در ترکیبونیان مختلف اجرا شد. نتایج ارزیابی نشان می‌دهد که در این روز نیز روش ۲ دقت بیشتری ارائه می‌کند و افزایش تراکم باعث افزایش دقت براورد می‌شود. شکل(۱۱). ضمن آنکه تقسم بندی منطقه با روش تحلیل کلاستر دقت براورد را افزایش می‌دهد. لازم به ذکر است که در تقسم منطقه به روش تحلیل کلاستر، منظم‌تری روز ۱۶ اسفند از فرمون مشابه منظم‌های روز ۲۲ اسفند به دست آمد.

در مقایسه با نتایج سایر محققان، نتایج این تحقیق با نتایج تیج[۱۱] متفاوت است. وی از بین روش‌های WMA، کریگینگ و TPSS اسپلین، روش WMA را نوسیبی کرد. در این تحقیق روش دقت بیشتری دارد. از طرف دیگر جفری و همکاران[۱۱] تراکم بین تقسم افزایش دقت براورد می‌شود. شکل(۱۱). ضمن آنکه تقسم بندی منطقه با روش تحلیل کلاستر دقت براورد را
برای برآورد متغیرهای اقلیمی روزانه در TPSS برابر با رویداد متغیرهای اقلیمی روزانه در ۱۲۰۰۰ استفاده در سرنوشت استرالیا استفاده گردید. برآورد تغییرات مکانی علائم بر نوع متغیر تعامل الگوریتم نظیر تراکم، نحوه آراپیش استگاهها و تغییرات اقلیمی بستگی دارد و تهیه اثر متناسب در یک منطقه با به سازند نقاط تعیین داد.

نتیجه‌گیری
به طورکلی نتایج بیانگر آن است که:

۱. برای برآورد بارندگی روزانه در بارشهای فراگیر منطقه جنوب غربی کشور، روش TPSS با نویان ۲ نسبت به WMA روشهای و کریگینگ در مجموع مناسب است. لیکن با در نظر گرفتن نزدیک بودن برخی موارد مناسب‌های منطقه در این تحقیق، انتخاب روش مناسب با توجه به هدف دقت و زمان محاسبه می‌تواند متغیر باشد. به طور مثال اگر هدف
شکل 11- نمودار نتایج ارزیابی روش‌های مبناپایی برای پارندگی روز ۲۲ اسفند ۱۳۶۹ در ۳ تراکم مختلف‌الف‌ب (MBE) و (MAE)
واحدهای همگن باعث بهبود نسبی همبستگی مکانی شده است. برای محاسبه همبستگی مکانی در این مطالعه، استفاده بر اساس روش برآوردگری TPSS-2 ارائه می‌گردد.

در مورد برآوردگری روز 14 اسفند که دارای فاکتوری کمتری است نیز روش TPSS-2 بهترین آن را ارائه می‌دهد. در این روش، به‌طور همزمان مطالعه‌ای از همگنی باعث افزایش دقیقه برآورد همگی می‌باشد.

1. Cross Validation
2. thin plate smoothing splines
3. weighted moving average
4. Kriging
5. Mattron
6. root mean square error
7. tension
8. smooth
9. moving surface
10. trend surface
11. mean absolute error
12. mean bias error
13. over estimation
14. under estimation
15. hierarchical cluster analysis
16. discriminate function analysis
17. Sill

واژه‌نامه

مراجع

1. مدینی، ح.، میانتی، زهبن آمر. انتشارات دانشگاه صنعتی امیر کبیر. 1373.
8. Hargrove, W.W., “Interpolation of Rainfall in Switzerland Using a Regularized Splines with

کی‌بان، به. انتشارات دانشگاه صنعتی امیر کبیر. 1373.
Relationship With the North Atlantic Oscillation,”

18. Uvo, C.B., “Analysis and Regionalization of Northern European Winter Precipitation Based on its