Comparsion of Methods for Determining Bearing Capacity of Piles Using Standard Penetration Test (SPT) Data

A. Eslami, M. Karimpoor Fard, and N. Shariatmadari
University of Gilan, Civil Engineering Dept., Rasht, Iran
Farour Consulting Engineering Co., Tehran, Iran
University of Science and Technology, Civil Engineering Dept., Tehran, Iran

Abstract: In recent years, determining bearing capacity of piles from in-situ testing data as a complement to static and dynamic analysis has been used by geotechnical engineers. In this paper, different approaches for estimating bearing capacity of piles from SPT data are studied and compared. A new method based on N value from SPT is presented. Data averaging.

* دانشیار
** - کارشناس ارشد
*** - استادیار

استقلال، سال ۱۳۸۴، شماره ۱، جلد اول، شهریور ۱۳۸۴

77
تنش قائم به تنش افقی خاک (Ks) لازم بوده که تعیین دقیق Ks برای شمعها با توجه به خاکهای منظم و روشهای استفاده متفاوت شمعها تتوان ابعاد جایگاهی منظم درخاک تقریباً غیر عملی است و باید به لحاظ راه حل واحده برای تعیین مقادیر صحیح مقاومت جداری شمع نمی‌تواند باشد.

در خاکهای جنوبی نیز طرفیت باربری شمع تابعی از مقاومت برخی زهکشی‌نشده (S۰) است که پارامتر واحدی نبوده و به میزان قابل توجهی تغییر می‌کند. به نوع آزمایش انتخاب شده برای تعیین آن، نرخ کربن اکسیژنی و امتداد فضای گسیخته ویسبسته مضافاً به اینکه در خاکهای ریزدانه و نیز همگی خاکهای طرفیت باربری شمع در دراز مدت و نه در کوتاه مدت حاکم بر سرویس‌ده دو مقاله باربری وارده است. استفاده از مقامات عمیق بحرانی نیز در روش تحلیل استاتیکی از مواردی است که بر مبنای تحلیل‌های نظری و نیز تجربی مدلهای آزمایشگاهی و عملکرد ابتدای نبوده و ناشی از ناپدید بودن ایجادش و تنش نشانگان پس ماند شمع کوبی، نشان خاک اطراف شمع و همچنین عدم ملاحظه کاهش مقادیر زاویه اتصالات داخلی در عمق بحران افراشی شنت‌های سریر و هم جابه است.[۱]

روابط دینامیک کویش شمع که براساس روابط برخورد و ضریب نیوتون در شمعه کوبیکی ارائه شده و به دلیل مشکلات ناشی از اختلاف بین انرژی اسید و انرژی واکنشی متغیری از زمینه ای شکل می‌گیرد و تغییر می‌کند. همچنین اطلاعات بیشتری از شکل در مقابل صفره، استفاده نشان از انتقال اثرات بیشتری که عملکد برای موارد موضعی و تغییرات اولیه مورد کاربرد قرار می‌گیرد، و نیز استفاده از تحلیل شنت‌های کلی خصوصاً در

تعیین طرفیت باربری شمعها بکی از چالش‌هایی است که بعد از مهندسان زنتونیکی نیز وازمان‌های حاکم و تغییرات تغییر به ناهمگونی و ناهمسانی خاک در زمینه‌های شمع، راه‌حل اجرا، جنس و حتی شکل شمع، نخستین مدل طرفیت باربری را با معمولات و ادبیاتی همراه می‌کند. برای تعیین طرفیت باربری شمعها روشهای تحلیل استاتیکی، فرمول‌های دینامیکی، آزمایش‌های دینامیکی و تغییرات مناسب بر نتایج آزمون‌های درجا و پاراگراف استاتیکی شمع در مقاله اصلی مدل است. در روشهای تحلیل استاتیکی روابط تعیین مقاومت کف و جداسازی متفاوت از هم بوده که برای نوع خاک از زاویه اتصالات داخلی خاک (φ) و با مقادیر برخی زهکشی‌نشده (S۰) استفاده می‌شود. در خاکهای دانه‌ای روابط مختلف Tوسیع محققان در تعیین مقاومت کف شمع با استفاده از ارائه‌های طرفیت باربری وابسته جغرافیا آنها شده است که عموماً مقاومت کف را با ضریب Nq (ضریب توان باربری) به تعیین مؤثر کف شمع مربوط می‌کند. از اینجا که φ نابینا از φ بوده و تعیین مقدار میانگین زاویه اتصالات داخلی دارای مشکلات و معضلات مثل نمونه‌گیری دست نخورده، اگه‌ها مقاومت دینامیکی و اعمال از ناهنجاری و اثر باید خاک در مقایسه با زنگ‌نگ، با پاسخ تغییرات و پاک‌کردن در تعیین مقادیر طرفیت باربری کف شمع مطرح بوده که درانتخاب مقادیر صحیح Nq براساس مقدار φ تهدیدهای خطر از طریق Nq به نتایج رساندن نمونه‌گیری از روابط φ به همراه مدل‌های مختلف دینامیکی در شکل (۱) ارائه شده است. در تعیین مقاومت جداری، تنش مؤثر در عمق و ضریب تبدیل

Keywords: Pile, Bearing capacity, Standard penetration test(SPT), Data filtering, Failure load

