Investigations on Cold Rolling of Strip in Attendance of Hydrodynamic Lubrication

M. Salimi and S. Asghari
Department of Mechanical Engineering, Isfahan University of Technology

Abstract: In this paper an analytical model for cold rolling of strip has been described. This model is developed based on the slab method of analysis and the hydrodynamic lubrication. The characteristics of rolling are obtained from the equations of equilibrium and the plate was allowed to strain harden assuming that the lubricant behaves as a Newtonian fluid. The shear stress to the plate is obtained by calculating the thickness of the lubricant film by employing a viscosity-pressure-temperature relation. The governing equations are obtained by composing these relations and the final differential equations have been solved. From the solution of the final equation, the rolling force, torque and shear stress to the plate are calculated. To verify the validity of
the proposed model, these values are compared with experimental and analytical results of other investigators. It was also noted that by employing the proposed analytical model, a large amount of computation time and costs are saved.

Keywords: Cold rolling of strip, Hydrodynamic lubrication, Slab method, Newtonian lubricant

<table>
<thead>
<tr>
<th>فهرست علائم</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرعت مربوط به ماده ورق</td>
</tr>
<tr>
<td>طول سطح تماس ورق و غلظت</td>
</tr>
<tr>
<td>ضخامت ورق ورودی</td>
</tr>
<tr>
<td>ضخامت ورق خروجی</td>
</tr>
<tr>
<td>ضریب دما</td>
</tr>
<tr>
<td>ضریب فشار</td>
</tr>
<tr>
<td>ضریب لزج</td>
</tr>
<tr>
<td>ضریب لزج در فشار و دما محيط</td>
</tr>
<tr>
<td>فاصله تناوی</td>
</tr>
<tr>
<td>نش تسلیم در حالت کرمش صفحه‌ای</td>
</tr>
<tr>
<td>نش تسلیم اولیه در حالت کرمش صفحه‌ای</td>
</tr>
<tr>
<td>نش تسلیم ورق در ناحیه پلاستیک</td>
</tr>
<tr>
<td>نش برخی</td>
</tr>
<tr>
<td>کرنش</td>
</tr>
<tr>
<td>چگالی ورق</td>
</tr>
</tbody>
</table>

پیش‌بینی سرعت ورق در ورود و خروج از ناحیه پلاستیک

1- مقدمه

سالانه میلیون‌ها تنش و برخی فولادی و آلومینیمی به عنوان ماده‌هایی مصرفی مختلف تولید می‌شوند. قدمت و کسترگی صنعت نورد باعث شده تا از دریای تحقیقات و سیاست در مورد مسائل مختلف این صنعت صورت بگیرد. در این میان نورد سرد از هم‌بستگی به ویژه‌ای برخودار است. به دلیل ارزش افزوده بالایی که نورد سرد بر روی ورق ایجاد

استقلال سال 24، شماره 1، جلد دوم، شهریور 1384

284
ضخامت این لایه بسیار حالت اهمیت است به‌ویژه که براساس آن سه نوع مکانیزم روانسازی به وجود می‌آید. اگر لزحت و یا سرعت روانساز به اندازه کافی بزرگ‌باشد، لایه روانساز ایجاد شده بین ورق و غلظت باعث چیدایی کامل آن از پکیجگر خواهد شد که در این صورت به آن مکانیزم روانسازی هیدرودینامیک گفته می‌شود. در این حالت ضخامت این لایه به‌وری تکیه بر پکیجگر ارتفاع بر روی غلظت است.

واضح شده است که مکانیزم تکیه بر پکیجگر ارتفاع بر روی غلظت به صورتی بکار می‌رود که این سیال کاملاً یکسان باشد. در این صورت بخشی از پکیجگر ورق و غلظت با پکیجگر ارتفاع بیدا کرده و قسمتی از نیروی تورد را ارائه می‌دهد. این نوع مکانیزم روانسازی را روانسازی خاکستری می‌نامند. در این حالت ضخامت این لایه به‌ویژه که براساس آن سه نوع مکانیزم تکیه بر پکیجگر ارتفاع بر روی غلظت است. همانطور که بعنوان مشاهده گردید فشار روانساز در طول این تابع این افرادی که سپس نخود که درک کرده‌اند که پلاستیک در ورق اتمسفری نیست. این تغییر به‌طور کلی از ناحیه تابعی است.

نامیده می‌شود در این حالت معمولاً ضخامت این لایه روانساز کمتر از سه برابر ارتفاع متوسط بر پکیجگر است. اگر چه در عمل مکانیزم هیدرودینامیک کمتر از وجود این در بالای آن کبیرتر در مکانیزم دیگر نیاز به شناخت کافی از مکانیزم هیدرودینامیک دارد، مدل حاضر بر مبنای روتوسازی هیدرودینامیک نمی‌شود. سطح طور که از شکل (1) مشاهده می‌شود تا ناحیه تماس ورق و غلظت را می‌توان به سه قسمت تقسیم کرد.

