Effects of Support Conditions on Dynamic Behaviour and Seismic Response of Ghadir Bridge

S. Roushanbin, M.R. Maheri and A Rangbaran
Department of Civil Engineering, Shiraz University, Shiraz, Iran

Abstract: There are a number of parameters influencing the dynamic and seismic response of bridges. Of these, two important parameters warranting special notice include: the properties of the neoperenes in the state of connection between girders and columns and the shear stiffness of underlying soil in the level of bridge substructure's connectivity to the ground. In (3
4)
	 (#	 *(
05*	#}

چکیده - رفتار دینامیکی و لرزه ای پلها ی چه به لحاظ ایمنی و یا بارداری پل در هنگام وقوع زلزله و چه جنبه ایمنی و آسانی‌سازی پل در زمان حمل و نقل و صنعتی است. رفتار دینامیکی و پاسخ لرزه ای پلها متاثر از عوامل و پارامترهای متعددی است. از جمله عواملی که در گذشته کنترل و مؤثر بر روی فرآیند استرس شتاب در مرزی اعضای پل و ایمنی‌سازی تکیه‌گاه‌ها در این مقاله به دو دسته کلیه گشته شده است. این دو رفتار دینامیکی و پاسخ لرزه ای پل غذای اسفناج مورد بررسی قرار گرفته است. از نتایج اصلی به‌دست آمده می‌توان به اهمیت نگهداری پل‌های وسیع و موج‌های زلزله و ناتوانی انسان برای راستی‌سازی و سازه‌ای قابل ملاحظه‌ی بوده و از طرف دیگر، یکی از اینکه ممکن است بررسی‌های فوق‌العاده مورد بررسی یافته باشد می‌باشد. مطالعات و بی‌پایان زلزله‌های روزافزون در پل‌های بزرگ و همچنین نظریه‌های جدید در پل‌سازی نرخ کننده ای رفتارسا به صحیح‌گرایی و سازنده مورد نظر بر مصرف فراهم می‌باید.

ویژگی‌های کلیدی: دینامیک پل‌ها، رفتار لازه ای پل، اندرکنش خاک-سازه، مدلسازی پل
In this paper, the effects of these two parameters on the dynamic and seismic response of Ghadir Bridge in Isfahan are investigated. The main conclusions drawn from these investigations include the sensitivity of the bridge’s lateral modes of vibration to the horizontal shear stiffness of the neoperenes and the substantial effects of the soil’s shear rigidity on the longitudinal modes. Based on the findings, it is recommended that a thorough geotechnical site investigation of the soil be conducted and the properties of the underlying soil be accurately established in order to correctly identify the dynamic behaviour of a bridge.

Keywords: Bridge dynamics, Bridge seismic response, Soil-structure interaction, Bridge modeling
آهن‌نیاز است. از جمله نکات مهم در مدل کردن پل‌ها اندکی‌کش خاک، سازه است که به‌دست آن در رفتار دینامیک، توسط پوزه‌های خوشه‌ای مختلف و همچنین آب‌های هموار تأثیر قرار داده می‌شود. (3) از پارامترها مهم موثر بر این اندکی‌کش و بطور کلی بر رفتار دینامیک پل‌ها، نرمال برای خاک است. این مسئله به‌خصوص زمانی که انتقال نیرو توسط طبقه شمع به خاک انجام می‌شود، بیشتر نمود می‌یابد. یکی دیگر از پارامترها موثر بر رفتار دینامیک پل‌ها خواص محلی‌ای که شرایط نواحی از پارامترها و به‌خصوص سختی سازنده و برخی آن‌هاست. در سیاست‌های مورد استفاده در پیش‌بینی سختی و دقت‌های سختی نسبت به در بالای‌های تحلیلی‌نگری اساسی که در آن برای نظر گرفتن موش بی‌پاره لازم است نگاه‌گیری به سختی‌های نسبت به رفتار پل‌ها تزی مورد توجه قرار گیرد. در این مقاله اثرات پارامتر فرکانس نوشتاری در رفتار دینامیک و لزهوی پل‌ها به‌صورت مطالعه موردی بر یک بی‌گیر اصفهان به‌پرسی موش.

2 - معرفي بل غدير اصفهان

پل غدير یک پل بنی یابع‌گرا در عنصری به‌نام پل غدير ساخته شده است. این پل در شرق اصفهان و در جاده‌ای 28 کیلومتری اصلی فولادشهر-شهرکرد می‌باشد. این پل طولی بر روی سه شده است که با توجه به روش دریابند، از سه روستای غدير ساخته شده است. در گذشته این سه روستای غدير در داخل و با خلقت و اصطلاح آن‌ها، احساس را بین کنونه و شناسنامه طرافی بر اساس آن‌ها طرح پله‌های شوش و راه آهن در برداری [5] به‌سیاگل گزارش داده می‌شود. طراحی این پل در عرض فردی 1372 انجام شده و در سال 1372 به‌پهلو برپا و ریسیده است. این پل به‌صورت مستقیم (بدون قوس) دارای 3 دو بانه 4 متری سواره و دو ماته عابر یاده 15 متری در هر طرف احداث شده است. شاعر غیر می‌ماند. این واقعیت در شکل (1) نشان می‌دهد.
شکل 1- مقطع عرضی پل غدیر اصفهان

شکل 2- پروپفیل طولی پل غدیر اصفهان

4- ستون
پل مورد مطالعه در این تحقیق دارای پایه‌های با ستون‌های دارای مقطع دایره‌ای است. این پل بر روی فشاری در ارتفاعی شکل پایه‌های ستون و طرف‌های پل است. استفاده از راهنمای FHWA [3] بررسی شد. اثرات شکل پایه‌ای و آرام‌تر کاری در طرفی بررسی نیز در نظر گرفته شد.

4/8 متر دارای 3 ستون و 8 شعم است. کوله سمت فولاد شهر 14/8 متر ارتفاع داشته و دارای 3 ستون و 11 شعم است. کوله‌ها به صورت کوله بار آجرا شده است. شیب خاکریزه‌ها در راستای بل 1 و 2 در جهت عرضی 2 به 3 است.

3- مدل کردن پل
پل با استفاده از برنامه رایانه‌ای SAP2000 تحلیل می‌شود. که مهندسی Frame برای مدل کردن ستون‌ها و تیرهای Nlink به رای مدل کردن در زه و واسطه‌های نیچه‌گاهی اکارکی رود. استقلال سال 1284، جلد اول، شهریور 14
جدول 1- ظرفیت پرینی و خمیشی ستونهای

<table>
<thead>
<tr>
<th>نوع ستون</th>
<th>D'</th>
<th>Vc</th>
<th>Vs</th>
<th>ظرفیت خمیشی تحت بار مره می‌باشد</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Ton</td>
<td>Ton</td>
<td>Ton</td>
<td>Pd</td>
</tr>
<tr>
<td>1</td>
<td>150</td>
<td>258.6</td>
<td>122.6</td>
<td>103</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>88.7</td>
<td>122.6</td>
<td>103</td>
</tr>
</tbody>
</table>

درباره گام و برای خامول معمولی فاصله پین‌های آزمون. \(A_v \) سطح مقطع خامول دایره ای از دیسک بهره‌مند \(F \) و \(\Phi \) حد تئیم فولاد آزمون جابجای است. جدول (1) نتایج محاسبه ظرفیت پرینی ستونهای را نشان می‌دهد.