1- مقدمه

یکی از چالش‌هایی است که بعد از مهندسان زنتونیکی نیز وازمان‌های حاکم و تغییرات تغییر به ناهمگونی و ناهمسانی خاک در زمینه‌های شمع، راه‌حل اجرا، جنس و حتی شکل شمع، نخستین مدل طرفیت باربری را با معمولات و ادبیاتی همراه می‌کند. برای تعیین طرفیت باربری شمعها روشهای تحلیل استاتیکی، فرمول‌های دینامیکی، آزمایش‌های دینامیکی و تغییرات مناسب بر نتایج آزمون‌های درجا و پاراگراف استاتیکی شمع در مقاله اصلی مدل است. در روشهای تحلیل استاتیکی روابط تعیین مقاومت کف و جداسازی متفاوت از هم بوده که برای نوع خاک از زاویه اتصالات داخلی خاک (φ) و با مقادیر برخی زهکشی‌نشده (S۰) استفاده می‌شود. در خاکهای دانه‌ای روابط مختلف Tوسیع محققان در تعیین مقاومت کف شمع با استفاده از ارائه‌های طرفیت باربری وابسته جغرافیا آنها شده است که عموماً مقاومت کف را با ضریب Nq (ضریب توان باربری) به تعیین مؤثر کف شمع مربوط می‌کند. از اینجا که φ نابینا از φ بوده و تعیین مقدار میانگین زاویه اتصالات داخلی دارای مشکلات و معضلات مثل نمونه‌گیری دست نخورده، اگه‌ها مقاومت دینامیکی و اعمال از ناهنجاری و اثر باید خاک در مقایسه با زنگ‌نگ، با پاسخ تغییرات و پاک‌کردن در تعیین مقادیر طرفیت باربری کف شمع مطرح بوده که درانتخاب مقادیر صحیح Nq براساس مقدار φ تهدیدهای خطر از طریق Nq به نتایج رساندن نمونه‌گیری از روابط φ به همراه مدل‌های مختلف دینامیکی در شکل (۱) ارائه شده است. در تعیین مقاومت جداری، تنش مؤثر در عمق و ضریب تبدیل
[7]
خاکهای رسی، با خاکهای زیادی توأم است.

در آزمایش‌های دینامیکی که برای اندازه‌گیری و تحلیل شتاب و کویش در نزدیکی سر شمع و در خود کویش ارائه شده است، تغییرات در طرفی باربری شمع با استفاده از داده‌های اندازه‌گیری شده توسط PDA و تحلیل عدیدی نیرو و سرعت امواج ایجاد شده در شمع در هنگام عملیات شمعکوبی حاصل می‌شود. مشخص عده‌ای این روش نیاز به مختصات محیطی و کارآزمایی در طرفی باربری شمع به جلوگیری از این روش در تحقیق و تفکر امکان نمی‌نماید. اگرچه در پروژه‌های مهم و شرایط نامتعارف بارگذاری و وضعیت خاک، معمولاً چند بار نشان دهنده شمعگذاری آزمایشی در نقاط مختلف شامل اینکه کویش، شده و آزمایشی تحلیل PDA و تحلیل CAPWAP به سرعت و به راحتی برای تکمیل تحقیق پارسی گر در آزمایش‌های همگن و هم‌زمان است.

آزمایش‌های بارگذاری شمع کامپرین و بهترین روش تغییر طرفی باربری یک شمع، به تمرین طراحی و چه پس از اجرای فن‌دومین پروژه است. مشخص عده‌ای این روش گرانی و صرف زمان زیاد و نیرو صعبت برای انجام این آزمایش است. این که به کویش ایجاد است از یک روش نماید در پروژه‌های پژوهنده توجیه اقتضا دارد. چون اینکه در محط‌های دریایی استقرار تجهیزات و انجام آزمایش با محصولات همراه است.

استفاده از تکنیک‌های آزمایش در تحقیقات زیست‌شناسی در سال‌های اخیر کسب قابل توجه یافته است. در این مقاله پنج روش تغییر طرفی باربری ماتی بر تنظیم آزمایش مورد نقد و بررسی قرار گرفته و سپس با توجه به نقش موجود در آزمایش‌های مربوط به روش جدید ارزیابی نظری باربری شمع برای نیازهای آزمایش SPT است. با استفاده از تحلیل آماری و احتمالهای تاریخی آن با تکنیک پنج روش دیگر مقایسه شده است. میزان این مقایسه مشاهده و تحلیل حاصل از پنج برنامه شمع آزمایشی بارگذاری شده است.

با توجه به بالا چنین است، مقایسه آزمایشی که توأم با ایده حمل دستگاه آزمایش به محل به چنین آزمایش‌های کوچک شده تکنیک آزمایشی که توأم با ایده حمل دستگاه آزمایش به محل به

در مجموع و در مطالعات زیست‌شناسی در مواردی که

استقلال، سال ۱۳۸۴/۱، جلد ۱، شماره ۲۴

۸۰
ظرفیت باربری کف و جداری شمع \(n_s, n_g \) و نیز میزان
کسترهای ناحیه گیسیگنجی در فک شمع برای تعیین مقدار
مفر \(N_1 \) یافته. در زمان جریان‌های مربوط به هر روش ارائه
شد است.

