Stability Analysis for Wake Flow Behind a Flat Plate

M. Kahrom, K. Alavie, M. M. Jafariean
Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashad

Abstract: Neutral stability limits for wake flow behind a flat plate is studied using spectral method. First, Orr-Sommerfeld equation was changed to matrix form, covering the whole domain of solution. Next, each term of matrix was expanded using Chebyshev expansion series, a series very much equivalent to the Fourier cosine series. A group of functions and conditions are applied to start and end points in the mathematical domain of the solution so as to avoid error accumulation at these points. The scheme ends with two matrices which result from the Orr-Sommerfeld equation. These matrices are solved, in conjunction,
تفاصل محدود براي اجراي محاسبات مشتق هاي مرتبط مختلف از اثر تعداد محدودي از نقاط اطراف نقطه محل اجراي محاسبات استفاده مي شود. در حالی كه در روش طبيعى براي محاسبه مراحل مختلف مشتق در يك نقطه خاص، اث کل مجموعه نقاط بر روى نقطة محاسباتي ملحوظ مي شود. در روشهای بديگي، در بيست ماه محدوده نسبت، نقاط مساواي از شبكه را در محاسبات مشتق دخالت مي دهند که شكل نويس و تعداد اين نقطه براي چاپ پوست مي كند. طبيعى كه شكل و تعداد اين ديدگاه به روسي طبيعى توجه مي شود به خوبي مي توان مشاهده كرد كه در نقاط اولى، براي هر مزيج محاسبات تاما، اثر نقطه براي دست استفاده مي كند و در نتيجه دقت سييار بالاپي از خواص طبيعي را نتیجه مي دهد. همچنين در محاسبات مربوط به نقاط نزديك به مرز انتهايی محاسبه بر اساس تمام مقادير موجود در بالا استفاده مي پذيرد. براي محاسبه در نقاط مياني، در اين روش، كل نقاط قرار گرفته در اطراف نقطه مشتق در محاسبات مشتق در آن نقطه شركت مي كند. بدين ترتيب مي توان مهمترین مشتق را سطح اين روش براي نقطه ديك براي هر نقطه به سه شمار آورد. عمده ترين مشتق اين روش نيز ناشوي از همين مزيت محاسباتي است كه تعداد بسيار بيشتر محاسبات را براي به دست آوردن تناج، نسبت به روشهای ديك تجربه مي كند.

1- مقدمه

در قرن بسيست پخش عمده تحقیقاتی که در دینامیک سیالات انجام شده است، به گونه‌ای با مسئله گذار جریان از آرام به مغوش مرتبط بوده است. این موضوع که چگونه طراحی قرار گرفته در مرحله گذار را در رینولدزهای دلخواه خود به انجام برساند، محققان به سيسوان را به خود مشغول کرده است. نياز به كنترل رینولدز نقطه گذار از حکمت سیال در لوله گرفته تا احترام در کورها و روشهای خاص گردن تجهیزات الکترونیکی داري اهميت است. تحقیقات، با تهاي، روش خاصی برای محققان و شناخت مؤثر در مکانیک رینولدز نقطه گذار استفاده كرده است. این اجرا بررسی مواجهات رومیس، و هنگامون[1] درازکن و ريد[3] و ... از روشهای رياني برای بررسی خود استفاده كرده‌اند.

از آنجا كه تحليل رياضي از روشهای ساده برای تحليل رفتار جریان به شمار مي آيد و تجرحي عمیق از تحول را امكانيزير مي سازد. كروه بسياري از محققان با روشهای رياني پيدا كرده گذار به مغوش را بررسی مي كنند. پيگاه از روشهای عموم تحقیق رياني، روشي طبيعی است که تا کنون توسط برخی از محققان هنگام انرژیاک[5] و گوي بار كار گرفته شده است[6]. اين محققان به تذكير خود به بسط و توضيح اين روسي پرداخته اند[7,8].