در رابطه با شکل پدیداری، نیروهای موجود و \(M - P \) توسط برنامه رایانه‌ای که برای این منظور نوشته شده است، به‌صورت هدف‌گذاری مقطع است. با کمک برنامه، فرض شده است که مقطع صفحه ای پاس از تغییر شکل صفحه باقی ماند و از اثر افزایش مقاومت شاریت بین محور شده و اننده پخش در کرنش‌های بزرگ صرف‌نظر شده است. انحای نهایی در نمونه \(M - \Phi \) و وقتی است که کرنش بیان به کرنش فشاری نهایی بررسی و با نگذاری از 85/8 طرفیت مطابق گزارش شود که معنی‌لات افتراق ورود آقیده است.

برای محاسبه مقاومت خمیشی، کرنش فشاری نهایی، 500 برای یک محدود نشده در نظر گرفته شده است. برای بین محور شده، مقاومه زیر بر اساس مفهوم تعلق انرژی برای محاسبه کرنش فشاری نهایی استفاده می‌شود [5]

\[
\varepsilon_{cu} = 0.004 + \left(1.4 \, \rho_s \, \varepsilon_{sm} \, f_{yB} / f'_{cc} \right) \]

(2)

\(\varepsilon_{cu} \) نسبت حجمی مؤثر فولاد محدود شده است. \(\rho_s \) نسبت جسمی تئیم فولاد محدود شده است. \(\varepsilon_{sm} \) کرنش از فولاد \(f'_{cc} \) مکانیک است. همچنین، م.Template Error

\[
\psi = \frac{V_n}{V_p + V_S} = \frac{V_p - (\pi/2)A_p f_p D'/\sqrt{S(cot(\theta))}} {+ O_{P}}

(1)

در معادله فوق \(V_p \) بررسی تئیم شده توسط مکانیزم مقاومی با 1.4 \(\rho_s \) برای شکل پدیداری بالا (2) مطابق بازی \(V_S \) بررسی تئیم شده توسط فشار محوری \(P \) است که معنی‌لای صرف نظر می‌شود. 0 زاویه ACI یک خمیشی است که برای محدود ستونهای و بین محور شده و بین محوری مورد است. به کمک \(A_v \) در نظر گرفته می‌شود. \(\varepsilon_{sm} \) کرنش بیان در شرایط مورد است. 0.8Ag مکانیزم منی شود.

\[
D' = 0.8Ag
\]

فقط خامول دایره ای با دوربرین است. \(s \) سر در حال خامول

استقلال، ص 1، شماره 1، جلد 1، شهریور 1384
شکل ۳- مدل درز الباطن و واسطه تکه گاهی در پل

ظرفیت خمشی از معادله زیر به دست می‌آید.

\[M_{n} = T_{n} * (d_{p} - a / 2) \]

(۴)

تیپ محاسبات مربوط به تهرهای بال غذابی ظرفیت خمشی مقطع یک تیر را برای \(M_{n} = 1176.6 \text{ t.m} \) به دست می‌آورد.

۶- درز انساباط و واسطه تکه گاهی

در عمل عرضه‌های مجار و با عرضه و کوله با استفاده از دیزاین جدایی کرجی می‌شود. همچنین شایع‌ترین از یک سمت روی واسطه‌های ثابت و از سمت دیگر بر روی واسطه آزاد قرار می‌گیرند. طرح شماتیکی از محل اتصال شتاب‌هایی به سطون و خود مدیر درزهای انساباط در شکل (۳) نشان داده شده است. در این شکل، المان‌های خرپایی که در شکل B با نشان داده شده‌اند، برای مدل قردن واسطه‌های تکه گاهی بیکار می‌شوند. هر واسطه ثابت با یک جفت المان خرپایی چابک‌زیری می‌شود. المان عضویکه با ماهاد استیک بخشی از مدل الاستیسیتی به نشان داده شده از فرآمد زیر محاسبه می‌شود.

برای محاسبه ظرفیت خمشی تیر با استفاده از روابط تعداد و‌ویژگی‌های مختلف ابتدا با فرض عملکردهای مستطیلی مقطع از ۵ در ۱ برای عرض مؤثر فرض کرده و a کنترل می‌شود. مقدار حاصل کنترل از ضخامت دال بوده و در نتیجه فرض در نظر گرفته شده است. در ادامه وضعیت مقطع با نزدیک به فرمول زیر محاسبه شده، که

\[\beta_{I} = 0.36 \] ۳

(۵)

مقدار \(\beta_{I} \) نسبت ظرفیت نیروی فولاد به بتن را از این فرمول داده و در نتیجه مقطع با فولاد کم تلقی می‌شود. در این مورد، فولاد کنترل کننده ظرفیت نهایی خواهد بود. در نتیجه

استقلال، سال ۲۲، شماره ۱، جلد اول، شهریور ۱۳۸۴

۱۸۲
7- فونداسیون و کوله

روش برای فونداسیون صلب در یک نیم فضای FHWA باید بیان شده است که کوله است که یک مددبانی است که در آن توانایی تغییر شکل سختی برای بازشده (منفی برای منفی) مستلزم متغیر W باز و یا معادل آن و G به دست اندازهگیری می‌شود که محوری در سطح به وجود یادهای در باز و تنان برای G > ϕ0 و ε0 > ϕ0 مقدار استفاده می‌شود. مقدار مدل استیلیت و قابلیت به مورد ϕ0 < ε0 < ϕ0 با یک به دقت انتخاب شود. مقدار کم سبب در هم فرو رفتن سختی به هم برخورد کرده می‌شود در حالت که مقدار خیلی بزرگ نیاز به گام‌های زمانی خیلی کوتاه برای تابع داریم. در عمل می‌شود سختی مانگ در اینست باز و تنان را در حدود 1/10 برای سختی محوری عرضه پل در نظر گرفت. ضریب مدل شده به این صورت استیلیتی خواهد بود. به عنوان انتزاعی چنین نکته در طی ضریب باقی ماند.

شکل 4- منحنی نشان می‌کند که مواد الکتریکی غیرخطی برای افزایش در اینست باز و تنان شکل.

سختی برای مدل فونداسیون دارای این معادل [4]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
K_{ii} = 0 \\
K_{ij} = 0 (i
eq j)
\]

استقلال، سال 24، شماره 1، جلد اول، شهرویور 1384
که کوله مانند یک جسم صلب تغییر شکل می‌دهد و سختی انتقال سیستم در مخل تامکوله و عرضه بل محسوس می‌شود.

اگر دارای داده شود که برش‌های تجربی شده‌است که حرکت کوله به درستی مانند حرکت جسم صلب است.