2-1- روش اوکی - ولسو[2]
این محفظان برای شمع‌های کوبیده شده، ضرایب \(n_s \) و \(n_g \) و را
به صورت زیر در خاک‌های مختلف ارائه کردند:
الف) ماسه‌ها:

\[
0.004 \leq n_s \leq 0.005
\]

ب) گردا:

\[
0.131 \leq n_s \leq 0.314
\]

ج) رسمه:

\[
0.002 \leq n_s \leq 0.003
\]

\[
0.114 \leq n_s \leq 0.200
\]

در این روش \(N_1 \) تیز متوسط مقدار \(N \) در طول شمع هجر سه
مدادر استفاده در تعیین \(N_1 \) (است. نسبت انتزی مورد
استفاده این روش برای 72% است. نسبت انتزی بیانه
به انرژی در حالت SPT آزمایش واقع در آزمایش
استاندارد آزمایش است).

2-2- روش مایر هواف[3]
مایر هواف معادلات زیر را برای تعیین ظرفیت باربری شمع‌های
کوبیده شده در خاک‌های ماسه‌ای ارائه کرد:

\[
q_1 = 0.4N_1C_1C_2
\]

\[
C_1 = \frac{B + 0.5}{2B} \leq 1
\]

\[
C_2 = \frac{D_b}{10B} \leq 1
\]

\[
q_s = n_sN_s
\]

\[
R_s = \sum q_{si}A_{si}h_i = \sum n_{si}N_{si}A_{si}h_i
\]

\[
R_s = q_{si}A_{si}D_f = n_sN_sA_sD_f
\]

\[
\text{تنظیم میزان معادلات فوق در مقادیر مورد شده برای ضرایب}
\]

\[
1384
\]

استنسلال سال 1343 شماره 1 چند اول، شهریور
جهانی جایی زید "اعادل 2 و برای شمعهای کویپیده شده بنا

جهانی جایی کم "برای 1 است. میزان نسبت انرژی مورد استفاده

در این روش 85٪ است. معیار کیفیتی در نظر گرفته شده در

ابن روش بار مناطق با حاکم شیب نمودار پارا-نشست به

دست آمده از آزمون بارگذاری شمع است.

3-2 روش بازارا - کور کور [2]

بازارا و کورکور برای تجدیدپنیدن از فعالیتهای زونوتکنیکی

صورت گرفته در کشور مصر، برای تعیین ظرفیت باربری قائم

شمع میانگین مقادیر N در محدوده 3.75Bایالای کف شمع و

3.57Bایالای کف شمع و زیرکف شمع است که دارای حد فوقانی 5 برای N متوسط

1B است.

3-1 نقد و ارزیابی متدها

در نقد و بررسی متدهای مختلف ارائه شده توسط محققان

مختلف برای تعیین ظرفیت باربری شمعهای کویپیده شده،

معادلات زیر را ارائه کرد:

که معاویه فرق برای شمعهای لولهای سر باز به صورت دیزل

خواهد بود:

که معاویه فرق برای شمعهای لولهای سر باز به صورت دیزل

خواهد بود:

3-1-1 متابعین روش بار- ناکار[5]

برای و تفاوت بار انتزاع از نتایج SPT و مدل الاستیسیون شمع

استقلال سال 24، شماره 1، جلد اول، شهریور 1384

82
مقادیر ظرفیت بیش از یکی شده رادنیالی بیکس لنجد

یک ناحیه گسیختگی مفروض نسبتاً بین برای تعیین ظرفیت
بازرسی کف‌بوده و سایر روشهای به دلیل لحاظ تکردن
پارامترهای مقاومت و الساخی حاکایت واقع در تراز کف شمع
توانایی شبیه‌سازی گسیختگی کلی در شمع را دارا نیستند.

4- ارائه متغیر

با توجه به تجربه رایج و با ارتباط عوامل مؤثر و تأثیر‌گذار
بر محور ظرفیت باربری شمع با استفاده از مدلهای آزمون درون
از قبل ناحیه گسیختگی ایجاد شده در اطراف کف شمع
میانگین مقادیر مستقیم استفاده و معیار گسیختگی شمع
در آزمایش بارگذاری، یک روش جدید ارزیابی ظرفیت
باربری قائم شمع را ارائه شده جنبیت و ویژگی‌های رابطه
جدید در دلیل ارائه می‌شود.

1- برداشته و مقدار متغیر N

به حساب آوردن تغییرات مشخصه های مقاومتی خاک با ارائه
یک مقادیر متغیر N در تعیین مقاومت واحد کف و نیز
مقاومت واحد باربری سیب‌یار حزین اهمیت است. در اکثر سایت‌ها
به دلیل ناهنجاری خاک تشکیل دهنده آن و نیز وجود لایه‌ای
نارض کم مقاومت و یا دارای مقاومت بالا مقادیر N به دست
آمده از آزمایش برداری تغییرات زیادی است. از آنجا که
مقاومت جدید منطقه به نظر می‌رسد.

نسبت آوازی درنگ فرمان‌های زیر برای مقدار N تام‌مشخص است.
این در حالی است که عمل مقدار N به دست آمده از آزمایش
با مقدار آوازی که است استفاده به میلی افزایش می‌یابد. نسبت
عکس دارد. لذا عدم تعیین صحیح نسبت آوازی مبهم به
محاصره و عدم هماهنگی نسبت آوازی مقدار ورودی N و
نسبت آوازی استفاده از روابط ایجاد خطا در تعیین
مقادیر صحیح ظرفیت باربری شمع می‌شود. اما این‌ها همچنین
مندها از میزان افزاری واردی واحدهای تعیین نکنید که به‌دست

\[N_i = (N_1 + ... + N_n) / n \]
عکس دریافت نشده است.
4-4 رویایی پتروف نسبت به فقره 18 اینج

شکل 2. اثر ابعاد قطر پیتروف در بسیج کامل مقامت واحد کف شمع

فوئاتی این ناحیه بسیار مشابه نتایج تحقیقات مایر هوف، دیبر و
اسلامی- فلیبس است[۷].