2- معادلات حاكم

مي توان معادلات حاكم بر رستد یا كاهش دامنه یک اغتشاش را در جریان‌های موازی را رابطه اور سامرفلد تقریب زد. اگر چه استقلال سال 32، شماره 1، جلد 8، شماره 3، 1388.
با اعمال نظریه اسکایور و شرط یک بعدی بودن جریان ماگنیتی و حذف فشار از دسته‌ای معادلات به دست آمده، یک معادله جدید به صورت زیر به دست می‌آید [12]:

\[
\frac{\partial}{\partial t}\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + u \frac{\partial}{\partial x}\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) - \nu \frac{d^2 v}{d y^2} = \frac{\partial^2 v}{\partial x^2}
\]

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]

که معادله تابعی برای اغتشاش است و با توجه به:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]

\[
\psi(x, y, t) = \phi(y) \exp[i(\alpha x - \omega t)]
\]

با جایگذاری (8) در (5) به دست می‌آوریم:

\[
\frac{\partial u}{\partial x} + \frac{\partial \bar{u}c}{\partial x} + \frac{\partial \psi}{\partial x} + \frac{\partial u \psi}{\partial d} = v V^2 \xi
\]

که در این معادله:

\[
\xi = -\nabla^2 \psi = \frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi}{\partial y^2}
\]

فرض شده است. همچنین با جایگذاری (8) در (5)، معادله دیفرانسیل مربوط به برای دامنه اغتشاش، \(\phi(y)\) به شرح زیر تبیج می‌شود:

\[
\left(\frac{\partial}{\partial t} - \frac{\omega}{\alpha} \right) \left(\frac{d^2 \phi}{d y^2} - \alpha^2 \phi \right) - \frac{d^2 u}{d y^2} \phi = -
\]

\[
\frac{i u (d^2 \phi}{d y^2} - \alpha^2 d^2 \phi}{d y^2} + \alpha^2 \phi
\]

عملگر مشتق کامل به صورت زیر تعریف می‌شود:

\[
\frac{D}{Dt} = \frac{\partial}{\partial t} + \frac{\partial \bar{u}}{\partial x} + \frac{\partial \psi}{\partial y}
\]

با فرض اینکه تغییرات مولفه \(x\) سرعت متوسط، بعنی \(\bar{u}\) فقط به \(y\) وابسته باشد، مولفه‌های \(\phi\) در میانگین جریان \(\phi\) صفر می‌شوند.
رهشی‌های حل

به عنوان یک درک عمده اکنون حل این معادله به صورت تحلیلی (مکرر در موارد خاص)، محاسبات مختلف می‌گردد. به‌طور کلی یک برهگی از روش‌های مختلف به حل این مسئله بهره‌مندی است. از جمله این روش‌ها می‌توان به موارد زیر اشاره نمود:

الف: روش پرتابی (Shooting Method)
همین دنبال تمهیدات و روش‌های ویژهی ای برای رسیدن به حل معادله و رفع مشکلات ارائه‌شده است. علاوه‌نداز می‌تواند به مجموعه تحقیقات ماروسیکی از دانشگاه مینوسوآ مراجعه کند [16]. مراجع دیگری نیز وجود دارد [17].

۴- انتخاب در روش‌های

در این تحقیق برای تقریب نابعی از تابع کسینوس استفاده می‌شود. انتخاب این تابع، به علت حالت خود ارضايی شرایط مرزی در آن است، تا مقادیری از پیچیدگی‌های عملی شرایط مرزی کاهش یابد [11].

لذا سری جمله‌ای چیزی به صورت زیرکه در وضعیت منطقی بر سری فوریه کسینوسی است، استفاده می‌شود:

\[
\phi(y) = \sum_{n=0}^{N} a_n T_n(\eta)
\]

\[
T_n(\eta) = \cos(n \cos^{-1} \eta)
\]

\[
\eta_i = \cos\left(\frac{\pi i}{N}\right) \quad i = 0, \ldots, N
\]

برای تقریب از خاصیت اعمال استفاده کرده و نسبت‌های زیر به دست می‌آید:

\[
J_1^1 T_i(\eta) T_j(\eta) \, d\eta = \delta_{ij} \frac{\pi}{2} \epsilon_j
\]