1- ناحیه ورودی: به علت گوده یک بکار می‌شود سطوح تماس در این ناحیه، لایه روتوساز شروع به شکل شدن کرده و فشار داخلی آن بالا می‌رود. ویژه در ورق به‌طور هم‌اکنون ویژه شکل پلاستیک ایجاد نمی‌شود.

2- ناحیه کاری: در این ناحیه شکل پلاستیک ورق آغاز شده است. همانطور که بعنوان مشاهده گردید فشار روتوساز در طول این ناحیه این افرادی که سپس نخود که درک کرده‌اند که پلاستیک در ورق اتمسفری نیست. این تغییر به‌طور کلی از ناحیه تابعی است.

شکل 1- شکل شماتیک فرآیند نورد سرد
نaghie پلاستیک، مدل کامملی نیست و خطای آن میتواند بسیار زیاد باشد. همچنین با استفاده از سایر افراد شده توسط ولسون، مدل جدیدتری ارائه کرد که به طور غیر مستقیم تأثیر ناحیه ورودی را نیز در نظر گرفته است. اما از نظر شکل غلظتاً صرف نظر کره است [8]. این موضوع که صرف نظر از تغییر شکل استیک نتایج نامعلومی ایجاد می‌کند توسط تأسیس و سازگری [9] مورد بررسی قرار گرفته است. آنها نشان داده‌اند که اولاً طول ناحیه تمام برای مواد سخت که تحت نورد قرار می‌گیرند تغییرات نسبتاً قابل توجه نسبت به مواد نرم دارد و ثانیاً توزیع فشار از تغییر شکل استیک غلظتاً متفاوت است.

در این مقائل معمولاً در این ارائه از سایر مدل‌ها می‌تواند به عنوان مورد در فاینرد، مدل ارائه شده که کاربرد آن در عمل ساده بوده و نتایج قابل قبولی را ارائه کند.

- مدلازی مسئله

بر مبنای آنچه بیان مدل ریاضی ارائه شده دارد فرضیات و مشخصات زیر است:

- 1- فرضیات مدل حاضر

- 1- مکانیزم روانسازی هیدرودینامیکی فرض می‌شود.

- 2- برای محاسبه ضخامت لایه روانساز ورودی به ناحیه

- 3- ناحیه خروجی: در این ناحیه فشار لایه روانساز به اندازهای کاهش می‌یابد که به فشار می‌خورد. در اینجا نیز همیشه ناحیه ورودی، در ورق هیچ گونه تغییر شکل پلاستیک وجود ندارد.

اگر مدل‌ها برای لایه روانساز ورودی به تغییری پلاستیک (h) را محاسبه کرد و از آنگونه ضخامت لایه روانساز را در کل ناحیه پلاستیک به در نظر گرفته‌اند، مقدار دلخواه برای ضخامت لایه روانساز ورودی فرض کرده‌اند. این توجه به این تکنیک که یک واقعه ضخامت لایه روانساز مورد استفاده در مدل مواد ناحیه ورودی ارائه گردید با نه به همین دلیل نتایج این گونه مدل‌ها مورد شک و تردید قرار دارند.

7-1 معادله دیفرانسیل تعادل

\[\frac{dy}{dx} + y \frac{d(\sigma_x - p)}{dx} - 2\tau = 0 \]

2-3 ارتباط ضریب لجزت با فشار و دما

\[\sigma_x = \frac{\partial x}{\partial (y + v)} - 2\tau \cos \phi \]

\[+ 2\sin \phi R_{\theta} \phi = 0 \]

\[\frac{dy}{dx} + y \frac{d(\sigma_x - p)}{dx} - 2\tau = 0 \]

2-2 استخراج معادله دیفرانسیل تعادل

\[\sigma_x - \sigma_z = \kappa \]

\[\sigma_z = p(1 + \mu\phi) \]
صوته زیر تعیین می‌شود:

\[r = \frac{y_1 - y_2}{y_1} = 1 - Y_2 \] \hspace{2cm} (13)

آن گاه معادله 12 به صورت زیر بازنویسی می‌شود.

\[Y = 1 - r + rX^2 \] \hspace{2cm} (14)

\(\sigma_k = \sigma_0(1 + Ae^n) \) \hspace{2cm} (15)

\(n_k \) که تنش تسحم اولیه در حالت کار صفحه‌ای یا کرنش ضرایب همبسته به ماده ورقاند. کرنش از معادله زیر محاسبه می‌شود.

\[\varepsilon = \ln \frac{y_1}{y} = \ln \frac{1}{Y} = -\ln Y \] \hspace{2cm} (16)

\(-7 \) - سرعت ورق

سرعت ورق با کاهش ضخامت آن افزایش می‌یابد و با توجه به شرط تراکم ناپذیری داریم:

\[u_1y_1 = uy \] \hspace{2cm} (17)

\(6 \) - کارشختی ورق (\(\sigma_k \))

برای مدل کردن کار صفحه‌ای از معادله لوژدوفک استفاده شده است. رابطه لوژدوفک به صورت زیر بیان می‌شود [8]

\(Y = 1 - r + rX^2 \) \hspace{2cm} (14)

\(h_1 = \frac{3\mu_0YR(u_1 + u_e)}{x_1(1 - e^{-rX})} \) \hspace{2cm} (11)

که سرعت ورق ورودی به ناحیه نورود، \(u_e \) سرعت محیطی غلک، \(x_1 \) طول نماس غلک و ورق و \(s \) کشش از عقب 17 است.