4-4 میزان بهره مناسب میزان بهره مناسب

معیار بهره مناسب مفروض در این راهبرد، فرآیند کامل است که
طبق این میزان بهره مناسب میزان بهره مناسب می‌رود که تحت
یک پیمایی از نقاط اولیه، میزان نسبت شمع با پیک ترخ می‌شود.
در میزان این میزان بهره مناسب

برای شمع نرم، بازداشت که برابر با یک

و نوع کنه یک شمع شده‌‌ی مناسب در ناحیه جایگاتانه

و نتایج SPT و CPT نظر در رده آزمایش‌های ساخت و

کننده گسیختگی این شمع نیز فرآیند کامل در نظر گرفته شده

است.
ظرفیت باربری جدایی و نوک به تفکیک ارائه شده‌اند. در 12 مورد از موارد مطالعاتی موجود در این بانک اطلاعاتی آزمایش‌های بارگذاری تا مرحله گسیختگی کلی ادامه داده شده، اما دو دسر پیرش آنها و گونه‌ها است حال واقعیت به‌مناسبت تفسیری این نتایج برای یکی از مهم‌ترین فضاهای نهایی آنها را تعیین کرده‌اند. این موارد با استفاده از معماری هنست ظرفیت باربری نهایی موارد تعیین شده است (14).

در انتخاب موارد مطالعاتی موجود در این بانک اطلاعاتی سعی بر آن بوده است که حاکم مطلق شمعها از نوع حاکمایان آن‌ها و چندین شمار آب حوریایی اضافی در این حاکمایان به عمل بریسبی می‌گردد. خواهد نشان داد که اثر گسترده آب حوریایی بر روی تعداد ضروری N به دست آمده از آزمایش SPT جهت درک و سنجش حجم‌گیری شمعها و تعداد حفره‌ها یک چرخه تعداد ضروری N به دست آمده از آزمایش SPT بسیار اینک خواهد بود. به این دلیل در موارد مطالعاتی SPT موجود در این بانک اطلاعاتی با خاک محل استقرار شمعها کامل از نوع حاکمایان دانه‌ای است و باید در صورت وجود لایه‌های خاک جنوبی، ضخامت این لایه‌ها از 200 طول شمع کمتر بوده است. در شکل 3 تایپ آزمایش SPT در حفره‌ای بر حسب عمق برای بخشی از موارد متدی در بانک اطلاعاتی ارائه شده است.

6- معیارهای نهایی شمع

معیار گسیختگی یک شمع غلیظاً در دو حالت جابه‌جا بهبود جابه‌جایی کوکچک و پریایه ملاحظات نشست مجاز و سرویس‌های پذیرایی سازه و ایجاد جابه‌جایی بهتر و با ظرفیت باربری نهایی، موردنیزیر قرار می‌گیرد.

که در آن N _ و R _ توان باربری نهایی، کف و جدایه بر حسب مگاپیون (MN) و q _ و q _ مقدار واحدهای کف و جدایه بر حسب مگاپیون، MPa مورد گرفتن N _ متوسط هندسی مقادیر N _ در ناحیه بیاید که شمع و 4N گرفتن N _ متوسط هندسی مقادیر N _ در کل طول مدقع شمع و 4N گرفتن A _ و A _ نیز سطح مقطع کف و جدایه شمع بر حسب موردی است که این مطالعه ضروری است که به دلیل استفاده از نتایج آزمایش بارگذاری بر روی شمعهای کوبیده شده در حاکمایان مساحی، برای کالیره در محیط ارائه شده قابلیت آنها و معمای فوق نهایاً برای شمعهای کوبیده شده در محیط‌های مساحی معیارهای معتبر است.

5- بانک اطلاعاتی

اطلاعات جمع آوری شده شمار 22 مورد نتایج آزمایش بارگذاری شمعها در مقایس واقعی به همراه اطلاعات مربوط به نوع حاکم بخش مدول استقرار شمع و نتایج مربوط به آزمایش SPT آدرنتره در محال نهایی نسبت به شمع تحت بارگذاری، نشان دهنده است این موارد مطالعاتی از 22 سایت و 15 مرحله گزارش شده اندکه در جدول (1) جزئیات مربوط به این موارد مطالعاتی شامل مشخصات هندسی شمعها و ظرفیت باربری، شرایط محیط جمع‌آوری، دام و نیروی و... داشته‌اند.