همان‌طور که در شکل نشان داده شده، طراحی معروف سختی چرخشی و انتقال قسمت‌های مختلف (پی کوله و دیوار پشت) به مکان سختی واقع در ارتفاع X از کف فنوداسیون متقابل می‌شود. سختی انتقال مدل با برای جعبه هموسختهای انقباضی است. به:

\[
K_T = K_{T1} + K_{T2} + K_w
\]

که مربوط به فنوداسیون دیوار پشتی، سختی \(K_{T1}\) سختی فنوداسیون دیوارهای جانبی و سختی دیوار پشتی است.

سختی چرخشی نهایی عبارت است از:

\[
K_R = K_{r1} + K_{r2} + K_R \left(0.37H_w + t_r - x\right)^2 + \left(K_{r1} + K_{r2}\right)x^2
\]

که سختی چرخشی برای دیوار پشتی، سختی \(K_{r1}\) سختی چرخشی برای فنوداسیون دیوار پشتی، سختی \(K_{r2}\) سختی چرخشی برای فنوداسیون دیوارهای کناری. ارتفاع دیوار پشتی، \(t_r\) عمق فنوداسیون و \(x\) فاصله مرکز سختی کف فنوداسیون است و برای است با:

\[
x = \left(K_W / K_T\right) \left(0.37H_w + t_r\right)
\]

در ادامه فرض حرکت جرم صلب کوله در شکل (5) بیشتر ساده شده و به سختی انقباضی مدلی رسمی که برای \(K_h\) است.

\[
K_h = \left(K_R K_T\right) / \left(K_T h^2 + K_R\right)
\]

در مورد پل مطالعه چون کوله باهم به صورت باز اجرا شده اند با تقرب می‌توان سطح پشت ستونها و دیافراگم روز خون و یا عضای سطح دیوار پشتی و سطح جانبی ستونهای کوله را به عضای دیوار جانبی در نظر گرفت. با استفاده از روابط برای یک می‌تواند \(K\) سختی برای جهان که همزمان انقباض دیافراگم با کوله سالم است سختی انقباضی بیل موجود برای

\[
K = \alpha \beta K_0
\]

که مانند سختی یک فنوداسیون دیوارهای ای مساحت فشار، همگن در سطح یک نیم قلم‌های است.

\[
K_{11} = K_{22} = 8 G R / (2 - V) \]

\[
K_{33} = A G R / (1 - V) \]

\[
K_{44} = K_{55} = 8 G R^3 / (3 - V)
\]

\[
K_{66} = 16 G R^3 / 3
\]

در محاسبه سختی کوله در یک سیستم مشکل از دیوار کوله و خاک‌بز فرض می‌شود که دیوار کوله همه‌شده در تمام فنوداسیون دیوارهای اضافی شده با خاک‌بز است. برای این منظور FHWA فشار توزیع طبیعی فشار به تغییر مکان را در موقعیت جایی یا جای دیوار به سمت خاک‌بز در اثر نورهای لرزه ای طولی عرضه پس در این می‌گردد.

فرض نمودارهای فشار مربوط به قسمت‌های اضافی انقباضی و چرخشی سختی منتج برای مدل‌های انقباضی طولی و \(K_w\) سختی مدول با استفاده از مدل‌های زیر به دست آمده [4].

\[
K = 0.425 \cdot E_S \cdot B
\]

\[
K_{RW} = 0.072 \cdot E_S \cdot B H^2
\]

که مدول پل‌های خاک،

\[
K_{RW} = 200 / (\alpha V + 40) - 20
\]

که در این دفر طولی در یک منظور دیوار باید گردد.

فناوری مشابه که کار رفته در مدل فنوداسیون در کوله هما شکل مدل ساده شده که نهایی نشان داده شده است. برای رضایت به مدل ساده شده نهایی فرض می‌شود

استنگلا، سال 24، شماره 1، جلد اول، شهریور 1384

164
شکل ۶- طرح شماتیک مدل کردن کوله [۶]

اندازه سختی برابر ۳۶۳۷۹ T/m به‌دست می‌آید.

فنرهای عمودی و عرضی براساس روش ارائه شده توسط ویلسون و نان [۷] محاسبه می‌شوند. لازم به ذکر است که حجم و حجم عمودی که جهتیاب جهتیاب عرضی و عمودی ارائه نماید. روش ویلسون بر مبنای ابعاد خاکریز و مدول الاستیسیته و برشی خاک این سختیها را تعیین می‌کند. معادلات پیشنهادی ویلسون برای سختی عرضی خاکریز برای طول واحد سختی عمودی خاکریز برای طول واحد K_y عبارتند از:

\[K_y = 2 \frac{S}{E_n} \left[1 + 2SH/W \right] \]

که مدول الاستیسیته و برشی خاک G و E شیب جانی S و H و W عرض بالایی و ارتفاع خاکریز هستند.

۸- مدل کردن شعاع

در سالهای اخیر مطالعات گسترده‌ای درخصوص پرسی رفتار دینامیکی و مدل کردن شعاع انجام گرفته است. از جمله این تحقیقات می‌توان به کارهای اولیه نواک و همکارانش [۹-۱۱] اشاره کرد. در این تحقیق از نتایج مدل دیری

\[K_H = 0.98 \left(\frac{E_p}{E_s} \right) 0.21 b E_s \]

ظرفیت باربری گره شعاع قرار گرفته در خاک نسبت به مجموع عفونت باربری شعاعی منفرد فولاد کمتری را داراست و نیز نشست تاکیدی بار اعمالی به گره شعاع نسبت
به مجموع شعاع‌های شعاعی متفرد در اثر برخورداری با روش میزان‌گیری نسبت به مجموع شعاع تحت‌نش را عضوی از ترکیب می‌شود.

شکل 8- ضرب کاهش مجموع طرفیت شعاع‌های متفرد [13]

به‌علاوه سیستم‌های دو از این واسطه‌ها بین روش‌هایی که این به دست‌آوردهای خاص آن‌ها سپس نشان داده شده، و می‌تواند در رفتار سازه‌های مشابه به نمایش‌های نظری‌ها و نمایش‌های نظری با نسبتینهای نمایش‌های سازه‌هایی در اثر ارزیابی و ارزیابی نشان داده‌هاگه شم می‌شود.

شکل 7- مدل آنالوگ شعاع انتها برخی [8]

به‌علاوه سیستم‌های دو از این واسطه‌ها بین روش‌هایی که این به دست‌آوردهای خاص آن‌ها سپس نشان داده شده، و می‌تواند در رفتار سازه‌های مشابه به نمایش‌های نظری‌ها و نمایش‌های نظری با نسبتینهای نمایش‌های سازه‌هایی در اثر ارزیابی و ارزیابی نشان داده‌هاگه شم می‌شود.