که اگر \(i = 1 \) باشد، مولفه‌های ویژه سرعت اغتشاش، \(i = 1 \) است و اگر \(i = 0 \) باشد، \(\delta_{ij} = 2 \). به‌طور می‌شود.
می‌توان مسئله تابع را به وسیله جمله‌ای (24) با
با توجه به جمله ضرایب
اختلاف جمله به جمله ضرایب
تاشنه‌کنند. مشتق‌گیری از جمله ایا ساده تر است. به هر حال می‌توان ضرایب جمله ایا مشخص داده و به ضرایب اصلی استفاده شده در عملکرد مشتق‌ها نسبت
داده:
\[\phi^{(k)}(\eta_i) = \sum_{j=0}^{N} a_j T_j(\eta_i) \]
(27)
مشتقات مربوط بالاتری با چند بار اجرای عملکرد مشتق به صورت زیر به دست می‌آید.
\[D_i^k = (D_i^j)^k \]
(28)
برای تطبیق نقاط پایانی در جمله ایا مشتق شده است. به این ترتیب می‌توان مجموع معادلات باعث اعمال نیم‌بز و مشتقات آن در دامنه فیزیکی به معادله‌ای آنها در دامنه سری‌چی شف دست یافت.

5- آزمون روش
در مرحله انتخاب نیم‌بز و به منظور ایجاد امکان مقابلی به تحقیقات محققان دیگر، سعی شد تا تحقیقات شباهی را در روش طبقه به دست آورد و با استفاده از تحقیقات شده آن می‌تواند کنیم. آنچه که برای این منظور قابل دسترس بوده است، تحقیقات در تحلیل نیم‌بز در پیشت ارائه که امکان رسیدن به تحقیقات محققان دیگر ممکن است در پیش‌بینی امکان ان‌دی‌اش. در مقالاتی که در مورد افرادی تاریخی دانشگاه می‌دانست، با استفاده از این‌گونه تحقیقات نیم‌بز سرعت در پیشت‌بینی که به توجه به بررسی‌های تحلیل استفاده در بیشتر موارد به دقت و اثبات‌گرایی که صحبت این‌ها به خوبی مورد تایید شده است، به تحلیل و آزمون صحبت برای تهیه شده برداخته شد که پاسخ‌های به دست آمده به نتایج مذکور اندازه‌گیری کامل داشته است. شکل (1).
مقایسه منحنی‌های پاپاداری خشی به دست آمده در پشت سیلندر برای روش حاضر و مرجع 16 دیده می‌شود. در این مقایسه نتیجه به دست آمده، به عنوان انطباق کامل بیان شده است.

صورت ستاده در اطراف آن رسم شده اند.

پس از حصول اطمینان از صحبت عملکرد برنامه، برای آزمون دیگر، یک نیم‌مر سرعت با دو برابر پشت صفحه تخت انتخاب شد:

\[\frac{d^2u}{dn^2} = U_0 D^2 \left[-0.936 \operatorname{Tanh} \left(0.6 \left(\frac{D}{Y} \right) - 0.4 \right) \operatorname{Cosh}^2 \left(0.6 \left(\frac{D}{Y} \right) - 0.4 \right)
ight]
+ 0.936 \operatorname{Tanh} \left(0.6 \left(\frac{D}{Y} \right) + 0.4 \right) \operatorname{Cosh}^2 \left[0.6 \left(\frac{D}{Y} \right) + 0.4 \right] \]

\[(35) \]

این معادلات همراه با معادله (15) برای یافتن منطقه نشان داده شده است.

دیگر برنامه رایانهای انجام شده است. این برنامه در میان برنامه‌های نویسی بیشتر نوشته شده و با بهره‌گیری از 10 زیر برنامه کلی که هر کدام به دفعات زیاد برنامه های دیگری را فراخوانی می‌کند، این سیستم به برنامه حل شده است.[14].