ارطه موارد مطالعاتی موجود در این بانک اطلاعاتی از آمیکا کوبیده 1000 می‌باشد. قطر شیب ماله مطابعه از 1000 می‌باشد. قطر غلاب آنها از 400 می‌باشد. قطر غلاب آنها از 300 می‌باشد. قطر غلاب آنها از 200 می‌باشد. قطر غلاب آنها از 150 می‌باشد. قطر غلاب آنها از 100 می‌باشد. قطر غلاب آنها از 50 می‌باشد. قطر غلاب آنها از 40 می‌باشد. قطر غلاب آنها از 30 می‌باشد. قطر غلاب آنها از 20 می‌باشد. قطر غلاب آنها از 15 می‌باشد. قطر غلاب آنها از 10 می‌باشد. قطر غلاب آنها از 5 می‌باشد. قطر غلاب آنها از 4 می‌باشد. قطر غلاب آنها از 2 می‌باشد. قطر غلاب آنها از 1 می‌باشد. قطر غلاب آنها از 0.5 می‌باشد. قطر غلاب آنها از 0.1 می‌باشد. قطر غلاب آنها از 0.05 می‌باشد. قطر غلاب آنها از 0.01 می‌باشد. قطر غلاب آنها از 0.005 می‌باشد. قطر غلاب آنها از 0.001 می‌باشد. قطر غلاب آنها از 0.0005 می‌باشد. قطر غلاب آنها از 0.0001 می‌باشد.
<table>
<thead>
<tr>
<th>No.</th>
<th>Case</th>
<th>Reference</th>
<th>Site location</th>
<th>material *</th>
<th>b(mm)</th>
<th>Embedment length(D(m))</th>
<th>Total capacity Rult(KN)</th>
<th>Soil profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A&M 14</td>
<td>Briand & Tucker (1988) [6,7]</td>
<td>USA</td>
<td>HP,St</td>
<td>246</td>
<td>8.5</td>
<td>590</td>
<td>clay & sand</td>
</tr>
<tr>
<td>2</td>
<td>A&M 39</td>
<td>Briand & Tucker (1988) [6,7]</td>
<td>USA</td>
<td>HP,St</td>
<td>310</td>
<td>19</td>
<td>1370</td>
<td>clay & sand</td>
</tr>
<tr>
<td>3</td>
<td>A&M 40</td>
<td>Briand & Tucker (1988) [6,7]</td>
<td>USA</td>
<td>Sq, Conc.</td>
<td>350</td>
<td>16</td>
<td>1070</td>
<td>clay & sand</td>
</tr>
<tr>
<td>4</td>
<td>A&M 41</td>
<td>Briand & Tucker (1988) [6,7]</td>
<td>USA</td>
<td>HP,St</td>
<td>310</td>
<td>12.4</td>
<td>520</td>
<td>clay & sand</td>
</tr>
<tr>
<td>5</td>
<td>A&M 49</td>
<td>Briand & Tucker (1988) [6,7]</td>
<td>USA</td>
<td>Sq, Conc.</td>
<td>400</td>
<td>14.7</td>
<td>1170</td>
<td>sand</td>
</tr>
<tr>
<td>7</td>
<td>A&N1</td>
<td>Haustorfer & Plesiotis (1988) [6,7]</td>
<td>Australia</td>
<td>Sq, Conc.</td>
<td>450</td>
<td>14</td>
<td>3850</td>
<td>sand & limestone</td>
</tr>
<tr>
<td>8</td>
<td>A&N2</td>
<td>Haustorfer & Plesiotis (1988) [6,7]</td>
<td>Australia</td>
<td>Sq, Conc.</td>
<td>450</td>
<td>13.75</td>
<td>4250</td>
<td>sand & limestone</td>
</tr>
<tr>
<td>10</td>
<td>ALABA</td>
<td>Laier (1994) [6,7]</td>
<td>USA</td>
<td>HP,St</td>
<td>310</td>
<td>36.3</td>
<td>2130</td>
<td>silty clay & sand</td>
</tr>
<tr>
<td>11</td>
<td>BOOSH1</td>
<td>Iran khak Ltd. (1995) [8]</td>
<td>Iran</td>
<td>P, St</td>
<td>457</td>
<td>24</td>
<td>2230</td>
<td>silty clay & sand</td>
</tr>
<tr>
<td>12</td>
<td>BOOSH2</td>
<td>Iran khak Ltd. (1995) [8]</td>
<td>Iran</td>
<td>P, St</td>
<td>457</td>
<td>24</td>
<td>1200</td>
<td>silty clay & sand</td>
</tr>
<tr>
<td>13</td>
<td>B.A.1</td>
<td>Omran Sahel Ltd. (2002) [9]</td>
<td>Iran</td>
<td>P, St</td>
<td>1000</td>
<td>15</td>
<td>288</td>
<td>clay & sand</td>
</tr>
<tr>
<td>14</td>
<td>B.A.2</td>
<td>Omran Sahel Ltd. (2002) [9]</td>
<td>Iran</td>
<td>P, St</td>
<td>1000</td>
<td>18</td>
<td>350</td>
<td>clay & sand</td>
</tr>
<tr>
<td>15</td>
<td>B.A.3</td>
<td>Omran Sahel Ltd. (2002) [9]</td>
<td>Iran</td>
<td>P, St</td>
<td>1000</td>
<td>15</td>
<td>300</td>
<td>clay & sand</td>
</tr>
<tr>
<td>16</td>
<td>B.A.4</td>
<td>Omran Sahel Ltd. (2002) [9]</td>
<td>Iran</td>
<td>P, St</td>
<td>1000</td>
<td>18</td>
<td>300</td>
<td>clay & sand</td>
</tr>
<tr>
<td>17</td>
<td>B.A.5</td>
<td>Omran Sahel Ltd. (2002) [9]</td>
<td>Iran</td>
<td>P, St</td>
<td>1000</td>