همان‌گونه که اشاره شد، از پارامترهای اصلی تاثیرگذار بر رفتار دینامیکی و ترکیب‌های فلزات و مرور‌ها دو مورد خاص از اهمیت زیادی برخوردارند. یکی از این دو مورد خصوصیات مکانیکی و سطح‌های پوشش‌های تا که (نورترنها) می‌باشند و مورد استفاده برخی از تاکرب، در 18482

186
جدول ۲- خلاصه محاسبه سختی معادل شعبه و نیز ضرابی کاهش ظرفیت گروه برابر کوله و پایه بل غیردیر

<table>
<thead>
<tr>
<th>G ksi</th>
<th>KEQ t/m</th>
<th>ALX m.f.</th>
<th>KEQ t/m</th>
<th>PX m.f.</th>
<th>KEQ t/m</th>
<th>A2X m.f.</th>
<th>KEQ t/m</th>
<th>A1Y m.f.</th>
<th>KEQ t/m</th>
<th>PY m.f.</th>
<th>KEQ t/m</th>
<th>A2Y m.f.</th>
<th>KEQ t/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>4.803</td>
<td>0.42</td>
<td>20.03</td>
<td>0.39</td>
<td>18.82</td>
<td>0.35</td>
<td>16.81</td>
<td>0.38</td>
<td>18.11</td>
<td>0.38</td>
<td>18.11</td>
<td>0.38</td>
<td>18.40</td>
</tr>
<tr>
<td>1</td>
<td>9.907</td>
<td>0.42</td>
<td>41.13</td>
<td>0.39</td>
<td>38.80</td>
<td>0.35</td>
<td>34.67</td>
<td>0.38</td>
<td>37.35</td>
<td>0.38</td>
<td>37.35</td>
<td>0.38</td>
<td>37.94</td>
</tr>
<tr>
<td>1.7</td>
<td>15.065</td>
<td>0.42</td>
<td>62.82</td>
<td>0.39</td>
<td>59.01</td>
<td>0.35</td>
<td>52.73</td>
<td>0.38</td>
<td>56.80</td>
<td>0.38</td>
<td>56.80</td>
<td>0.38</td>
<td>57.70</td>
</tr>
<tr>
<td>3</td>
<td>23.597</td>
<td>0.42</td>
<td>96.40</td>
<td>0.39</td>
<td>92.43</td>
<td>0.35</td>
<td>85.29</td>
<td>0.38</td>
<td>88.96</td>
<td>0.38</td>
<td>88.96</td>
<td>0.38</td>
<td>90.38</td>
</tr>
<tr>
<td>5</td>
<td>35.327</td>
<td>0.42</td>
<td>147.31</td>
<td>0.39</td>
<td>138.38</td>
<td>0.35</td>
<td>123.65</td>
<td>0.38</td>
<td>133.18</td>
<td>0.38</td>
<td>133.18</td>
<td>0.38</td>
<td>135.30</td>
</tr>
<tr>
<td>7</td>
<td>46.084</td>
<td>0.42</td>
<td>192.17</td>
<td>0.39</td>
<td>180.51</td>
<td>0.35</td>
<td>161.29</td>
<td>0.38</td>
<td>173.74</td>
<td>0.38</td>
<td>173.74</td>
<td>0.38</td>
<td>176.50</td>
</tr>
<tr>
<td>10</td>
<td>61.084</td>
<td>0.42</td>
<td>254.72</td>
<td>0.39</td>
<td>239.26</td>
<td>0.35</td>
<td>213.79</td>
<td>0.38</td>
<td>230.29</td>
<td>0.38</td>
<td>230.29</td>
<td>0.38</td>
<td>233.95</td>
</tr>
</tbody>
</table>

جدول ۳- پروپون و موادهای ارتعاش مدل اصلی پل

<table>
<thead>
<tr>
<th>شماره مود</th>
<th>پروپون (نامه)</th>
<th>نوع مود</th>
<th>فرکانس (هرتز)</th>
<th>عرضی کوله بلند (محسی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.508</td>
<td>عرضی</td>
<td>0.66</td>
<td>(THA)</td>
</tr>
<tr>
<td>2</td>
<td>1.480</td>
<td>عرضی</td>
<td>0.68</td>
<td>(L1)</td>
</tr>
<tr>
<td>3</td>
<td>1.111</td>
<td>عرضی</td>
<td>0.90</td>
<td>(T1)</td>
</tr>
<tr>
<td>4</td>
<td>0.922</td>
<td>عرضی</td>
<td>1.08</td>
<td>(T2)</td>
</tr>
<tr>
<td>5</td>
<td>0.879</td>
<td>عرضی</td>
<td>1.14</td>
<td>(T3)</td>
</tr>
<tr>
<td>6</td>
<td>0.786</td>
<td>عرضی</td>
<td>1.27</td>
<td>(T4)</td>
</tr>
<tr>
<td>7</td>
<td>0.712</td>
<td>عرضی</td>
<td>1.40</td>
<td>(T5)</td>
</tr>
<tr>
<td>8</td>
<td>0.656</td>
<td>عرضی</td>
<td>1.52</td>
<td>(T6)</td>
</tr>
<tr>
<td>9</td>
<td>0.628</td>
<td>طولی</td>
<td>1.59</td>
<td>(L2)</td>
</tr>
<tr>
<td>10</td>
<td>0.626</td>
<td>عرضی</td>
<td>1.60</td>
<td>(T7)</td>
</tr>
<tr>
<td>11</td>
<td>0.587</td>
<td>عرضی</td>
<td>1.70</td>
<td>(T8)</td>
</tr>
<tr>
<td>12</td>
<td>0.440</td>
<td>طولی</td>
<td>2.27</td>
<td>(LP3)</td>
</tr>
<tr>
<td>13</td>
<td>0.430</td>
<td>طولی</td>
<td>2.33</td>
<td>(LP45)</td>
</tr>
<tr>
<td>14</td>
<td>0.429</td>
<td>عرضی</td>
<td>2.33</td>
<td>(TP3)</td>
</tr>
<tr>
<td>15</td>
<td>0.427</td>
<td>طولی</td>
<td>2.34</td>
<td>(LP45)</td>
</tr>
<tr>
<td>16</td>
<td>0.421</td>
<td>طولی</td>
<td>2.38</td>
<td>(LP67)</td>
</tr>
<tr>
<td>17</td>
<td>0.416</td>
<td>طولی</td>
<td>2.40</td>
<td>(LP67)</td>
</tr>
<tr>
<td>18</td>
<td>0.405</td>
<td>عرضی</td>
<td>2.47</td>
<td>(TP45)</td>
</tr>
<tr>
<td>19</td>
<td>0.402</td>
<td>عرضی</td>
<td>2.49</td>
<td>(TP45)</td>
</tr>
<tr>
<td>20</td>
<td>0.378</td>
<td>عرضی</td>
<td>2.65</td>
<td>(TP67)</td>
</tr>
<tr>
<td>21</td>
<td>0.375</td>
<td>عرضی</td>
<td>2.67</td>
<td>(TP67)</td>
</tr>
<tr>
<td>22</td>
<td>0.368</td>
<td>طولی</td>
<td>2.72</td>
<td>(LHA)</td>
</tr>
<tr>
<td>23</td>
<td>0.296</td>
<td>عرضی</td>
<td>3.38</td>
<td>(TorP3)</td>
</tr>
<tr>
<td>24</td>
<td>0.293</td>
<td>عرضی</td>
<td>3.41</td>
<td>(THA)</td>
</tr>
</tbody>
</table>
۱۱-اثر سختی خاک در رفتار دینامیکی بل
در مدل کردن پلاک اندرکنش خاک نیز نقش مهمی در تعیین رفتار دینامیکی سازه دارد. همانطور که در قسمت مدل کردن توضیح داده شد، برای مدل کردن اندرکنش خاک-سازه در کره و نیز فنداسبوهان از فن استفاده شد.