لازمه به ذکر که برای حل مسئله مقدار ویژه تعمیم
یافته، نیاز به استفاده از نرم افزارهای مناسب رایانه به Matlab، Mathematica حاصل است که می‌توان از استفاده کرد. یا از انواع Lapack و Algebra، Maple روشهای که داشته داده شده برای این منظور استفاده کرد.[2] [21-26]. در تحقیق حاضر برای حل مسئله مقدار Lapack ویژه‌ای از زیر برنامه ZGGEV موجود در نرم‌افزار استفاده شده است.

\[\frac{dU}{dn} = U_0 D \left[-0.78 \operatorname{Cosh}^2 \left(0.6 \left(\frac{D}{Y} \right) - 0.4 \right) + 0.78 \operatorname{Cosh}^2 \left[0.6 \left(\frac{D}{Y} \right) + 0.4 \right] \right] \]

\[(34) \]

شکل 1 - مقایسه نتایج با تجربی به دست آمده برای نیم‌مر سرعت در پشت صفحه تخت

\[d^2u \]
شکل ۲- نیم‌خ لایه برخی آرام در پشت یک صفحه نخت، معادله (۳۳)

شکل ۳- نحوه قرار گرفتن نیم‌خ آرام پشت یک صفحه نخت

۶- جمعبندی و بحث

این قسمت از بحث برای محققانی است که ممکن است علاقه‌مند به ادامه تحقیقاتی باشند. در ادامه اجرای این تحقیق، سعی شد که همیشه روش برای نیم‌خ سرعت در لایه مرزی آرام را ساخته، تحت نیز به کار رود که با اشکالاتی مواجه شد. اولین اشکال در انتخاب نیم‌خ پشت تبدیل بود که به

استقلال، سال ۲۴، شماره ۱، جلد دوم، شهریور ۱۳۸۴

۲۷۸
اینجا با به نزور توضیح این موضوع و اجرا راهی برای تحقیقات این امر امکانی می‌تواند.

به گذشت علت انتفاضه انسان مختلف‌السیر ها در این روش و به‌

علت قطع جمله‌های سری می‌توان با رنگی، ارحام است که

ضرایب سری‌ها تجربه نشان می‌دهند که مقدار این انتفاضه و انتها

(که معروف به نقاط پایانی هستند) توسط تعدادی توان و

سرعت‌های مربوط به آنها، بر مقدار واقعی منطقه شوند.

این موضوع باز هم زمانی حساسیت بیشتر خوشی را نشان می‌دهد که توجه شود برای حل یک مسئله، دانسته فیزیکی به

دامنه حساسیتی که معمولاً بسیار کوچکتر است، تبدیل و

نگاشتی می‌کند که این شاهد به نوبه خود موجب می‌شود تا

کوچکترین خطایی در اعمال شرایط ناقل پایانی، تأثیر بسیار

گسترده بر کل و معنی‌آن در دانسته فیزیکی باشد.

از سوی دیگر ویژگی‌های این روش حس، استفاده از کل

نقاط تغییر شده در دامنه برای انجام محسوس در هر یک از

نقاط است که موجب شده است نا در پی‌بانی از تحقیقات,

جایگزین حلق تحلیلی شود. اما این امر زمانی تحقیق می‌یابد که

در اعمال شرایط مرجع مسئله به صورت شرایط مزرعی تیم و

در اعمال شرایط و توان مربوط به نقاط پایانی، خطایی ایجاد

شود. زیرا با ایجاد کوچکترین خطایی، این خطا به کل دامنه

گسترده می‌یابد.

بدین ترتیب لازم نا ناقل پایانی مناسب برای تیم‌ری و

صفحه تخت، انتخاب و اعمال شده به ویژه که در بررسی مستلبه

پایداری تحت برای روی صفحه تخت حساسیت بر روی

وقت‌های این فیزیکی‌های صفر است که در نگاشت با تابع تبدیل به

کار گرفته شده بر 1- مطلوب می‌شود. در بین مجموعه توابع

که توسط دیگر مقاطع برای این منظور ارائه شده است، مورد

قابل استفاده ای نبوده و لازم به که تعدادی تابع برای این

حالات بیشتر شود و درست آن زمینه مختلف انتخاب مورد

همین دلیل این تابع به مقاله دیگر ویژه شد و از گزارش

برای تیم‌ری صفحه تخت خودرویی می‌شود.