<td>15</td>
<td>200</td>
<td>clay & sand</td>
</tr>
<tr>
<td>18</td>
<td>B.A.6</td>
<td>Omran Sahel Ltd. (2002) [9]</td>
<td>Iran</td>
<td>P, St</td>
<td>1000</td>
<td>18</td>
<td>200</td>
<td>clay & sand</td>
</tr>
<tr>
<td>19</td>
<td>B.A.7</td>
<td>Omran Sahel Ltd. (2002) [9]</td>
<td>Iran</td>
<td>P, St</td>
<td>1000</td>
<td>18</td>
<td>500</td>
<td>clay & sand</td>
</tr>
<tr>
<td>20</td>
<td>Fajr 1</td>
<td>Iran khak Ltd. (1998) [10]</td>
<td>Iran</td>
<td>Sq, Conc.</td>
<td>400</td>
<td>24.5</td>
<td>680</td>
<td>clay & silty sand</td>
</tr>
<tr>
<td>21</td>
<td>Fajr 2</td>
<td>Iran khak Ltd. (1998) [10]</td>
<td>Iran</td>
<td>Sq, Conc.</td>
<td>400</td>
<td>30</td>
<td>3000</td>
<td>clay & silty sand</td>
</tr>
<tr>
<td>22</td>
<td>Fajr 3</td>
<td>Iran khak Ltd. (1998) [10]</td>
<td>Iran</td>
<td>Sq, Conc.</td>
<td>400</td>
<td>24</td>
<td>1800</td>
<td>clay & silty sand</td>
</tr>
<tr>
<td>No.</td>
<td>Case</td>
<td>Reference</td>
<td>Site location</td>
<td>Material</td>
<td>b (mm)</td>
<td>length, D (m)</td>
<td>Rult (KN)</td>
<td>Soil profile</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------</td>
<td>--------</td>
<td>--------------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>26</td>
<td>L&D 12</td>
<td>Tucker & Briaud (1988) [7]</td>
<td>USA</td>
<td>HP, St</td>
<td>360</td>
<td>16.5</td>
<td>1170</td>
<td>sand</td>
</tr>
<tr>
<td>27</td>
<td>L&D 13A</td>
<td>Tucker & Briaud (1988) [7]</td>
<td>USA</td>
<td>HP, St</td>
<td>360</td>
<td>16.5</td>
<td>2900</td>
<td>sand</td>
</tr>
<tr>
<td>28</td>
<td>L&D 16</td>
<td>Tucker & Briaud (1988) [7]</td>
<td>USA</td>
<td>HP, St</td>
<td>360</td>
<td>16.2</td>
<td>3600</td>
<td>sand</td>
</tr>
<tr>
<td>30</td>
<td>L&D 315</td>
<td>Tucker & Briaud (1988) [7]</td>
<td>USA</td>
<td>HP, St</td>
<td>360</td>
<td>11.3</td>
<td>817</td>
<td>sand</td>
</tr>
<tr>
<td>31</td>
<td>L&D 316</td>
<td>Tucker & Briaud (1988) [7]</td>
<td>USA</td>
<td>HP, St</td>
<td>360</td>
<td>11.3</td>
<td>870</td>
<td>sand</td>
</tr>
<tr>
<td>34</td>
<td>OKLACO</td>
<td>Neveles & Donald, (1994) [7]</td>
<td>USA</td>
<td>P, St</td>
<td>660</td>
<td>18.2</td>
<td>3600</td>
<td>sand</td>
</tr>
<tr>
<td>35</td>
<td>OKLAST</td>
<td>Neveles & Donald, (1994) [7]</td>
<td>USA</td>
<td>P, St</td>
<td>610</td>
<td>18.2</td>
<td>3650</td>
<td>sand</td>
</tr>
<tr>
<td>36</td>
<td>POLA 1</td>
<td>CH2M Hill (1987) [7]</td>
<td>USA</td>
<td>Oct, Conc</td>
<td>600</td>
<td>25.8</td>
<td>5785</td>
<td>clay & sand</td>
</tr>
<tr>
<td>37</td>
<td>POLA 2</td>
<td>Urkunda Ltd. (1995) [7]</td>
<td>USA</td>
<td>Oct, Conc</td>
<td>600</td>
<td>32.6</td>
<td>3560</td>
<td>clay & sand</td>
</tr>
<tr>
<td>38</td>
<td>Rasht 1</td>
<td>Iran khak Ltd. (1996) [12]</td>
<td>Iran</td>
<td>Sq., Conc.</td>
<td>300</td>
<td>30</td>
<td>1600</td>
<td>clay & sand</td>
</tr>
<tr>
<td>39</td>
<td>Rasht 2</td>
<td>Iran khak Ltd. (1996) [12]</td>
<td>Iran</td>
<td>Sq., Conc.</td>
<td>300</td>
<td>30</td>
<td>1600</td>
<td>clay & sand</td>
</tr>
<tr>
<td>40</td>
<td>Twntp 4</td>
<td>Yen et al. (1989) [7]</td>
<td>Taiwan</td>
<td>P, St</td>
<td>609</td>
<td>34.2</td>
<td>4330</td>
<td>clay & sand</td>
</tr>
<tr>
<td>41</td>
<td>Twntp 6</td>
<td>Yen et al. (1989) [7]</td>
<td>Taiwan</td>
<td>P, St</td>
<td>609</td>
<td>34.2</td>
<td>4460</td>
<td>clay & sand</td>
</tr>
<tr>
<td>42</td>
<td>UF22</td>
<td>Avasarala et al. (1994) [7]</td>
<td>USA</td>
<td>Sq., Conc.</td>
<td>350</td>
<td>16</td>
<td>1350</td>
<td>sand</td>
</tr>
</tbody>
</table>