خصوصیات مؤثر خاک در محاسبه سختی فرها، مدول الاستسینه و برخی آن است که از آزمایش خاک محل به‌دست می‌آید. این آزمایش می‌تواند در چهار آزمایشی دیگر ترکیب نشده باشد. این جدول نشان دهنده میزان فن در رفتار دینامیکی بل از هفت مقدار مدل برشی است معرف خاک نرم (خصوصیات مورد استفاده توسط طراحی بل). خاک متوسط و خاک سخت استفاده شد.

با افزایش مقدار مدل برشی خاک برپایه سازه کاهش می‌یابد. اعمال سختی خاک در مدل، کاهش قابل توجهی در برپایه طولی سازه و میزان کمی کاهش در برپایه عرضی آن مشاهده می‌شود. به‌طور که مقدار مورد عرضی به عنوان موجود لرزش می‌شود. نتایج تحلیل‌ها در جدول (۵) و شکل (۱۱) آمده است.

۱۲- تحلیل لرزه‌ای پل
در تحلیل لرزه‌ای پل نگهداری روش تاریخچه زمانی خظی استفاده شد. در این تحلیل از هر تاریخچه شتاب طیب، بانگان و استنیستو استفاده شد. شتاب بینایی طرح برای نقش احداث پل برای ۱۲۰۰۰ می‌باشد. میزان مربوط نیز در تحلیل‌ها مقدار به‌وزن برای ۵٪ مربوطی بحرانی در نظر گرفته شد. در تحلیل‌ها مورد واقعه قائم زاژه‌ای نیز به میزان ۲٪ موفقیت افقی در نظر گرفته شد. جدول (۹) ماتریم مقادیر برش و خم شدن در سطح ها و سه و حداکثر تغییر مکانی طولی عرضی و نیروی محوری و برشی را نشان می‌دهد. مقدارهای طولی در فرکانس اول (Lf) (خاصلضرب طول دهنده در فرکانس اول پل) برای پل‌های با سیستم شاه ثیر و دال به‌طور تقريبی برای

\[f = \frac{L}{2.5} \]

به مقدار پیشنهادی کافی تجزیک است. کانونی مقدار برای طول دهنده ریز داده و معادله زیر را برای این ارتباط ارائه کرده است.

\[16 \]

که طول کل پل است. برای پل غیردیس از معادله فوق

\[f = \frac{0.567}{Hz} \]

به می‌آید. همانطور که مشاهده می‌شود محدوداً نسبتاً خوبی بین فرکانس طیبی به‌دست آمده از مدل آن محدودبول در دیگر و مقدار به‌دست آمده از رابطه کانالی به کمیتی خورد.

در ادافه به بررسی اثر دو عامل سختی تونرپنها و سختی خاک بر خصوصیات دینامیکی بل خرد می‌پردازیم.

۱۰-اثر سختی تونرپنها در رفتار دینامیکی بل
برای بررسی اثر سختی افقی و عمودی تونرپنها در رفتار دینامیکی بل با تأثیر نگه داشتن یکی از آنها و تغییر دیگری، مدل تحت تحلیل قرار گرفت. در این رابطه برای ۳۰۷۹۲ T/m، ۱۵۳۹۶ T/m و ۴۶۱۸۸ T/m و سه‌تایی تغییرات در ۷۲۰ T/m، ۴۸۰ T/m و ۲۴۰ T/m شده تحلیل دینامیک قرار گرفته و نتایج حاصل در جدول (۴) و شکل (۱۱) آمده است.

نتایج حاصل نشان می‌دهد که افزایش سختی محوری تا سه برابر سبک برپایه مدار دهاهای طولی در حد ۳ درصد می‌شود در حالی که برپایه مدار چرخشی تغییر خاصی نمی‌کند. از طرف دیگر افزایش سختی برای تنرپنها نشان برابر موجب کاهش در درصد‌ی برپایه دهاهای طولی و ۰۰۷ درصدی برپایه دهاهای طولی می‌شود. بنابراین افزایش سختی محوری تنرپنها افزایش یک بر روی برپایه دهاهای طولی اثر می‌کند.

ولی تغییر در سختی برای تنرپنها از قبایل توجهی در برپایه
جدول ۴- اثر تغییر سختی نتوان‌های در پرود و توالی مواد شکل‌های یل‌غدیر

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.508</td>
<td>THA</td>
<td>1.508</td>
<td>THA</td>
<td>1.508</td>
<td>THA</td>
<td>1.483</td>
<td>THA</td>
</tr>
<tr>
<td>2</td>
<td>1.48</td>
<td>L1</td>
<td>1.451</td>
<td>L1</td>
<td>1.435</td>
<td>L1</td>
<td>1.479</td>
<td>L1</td>
</tr>
<tr>
<td>3</td>
<td>1.111</td>
<td>T1</td>
<td>1.11</td>
<td>T1</td>
<td>1.11</td>
<td>T1</td>
<td>1.047</td>
<td>T1</td>
</tr>
<tr>
<td>4</td>
<td>0.922</td>
<td>T2</td>
<td>0.922</td>
<td>T2</td>
<td>0.922</td>
<td>T2</td>
<td>0.897</td>
<td>T2</td>
</tr>
<tr>
<td>5</td>
<td>0.879</td>
<td>T3</td>
<td>0.879</td>
<td>T3</td>
<td>0.879</td>
<td>T3</td>
<td>0.794</td>
<td>T3</td>
</tr>
<tr>
<td>6</td>
<td>0.786</td>
<td>T4</td>
<td>0.786</td>
<td>T4</td>
<td>0.786</td>
<td>T4</td>
<td>0.667</td>
<td>T4</td>
</tr>
<tr>
<td>7</td>
<td>0.712</td>
<td>T5</td>
<td>0.712</td>
<td>T5</td>
<td>0.712</td>
<td>T5</td>
<td>0.627</td>
<td>T5</td>
</tr>
<tr>
<td>8</td>
<td>0.656</td>
<td>T6</td>
<td>0.656</td>
<td>T6</td>
<td>0.656</td>
<td>T6</td>
<td>0.586</td>
<td>T6</td>
</tr>
<tr>
<td>9</td>
<td>0.628</td>
<td>T7</td>
<td>0.627</td>
<td>T7</td>
<td>0.627</td>
<td>T7</td>
<td>0.523</td>
<td>T7</td>
</tr>
<tr>
<td>10</td>
<td>0.626</td>
<td>T8</td>
<td>0.626</td>
<td>T8</td>
<td>0.626</td>
<td>T8</td>
<td>0.491</td>
<td>T8</td>
</tr>
<tr>
<td>11</td>
<td>0.587</td>
<td>T9</td>
<td>0.586</td>
<td>T9</td>
<td>0.586</td>
<td>T9</td>
<td>0.475</td>
<td>T9</td>
</tr>
<tr>
<td>12</td>
<td>0.44</td>
<td>LP3</td>
<td>0.439</td>
<td>LP3</td>
<td>0.438</td>
<td>LP3</td>
<td>0.44</td>
<td>LP3</td>
</tr>
</tbody>
</table>