برای تیم‌ری سرعت در پنل صفحه تخت، با استفاده از

ماده (32)، با شکل (4)، برای 100 M منحنی پایداری

اختن مطمئن باشد که از نظر گرفتن

نتیجه مناسب برای این حالت است. به‌طور مثال، دوی

اولین نقطه ای که در آنجا تغییر ایجاد شده و می‌تواند بر

دامنه تغییر از مقدار شود، با مقدار

$$ \alpha_{CR} = 2.31 $$ می‌شود. هر

تغییر دیگری که قبل از این نقطه ایجاد شود، دائمی است که

رو به کاهش گذاشته می‌خواهد. به‌طور مشابه گرفتن

تحقیق با فکرکس و ریولندری که در داخل منحنی پایداری

خانه قرار می‌گیرد ایجاد شود، تقویت شده و به ناپایداری و

ایجاد اختلال کمک می‌کند.

سپر شده است تا به وسیله دقت این محسوس‌های افزایش

یابد. در هر پسند که مقدارهای به صورت دقت مضاعف

جزئی استریز و در محسوس‌های مربوط به کردن، استفاده از دقی

محسوسکه که در نتیجه گرد کردن اعداد، در طول هر

دورة از محسوس‌های قدر $$ C_i $$ قسمت مربوط به سرعت مناسب

به مقدار می‌شود ($$ \text{مجانب} $$ می‌کند). استفاده از دقی

محسوسکه که در نتیجه گرد کردن اعداد، مقدار $$ C_{i} $$

به $$ \text{مجانب جستجو} $$ نشان می‌دهد و با همین

پنچای شروع به انتشغال نکنن. استفاده از دقی محسوس

$$ 10 $$ توصیه و در محاسبات این مقاله نیز مورد

استفاده قرار گرفته است.

Pentume IV

در اجرای این پروژه یک رابین شخصی

در سال 2000 Full Cache

بود که با استفاده از سیستم رایانه‌های موزی ای رایانه‌های مادر

حل مجدد انجام شود. در شکل (5) با خویش می‌توان ریولندر

پردازش را مشاهده کرد که تغییر منحنی پایداری خشک زمین

را برای تیم‌ری سرعت در پنل صفحه تخت، نشان می‌دهد. همچنین در

شکل (4) قسمت انتتای (دماغ) برای همین منحنی تداعی
شکل ۴: منحنی پایداری خنثی پشت یک صفحه نخت.

شکل ۵: قسمت‌های اولیه (دماغه) منحنی پایداری خنثی برای نیم‌رنگ پشت صفحه نخت.
دیده شده است و شکل (4) تغییرات قسمت خنثی فاز بی بعد شده یا برای هنگام نیم‌مرخ و درکشته‌های فیزیکی (جامعه) آن نشان می‌دهد. روی همه اشکال تقریباً به یک شکل است. بلافاصله است که هر شکل‌گذاری به مشخصات آن در قسمت داخلی منحنی قرار گیرد، تقویت، به گذاری آن در قسمت خوانده شدن و بر پایه منحنی قرار گیرد دانه آن تنظیم خواهد شد. نقطه روی منحنی تقویت خشکی را نشان می‌دهد.

8- نتیجه‌گیری
در این تحقیق، سری چپ شف چپ برای حل معادلات اور- سامرفال در مورد استفاده فاز گرفته اسکلت با این معادلات قادر به پیش بینی چگونگی گسترش تحریک خطی در لایه‌های آرام است.

16. Marusic, I., Tang, IB. and Had, R. Rayven, Ch. Stability Analysis of a Cylinder Wake, University of Minnesota, Pub. AEM 8211 spring 2001

18. مکاتبات خصوصی ملک جعفریان با پروفوسور ماروسیک، آذر ماه 1381

19. مکاتبات خصوصی ملک جعفریان با دکتر نانک، بهمن ماه 1381

20. مکاتبات خصوصی علوی با دکتر نانک (شماره 1).

21. مکاتبات خصوصی علوی با دکتر نانک (شماره 2).

22. مکاتبات خصوصی علوی با دکتر نانک (شماره 3).

27. مکاتبات خصوصی علوی با پروفوسور پود، بهمن 1381

مراجع