P = Pipe, Sq = Square, HP = H-Section, Conc = Concrete, St = Steel, b = Diameter, D = Length, Rult = Total capacity
شکل 3- نمودار نهایی از تابع N حاصل از SPT با عمق برخی از موارد پلاستیک اطلاعاتی

از آنجایی که بهترین روش تعیین طرفیت باربری یک شمع استفاده از نتایج آزمایش بارگذاری شمع است، بحث بر روی مقوله معیار گسیختگی بیشتر در زمینه تفسیر نتایج این آزمون مطرح است.

در شکل 4، نمودار نهایی از تابع N حاصل از SPT با عمق برخی از موارد پلاستیک اطلاعاتی

از آزمایش بارگذاری شمع مشاهده می‌شود که می‌توان آن را با درخت مستقيم تعیین ذوب بدست‌آورده اولی توانست مصرف انرژی کشی است. نتایج خاک – شمع است که نتایج A ادامه دارد که در این تغییر مکان‌های ایجاد شده در شمع کوچک‌تر است. در آزمایش‌هایی که با ایجاد تغییر مکان‌های کوچک انجام می‌شود، محدوده بارگذاری شمع، محدوده فوق الذکر است. آزمایش‌های بارگذاری محک یا چنین پیش‌فرضی انجام می‌شود. در این‌گونه موارد هدف از بارگذاری شمع، تعیین صحت عملکرد یک شمع در محدوده بارگذاری مجاز آن است. بحث دوم این تغییر نمودار اندر کشی است. نتایج حاصل از تغییر نمودار اندر کشی خاک – شمع است که از
شکل 5- نمودار مختلف بار- جابجایی شمع در خاک‌های مختلف حاصل از آزمایش بارگذاری استاتیکی

\[Q = Q_{ult}(1 - e^{-ks}) \]

(26)

به توجه به مطالب فوق تفسیر نمودار بار- نشست یک شمع کار چندان آسانی نخواهد بود، چرا که گسیختگی فروشده به ندرت ایجاد می‌شود و نیز در برخی از موارد در تغییر مکان‌های فوق العاده پراکنده می‌شود. بنابراین مطالعه‌هایی در این مورد به نتیجه‌گیری از تغییرات بارگذاری و نشست تغییرات مکان‌های شمع منجر از حصول به آن می‌شود. لذا گرایش باربری‌های نقش بانی یک شمع بیش از آنکه تابع سیستم مکا- شمع باشد تابع سیستم ارائه‌گر- شمع است [15].

در میان روش‌های مورد بررسی در این تحقیق، تناها در سه روش معیار گسیختگی مشخص شده است که عبارتند از: اولیک- ولسو [21]، بی‌راد- تاکر [5]، و مایروف [31] در روش اولیک- ولسو [21] معیار گسیختگی ارائه شده توسط وان درون ۷۱ در نظر گرفته شده است. طبق این روش معادله بین ظرفیت باربری نهایی شمع و مقدار بار وارد بر شمع و نشست متناژ با آن به صورت معادله نمایی زیر است:

\[Q = Q_{ult}(1 - e^{-ks}) \]

(26)

شکل 4- نمودار عمومی بار- جابجایی شمع
\[p = \frac{i}{n+1} \]

\[E = \frac{R_e}{R_m} - 1 \]

\[E_{r,ave} = \left(\frac{R_e}{R_m} \right)_{r,ave} - 1 \]
جدول ۲- مقایسه خطاهای آماری متدهای جاری و جدید برای بیشینی ترکیب برای شمعها

<table>
<thead>
<tr>
<th>روش</th>
<th>Aoki & Velloso</th>
<th>ماپورف</th>
<th>Bazaar & Kurkur</th>
<th>Shioi & Fukui</th>
<th>Briaud & Tucker</th>
</tr>
</thead>
<tbody>
<tr>
<td>خطای نسبی</td>
<td>متوسط خط</td>
<td>۱۰۹</td>
<td>-۱۸</td>
<td>۴۵</td>
<td>۸</td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>۱۲۴</td>
<td>۴۵</td>
<td>۱۵۱</td>
<td>۱۵۱</td>
<td>۶۹</td>
</tr>
<tr>
<td>خطای مطلوب</td>
<td>متوسط خط</td>
<td>۱۱۸</td>
<td>۳۹</td>
<td>۷۷</td>
<td>۱۰۱</td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>۱۱۵</td>
<td>۲۸</td>
<td>۷۷</td>
<td>۱۳۷</td>
<td>۶۹</td>
</tr>
</tbody>
</table>

شکل ۶- نمودار فراوانی تجمیع خطاهای برای مقایسه روشهای مختلف برای ۳۲ مورد عملی
من‌دهای تخمین طرفیت باربری بکش براساس تناوب آزمایش‌هایی در جرگه به عنوان یک گروه پایین توجه بی‌توجه تحلیل‌داری در اثر ارائه‌ای پژوهشی در سال‌های اخیر مورد ملاحظه قرار گرفته است. آسانی، صرفا اقتصادی، وجود تجربیات ارزشمند در زمینه آزمایش‌های درج، پیشرفت‌های روز افزون در زمینه توسیع نواوری و کاربرد هوا و تغییرات آزمایش‌های در وجود عناصر و عوامل واکنشی مورد نیاز این آزمایشات و نیز واحد کف و جداری شمع از دلایل اصلی این روش‌کرد در محاسبات زمان‌بندی است.