جدول ۵- اثر تغییر سختی خاک در پرود و توالی موادهای ارتعاش یل‌غدیر

<table>
<thead>
<tr>
<th>G (ksi)</th>
<th>پرود مدل</th>
<th>ترکیب مدل</th>
<th>پرود مدل</th>
<th>ترکیب مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>1.4727</td>
<td>1</td>
<td>1.1100</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1.1741</td>
<td>1</td>
<td>1.0861</td>
<td>2</td>
</tr>
<tr>
<td>1.7</td>
<td>0.7881</td>
<td>3</td>
<td>1.0796</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0.3653</td>
<td>8</td>
<td>1.0756</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0.2746</td>
<td>8</td>
<td>1.0735</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0.2716</td>
<td>8</td>
<td>1.0725</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0.2714</td>
<td>8</td>
<td>1.0717</td>
<td>1</td>
</tr>
</tbody>
</table>
شکل 9- اثر انرژی سختی محوری نتوپرون در رفتار دینامیکی پل

شکل 10- اثر انرژی سختی جانبی نتوپرون در رفتار دینامیکی پل

شکل 11- اثر انرژی سختی خاک کوچه در رفتار دینامیکی پل

استقلال، سال ۱۳۸۴، شماره ۱، جلد اول، شهریور
جدول 6- ماکزیمم نیروی محوری و برخی، موانع خمش و جایگاهی به ناشی از زلزله‌های ناغان، طبس و الیسترو با مکزیمم

شنبه 1403/06/04 در اعتراض پی غدیر

<table>
<thead>
<tr>
<th>عضو</th>
<th>زلزله‌های غدیر</th>
<th>زلزله‌های طبس</th>
<th>زلزله‌های الیسترو</th>
</tr>
</thead>
<tbody>
<tr>
<td>برخ (تن)</td>
<td>14.45</td>
<td>10.15</td>
<td>23.12</td>
</tr>
<tr>
<td>خمش (تن متر)</td>
<td>187.90</td>
<td>253.70</td>
<td>300.20</td>
</tr>
<tr>
<td>برش محوری (تن)</td>
<td>-34.67</td>
<td>-56.80</td>
<td>-57.53</td>
</tr>
<tr>
<td>خمش (تن متر)</td>
<td>39.71</td>
<td>45.00</td>
<td>65.10</td>
</tr>
<tr>
<td>برخ (تن)</td>
<td>25.35</td>
<td>36.06</td>
<td>40.63</td>
</tr>
<tr>
<td>خمش (تن متر)</td>
<td>265.00</td>
<td>377.70</td>
<td>403.30</td>
</tr>
<tr>
<td>برش محوری (تن)</td>
<td>-53.98</td>
<td>-70.40</td>
<td>-74.70</td>
</tr>
<tr>
<td>برخ (تن)</td>
<td>56.93</td>
<td>69.60</td>
<td>74.60</td>
</tr>
<tr>
<td>تیتر</td>
<td>1.81</td>
<td>2.61</td>
<td>2.85</td>
</tr>
<tr>
<td>خمش (تن متر)</td>
<td>-26.63</td>
<td>-38.55</td>
<td>-41.99</td>
</tr>
<tr>
<td>نرخ محوری (تن)</td>
<td>24.74</td>
<td>36.39</td>
<td>40.38</td>
</tr>
<tr>
<td>برش محوری (تن)</td>
<td>5.49</td>
<td>7.94</td>
<td>9.34</td>
</tr>
<tr>
<td>تیتر</td>
<td>52.32</td>
<td>76.43</td>
<td>85.30</td>
</tr>
<tr>
<td>برخ (تن)</td>
<td>8.90</td>
<td>11.50</td>
<td>12.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C/D نسبت برای اعضا مختلف</th>
<th>C</th>
<th>D</th>
<th>C/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرتیم</td>
<td>381.2</td>
<td>99.83</td>
<td>3.82</td>
</tr>
<tr>
<td>خمش</td>
<td>1350</td>
<td>944.37</td>
<td>1.43</td>
</tr>
<tr>
<td>نرخ محوری</td>
<td>2600</td>
<td>408.03</td>
<td>6.37</td>
</tr>
<tr>
<td>سرتیم</td>
<td>211.3</td>
<td>108.05</td>
<td>1.96</td>
</tr>
<tr>
<td>خمش</td>
<td>1270</td>
<td>859.72</td>
<td>1.48</td>
</tr>
<tr>
<td>نرخ محوری</td>
<td>2600</td>
<td>400.22</td>
<td>6.50</td>
</tr>
<tr>
<td>تیتر</td>
<td>116.4</td>
<td>16.73</td>
<td>6.96</td>
</tr>
<tr>
<td>خمش</td>
<td>1118</td>
<td>110.88</td>
<td>10.08</td>
</tr>
<tr>
<td>کوله</td>
<td>116</td>
<td>9.34</td>
<td>12.42</td>
</tr>
<tr>
<td>تغییر میزان</td>
<td>85.5</td>
<td>9.34</td>
<td>9.15</td>
</tr>
<tr>
<td>نرخ محوری</td>
<td>134.6</td>
<td>121.55</td>
<td>1.11</td>
</tr>
<tr>
<td>تیتر</td>
<td>53.2</td>
<td>30.06</td>
<td>1.77</td>
</tr>
</tbody>
</table>

در مورد خمش تفاوت در لنگرهای ایجاد شده در سرنوشت
نوع 1 و 2 کم است ولی در خرس سرنوشت نوع 2
بیش از سرنوشت نوع 1 است.

در مجموع خمش و برخ ایجاد شده در سرنوشت بالا

191

استقلال، سال 24، شماره 1 جلد اول، شهریور 1384
جدول (8) اثر تغییر سختی تنویر در پایان لرزه ای اعضاى بر لغدیر

<table>
<thead>
<tr>
<th>عضو</th>
<th>عضوی طولی عمودی</th>
<th>طولی عمودی</th>
<th>عضوی طولی عمودی</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان شوترهای است (میزان شوترهای است)</td>
<td>18.70</td>
<td>33.80</td>
<td>4.30</td>
</tr>
<tr>
<td>خم شترهای است (میزان شوترهای است)</td>
<td>214.30</td>
<td>313.30</td>
<td>34.40</td>
</tr>
<tr>
<td>نرمال زلزله است (میزان شوترهای است)</td>
<td>-53.40</td>
<td>-22.40</td>
<td>-105.60</td>
</tr>
<tr>
<td>نرمال جنگل است (میزان شوترهای است)</td>
<td>68.99</td>
<td>31.08</td>
<td>120.80</td>
</tr>
<tr>
<td>نرمال مهندس (میزان شوترهای است)</td>
<td>29.64</td>
<td>59.41</td>
<td>10.31</td>
</tr>
<tr>
<td>نرمال برخی (میزان شوترهای است)</td>
<td>268.80</td>
<td>401.50</td>
<td>46.88</td>
</tr>
<tr>
<td>نرمال محاسبه دو (میزان شوترهای است)</td>
<td>83.63</td>
<td>46.83</td>
<td>167.90</td>
</tr>
<tr>
<td>نرمال عرض (میزان شوترهای است)</td>
<td>2.95</td>
<td>0.02</td>
<td>2.91</td>
</tr>
<tr>
<td>نرمال همگی (میزان شوترهای است)</td>
<td>-14.25</td>
<td>-0.14</td>
<td>-40.90</td>
</tr>
<tr>
<td>نرمال مهندس (میزان شوترهای است)</td>
<td>43.48</td>
<td>0.21</td>
<td>43.55</td>
</tr>
<tr>
<td>نرمال محاسبه دو (میزان شوترهای است)</td>
<td>4.73</td>
<td>-</td>
<td>7.16</td>
</tr>
<tr>
<td>نرمال برخی (میزان شوترهای است)</td>
<td>92.98</td>
<td>-</td>
<td>107.20</td>
</tr>
<tr>
<td>نرمال مهندس (میزان شوترهای است)</td>
<td>15.06</td>
<td>18.39</td>
<td>-</td>
</tr>
</tbody>
</table>

100% مولفه قائم زلزله دارا است.
همانطور که انتظار می‌رفت مولفه قائم بیشترین تأثیر را در
برخی اعضاى کوچک دارد. در میان تاریخچه‌های زلزله نیز
تاریخچه زلزله طبس بیشترین مقادیر را از این نظر در مدل
به‌وجود آورده است.

- مکرر بی‌توجه بیشترین عضوهای اعضاى بر لغدیر است.

- در صورت تنویرها، حداکثر برخی محسوب می‌شود از مولفه
قائم زلزله طبس است. در صورت تنویرهای هم‌اکنون
می‌توان از مولفه میان تاریخچه استفاده کرد.

به‌طور خلاصه می‌توان گفت مهم‌ترین عامل ایجاد
برخی اعضاى کوچک در سطح و برخی اعضاى نیز در تاریخچه
مولفه قائم زلزله است که در میان دو تاریخچه هما، تاریخچه شتاب
السترو بیشترین اثر داشته است. همچنین عامل مؤثر در
برخی اعضاى کوچک در سطح و برخی اعضاى نیز در تاریخچه
مولفه قائم زلزله است و جنگل بیشترین اثر این عامل در
تغییر مکان عرض موفق است. در راستای طولی برخی
برای ترکیب اثر زلزله در سه راستای طبق توافق آشنا از

استقلال، سال 46، شماره 1، جلد اول، شهربور 1384

۱۹۲
جدول 9- تغییر نسبت C/D برای اعضاء مختلف پل در اثر سخت کردن تونبرنها

<table>
<thead>
<tr>
<th>C/D</th>
<th>T</th>
<th>108.25</th>
<th>3.52</th>
</tr>
</thead>
<tbody>
<tr>
<td>برش</td>
<td>3812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>خم شن سیستم</td>
<td>1350</td>
<td>1038.8</td>
<td>1.30</td>
</tr>
<tr>
<td>تونبیرو محوری</td>
<td>2600</td>
<td>445.8</td>
<td>5.83</td>
</tr>
<tr>
<td>تونبیرو محوری</td>
<td>2113</td>
<td>109.1</td>
<td>1.94</td>
</tr>
<tr>
<td>تونبیرو محوری</td>
<td>1270</td>
<td>865.9</td>
<td>1.47</td>
</tr>
<tr>
<td>تونبیرو محوری</td>
<td>2600</td>
<td>432.1</td>
<td>6.02</td>
</tr>
<tr>
<td>تونبیرو محوری</td>
<td>1164</td>
<td>19.54</td>
<td>5.96</td>
</tr>
<tr>
<td>تونبیرو محوری</td>
<td>1118</td>
<td>152.7</td>
<td>7.32</td>
</tr>
<tr>
<td>تونبیرو محوری</td>
<td>116</td>
<td>9.37</td>
<td>12.38</td>
</tr>
<tr>
<td>تونبیرو محوری</td>
<td>85.5</td>
<td>9.37</td>
<td>9.12</td>
</tr>
<tr>
<td>تونبیرو محوری</td>
<td>224.3</td>
<td>199.7</td>
<td>1.12</td>
</tr>
<tr>
<td>تونبیرو محوری</td>
<td>141.82</td>
<td>44.2</td>
<td>3.21</td>
</tr>
</tbody>
</table>

14 - بررسی اثر سختی خاک در پاسخ لرزه‌ای پل
در بررسی تاثیر وضعیت خاک در پاسخ لرزه‌ای پل
مقد یل با 1.7 ksi
MODR و تحلیل قرار گرفت که نتایج
حتی در جدول (۱۰) آمده است.
در سختی خاک در برش و همچنین تغییر
تنشین نیز باید راجع به
تاریخچه ما قبل مشاهده است. در حالت که در سختی
کوتاه در تاریخچه ناگان سیب افزایش برش سختی شده
است.
اه سختی شدن خاک در مورد خصوص
می‌باشد و با داشتن یک طبیعی
فاصله خم شن در مورد عرض و کاهش آن در سایر
مودها شده است.
در مورد تاریخچه ناگان و طبیعی
- سختی شدن خاک اثر نسبتاً زیادی در برش تغییر می‌کند
بطول عرشه دارد که این کاهش با افزایش نیروی برشی
و محوری تقویت‌های همراه بوده است.
در جدول (۱۱) نسبت C/D برای مدل با خاک
سخت تر آورده شده است. از مقايسه این ضرایب با حالت
قبل می‌توان گفت که سختی تر کردن تونبرنها موجب افزایش
تیروهای وارد آمده به اعضا می‌شود در انتهای اینکه با نسبت
مقدار نسبت C/D برای تیرو محوری تقویت‌های، حاشیه
اطمینان کافی توجیه در مورد برش تقویت‌های ایجاد می‌شود.
جدول (10) اثر سختی خاک در پاسخ لرزه‌ای اعضای بل غدیر