در این میان آزمایشی نفوذ استاندارد با SPT یکی از رایج‌ترین مقدمات آزمایش طرح‌گذاری که به دلیل سادگی روش آزمایش و نیز هر قدم اولیه پایین تهیه ابزارهای و دستگاه‌های مورد نیاز این آزمایشات را و مشکلات تفسیری و تکرار‌پذیری بسیار مورد توجه منحصربه‌فرد زمان‌بندی قرار دارد.

در این مقاله پنج روش آکو- وولس [۲]، برای - ناکر [۵]، مایر هوف [۳]، بازاردز - کور کر [۴] و شیرو - فوکی [۱] رایج بار برای تعیین داده‌های نوع خاصی از آزمایشات تناسب آزمایش مورد قرار گرفته‌اند. با توجه به نواقص و کاستهای منفی‌های جاری، یک روش جدید تعیین طرفیت باربری شمع براساس نتایج این آزمایش‌های این شده است که در آن ملاحظات میانگین کیفیته‌های ساده‌سازی N به حای میانگین دوم، محدوده‌های طراحی به شکل دو قرار گرفته 8B در بالا و B در زیر آن نیز بارهای سعی بر منایگی اطلاعاتی فرورونده مطابق با معیار 40 برمج- هنست [۱۲] استفاده شده است.

با استفاده از یک پک اطلاعاتی حاصل 22 مورد عملی شمع به مقدار اندازه‌گیری شده در احتمال تجمعی ۲۵٪ است.

در شکل ۳ نتایج حاصل از ارزیابی شش روش مطرح شده از این احتمال، تجمعی ۲۵٪ در دارای نتایج رصد ۹۰٪ نتایج واحده تعداد آن برای ۳٪ است. علاوه بر این، نسبت پایین این روش، بسیار کم می‌باشد. می‌شود مناظر این روش موجب، پراکندگی پایین تایج حاصل از این روش است. پس از این روش که در میان شش روش مورد بررسی بهترین تخمین‌ها را از طرفیت باربری شمع ارائه می‌دهد، روشهای برای - ناکر [۵]، بارزاردز - کورکر [۴]، شیرو - فوکی [۱]، مایر هوف [۳] و آکو- وولس [۲] به ترتیب با خطای متوسط معادل ۲۳، ۲۷، ۲۴، ۲۶ و ۲۳ در رده بعدی میزان نتایج طرفیت باربری شمع قرار دارد.

در میان روشهای فوق الذکر، روش مایر هوف [۳] در تخمین طرفیت باربری شمع محاسبه کارایی عملی کننده اما سایر روشهای ذاتی آزمایش وREET باعث این می‌باشد. همان طوری که به طور کلی در صورتی که می‌تواند به دلیل پایین سود دو روش برای - ناکر [۵] و آکو وولس [۲] دارای نتایج از مقدار وقتی آزمایش در جهت اطمینان استفاده می‌تواند به دلیل پایین سودی طرفیت باربری جداری ارائه شده در این میان روشهای راهبردی مورد استفاده کرده‌شده به جاگاهی کم بهتری. شمعه لوله‌ای به‌نام که به نظر مایر هوف [۳] در این رده از شمعه‌ها قرار دارد به دلیل اینکه فاکتور خاص داخل معمولاً نسبتاً متفاوت از شمعه‌های با جاگاهی کم هستند. دلیل خطای موجود در روش شیرو - فوکی [۱] می‌تواند به دلیل مشخص نبودن نسبت انرژی مقاومت N مورد نیاز این راهبردی تعیین طرفیت باربری شمعه باشد. این عمل در روشهای - ناکر [۵] می‌تواند عامل ایجاد حطا باشد.

یکی از دلایل مشترک ایجاد حطا و پراکنتگی در نتایج حاصل از تخمین متفاوت ۸ مورد داده‌ها بوده که موجب در بانک اطلاعاتی آزمایش بارگذاری محک هستند. که این مطلب به
شامل نتایج آزمایش بارگذاری استاتیکی روبی شمعه و نتایج آزمایش نفوذ استاندارد (SPT) که در حداکثر فاصله مکانی نسبت به شمع تحت بارگذاری انجام شده‌اند، مقایسه‌ای بین تخمین‌های حاصل از این پنجم روش جاری و مقدار جدید با استفاده از بررسی خطاهای آماری و احتمال تجمع انجام شده است. از نیز خطاهای مختلفی مнстру نشان می‌دهد که خطای مطلق متوسط برای پنج روش به قرار 77/ با انحراف معیار 85/885/885/885/885/885 واژه‌نامه

8. گزارش آزمایشات پارک‌های شمع‌های فنری پروره، شرکت ایران خاک-1376.

9. گزارش آزمایشات پارک‌های کشتی و فشاری شمع‌های فنری پروره خاک، شرکت ایران خاک-1376.

10. گزارش نتایج تست‌های فشاری شمع‌های بتنی پروره که در سال 1376 تهیه شده‌اند.

11. نتایج تست‌های شمع‌های بتنی پروره بندر ماهشهر، شرکت ایران خاک-1379.

12. نتایج تست‌های فشاری شمع‌های بتنی پروره مخازن استان گیلان، شرکت ایران خاک-1379.

13. کریمی، فرد، م. سلامی، ا.، و سیدمحمد، ن. "تعیین فرآیند جهت شمع‌ها با استفاده از آزمایش‌های در گزارش ای. جاری، مجموعه مقالات سومین همایش بينالمملکه مهندسی زونتکنیک و مکانیک خاک ایران، 2020 تهران، جلد سوم، صفحات 59-518.

استقبال، صالح، 1. جلد اول، شهریور 1384.