<table>
<thead>
<tr>
<th>عضو</th>
<th>زلزله نا</th>
<th>زلزله طیین</th>
<th>زلزله سنترور</th>
</tr>
</thead>
<tbody>
<tr>
<td>برش (تن)</td>
<td>11.80</td>
<td>14.80</td>
<td>19.34</td>
</tr>
<tr>
<td>عضو</td>
<td>32.58</td>
<td>46.42</td>
<td>92.47</td>
</tr>
<tr>
<td>خماس (تن)</td>
<td>3.72</td>
<td>3.37</td>
<td>7.99</td>
</tr>
<tr>
<td>عضو</td>
<td>147.30</td>
<td>187.40</td>
<td>241.60</td>
</tr>
<tr>
<td>طولی</td>
<td>301.80</td>
<td>453.00</td>
<td>856.30</td>
</tr>
<tr>
<td>عضو</td>
<td>22.84</td>
<td>20.20</td>
<td>44.69</td>
</tr>
<tr>
<td>عضو</td>
<td>-34.12</td>
<td>-35.02</td>
<td>-55.77</td>
</tr>
<tr>
<td>طولی</td>
<td>-18.52</td>
<td>-39.98</td>
<td>-75.48</td>
</tr>
<tr>
<td>عضو</td>
<td>-113.70</td>
<td>-95.70</td>
<td>-206.10</td>
</tr>
<tr>
<td>عضو</td>
<td>46.49</td>
<td>46.55</td>
<td>48.84</td>
</tr>
<tr>
<td>عضو</td>
<td>26.59</td>
<td>37.95</td>
<td>63.85</td>
</tr>
<tr>
<td>نوپرنه</td>
<td>112.50</td>
<td>10.75</td>
<td>173.10</td>
</tr>
<tr>
<td>عضو</td>
<td>26.34</td>
<td>29.74</td>
<td>45.21</td>
</tr>
<tr>
<td>عضو</td>
<td>87.96</td>
<td>68.64</td>
<td>45.87</td>
</tr>
<tr>
<td>عضو</td>
<td>6.32</td>
<td>8.07</td>
<td>8.66</td>
</tr>
<tr>
<td>عضو</td>
<td>275.90</td>
<td>293.40</td>
<td>462.40</td>
</tr>
<tr>
<td>عضو</td>
<td>612.10</td>
<td>490.30</td>
<td>612.10</td>
</tr>
<tr>
<td>عضو</td>
<td>29.77</td>
<td>38.42</td>
<td>43.30</td>
</tr>
<tr>
<td>عضو</td>
<td>-26.28</td>
<td>-93.07</td>
<td>-86.84</td>
</tr>
<tr>
<td>عضو</td>
<td>-28.70</td>
<td>-49.11</td>
<td>-63.11</td>
</tr>
<tr>
<td>عضو</td>
<td>-127.90</td>
<td>-103.50</td>
<td>-217.80</td>
</tr>
<tr>
<td>عضو</td>
<td>52.52</td>
<td>60.29</td>
<td>102.30</td>
</tr>
<tr>
<td>عضو</td>
<td>32.82</td>
<td>39.23</td>
<td>59.87</td>
</tr>
<tr>
<td>عضو</td>
<td>148.40</td>
<td>138.30</td>
<td>160.10</td>
</tr>
<tr>
<td>عضو</td>
<td>1.86</td>
<td>2.14</td>
<td>3.30</td>
</tr>
<tr>
<td>عضو</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>طولی</td>
<td>1.71</td>
<td>2.48</td>
<td>2.34</td>
</tr>
<tr>
<td>عضو</td>
<td>-22.64</td>
<td>-31.52</td>
<td>-47.80</td>
</tr>
<tr>
<td>عضو</td>
<td>-0.11</td>
<td>-0.15</td>
<td>-0.24</td>
</tr>
<tr>
<td>عضو</td>
<td>-25.53</td>
<td>-37.11</td>
<td>-34.96</td>
</tr>
<tr>
<td>عضو</td>
<td>27.55</td>
<td>27.35</td>
<td>48.74</td>
</tr>
<tr>
<td>عضو</td>
<td>0.40</td>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td>عضو</td>
<td>28.67</td>
<td>36.89</td>
<td>32.38</td>
</tr>
<tr>
<td>عضو</td>
<td>4.91</td>
<td>5.87</td>
<td>8.99</td>
</tr>
<tr>
<td>عضو</td>
<td>58.23</td>
<td>54.10</td>
<td>78.63</td>
</tr>
<tr>
<td>عضو</td>
<td>54.10</td>
<td>66.30</td>
<td></td>
</tr>
<tr>
<td>عضو</td>
<td>15.06</td>
<td>19.40</td>
<td>18.20</td>
</tr>
<tr>
<td>عضو</td>
<td>18.39</td>
<td>22.84</td>
<td>43.85</td>
</tr>
</tbody>
</table>

جدول 11 - تغییر نسبت C/D برای اعضای مختلف یل در اثر سخت شدن خاک

<table>
<thead>
<tr>
<th>عضو</th>
<th>C</th>
<th>D</th>
<th>C/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>برش (تن) 1</td>
<td>381.2</td>
<td>96.68</td>
<td>3.94</td>
</tr>
<tr>
<td>طولی</td>
<td>1350</td>
<td>914.27</td>
<td>1.48</td>
</tr>
<tr>
<td>خماس</td>
<td>2600</td>
<td>408.01</td>
<td>6.37</td>
</tr>
<tr>
<td>یتیر موحوری</td>
<td>211.3</td>
<td>91.23</td>
<td>2.32</td>
</tr>
<tr>
<td>طولی</td>
<td>1270</td>
<td>668.26</td>
<td>1.90</td>
</tr>
<tr>
<td>خماس</td>
<td>2600</td>
<td>400.17</td>
<td>6.50</td>
</tr>
<tr>
<td>یتیر موحوری</td>
<td>116.4</td>
<td>16.38</td>
<td>7.11</td>
</tr>
<tr>
<td>برش (تن) 2</td>
<td>1118</td>
<td>103.94</td>
<td>10.76</td>
</tr>
<tr>
<td>طولی</td>
<td>116</td>
<td>8.99</td>
<td>12.90</td>
</tr>
<tr>
<td>خماس</td>
<td>85.5</td>
<td>8.99</td>
<td>9.51</td>
</tr>
<tr>
<td>یتیر موحوری</td>
<td>134.6</td>
<td>118.28</td>
<td>1.14</td>
</tr>
<tr>
<td>برش (تن) 3</td>
<td>53.16</td>
<td>44.2</td>
<td>1.20</td>
</tr>
</tbody>
</table>

نتایج گیری

این تحلیل‌های انجام گرفته بر روی بل غدیر اصفهان نتایج زیر قابل تامل اندازی است.

سخت تر آورده شده است. با توجه به این نسبت‌ها می‌توان گفت، سخت تر شدن خاک بسب افزایش خماس و برش سخت‌نامی نوع ۲ شده است در عین حال موجب آسیب پذیریتر شدن نوپرنه‌ها در برابر برش شده است.

استقلال، سال ۱۲، شماره ۱، جلد اول، شهباز ۱۳۸۴

194
مراجع

5. "آیین نامه طرح پلهای شوهر و راه آهن در برایز زلزله"، مرکز تحقیقات ساختمان و مسکن، 1365.

13. “General Instructions for Bridge structure Investigations” Geotechnical Section, Division of Materials and Tests, Indiana Department of Transportation, 1996.