\(5 \) - ضخامت ورق

اگر پرفیل سطح غلک با یک ثابت تقیب زده شود، آنگاه ضخامت بدون بعد ورق (\(Y = \frac{Y}{Y_1} \)) از طریق معادله زیر بر حسب فواصل بدون بعد (\(X = \frac{x}{x_1} \) به هم می‌شود.

\[Y = Y_2 + (1 - Y_2)X^2 \] \hspace{2cm} (12)

\(\mu_1 \) ضخامت ورق ورودی، \(x_1 \) فاصله از مبدا تا ابتدا ناحیه کاری، \(Y_2 \) ضخامت بدون بعد ورق خروجی و \(Y \) ضخامت خروجی است. ضریب کاهش مقطع (ضخامت) \(r \) به...
سیرت ورق در هنگام ورود به ناحیه کاری (پلاستیکی)

\[u = \frac{1}{Y} \]

و سیرت ورق در هر نقطه از این ناحیه است:\n
\[\frac{U}{Y} = \frac{1}{Y} \]

که سرعت U بدون ورود است.

2- ضخامت لایه روانساز در ناحیه پلاستیکی (h)

طبق فرضیات مدل از جیران فشاری روانساز صرف نظر شده و
در نتیجه هیچ گونه جریان پرگشتش روانساز از داخل ناحیه
پلاستیکی به طرف ایندازی آن (انتهای ناحیه ورودی) وجود
نخواهد داشت [14]. بنابراین دیگ روانساز در ناحیه پلاستیکی
ثبت نمی‌شود و در نتیجه

\[\frac{\bar{u}}{h_1} = \bar{u} \]

که ب ترکیب سرعت متوسط روانساز در هنگام ورود به
ناحیه پلاستیکی و در هر نقطه از این ناحیه است. به دلیل نازک
بودن لایه روانساز، جریان آن را می‌توان یکنواخت فرض کرد. با
توجه به این ضریب متوسط سرعت روانساز در یک نقطه برای
میانگین سرعت سطحی غلتک و سرعت ورق در آن نقطه است

\[\bar{u} = \frac{u_f + u_s}{2} \]

که سرعت محیط غلتک است. با استفاده از معادلات 19 و
20 نابض ضخامت بدون بند U بدون بند U و سرعت بدون بند غلتک\(U_f \) به دست می‌آید:

\[H = \frac{h}{h_1} \]
کار انجام شده بر روی آن برای[۱۴] و بیانیه:

\[p_c \Delta T_k = \bar{\sigma}_t - \frac{\sigma + \sigma_t \ln Y}{2} \] \hspace{1cm} (۲۵)

\[\Delta T = T_mf - T_0 = \frac{\Delta T_k}{2} \] \hspace{1cm} (۲۶)

\[\Delta T = -\frac{\sigma_0(2 + A(-\ln Y)^n)}{4\rho c} \ln Y \] \hspace{1cm} (۲۷)

۱۴-۲ ماقومات بررسی روانساز

ماماوات بررسی روانساز در نورد سرد دارای اهمیت ویژگی است. در روان‌های نورد عملاً اصلی‌کننده به دسته‌های دیگر ایجاد می‌گردد. برای مثال تنش اصلی‌کننده ناشی از روان‌های یکی از اصل‌کلی‌تر، اصل‌کلی‌تری که در اتفاق فشار بین‌بند بعد بهبود جذب گریزی تورب یا باز است. مقدار بهبود بار نورد گستار (G) بیشترین کمک[۱۶] بیانیه برای پیچ و چرخش از مواجه شدن با چین مشکلاتی، رفتار روانساز به‌صورت یسکوپلیستیک به‌نظر می‌گردد. این امواج است. فشار روانساز به‌صورت زیر تعریف می‌شود:

\[\bar{\sigma}_t = \frac{\sigma + \sigma_t \ln Y}{2} \] \hspace{1cm} (۲۵)

\[\Delta T = T_mf - T_0 = \frac{\Delta T_k}{2} \] \hspace{1cm} (۲۶)

\[\Delta T = -\frac{\sigma_0(2 + A(-\ln Y)^n)}{4\rho c} \ln Y \] \hspace{1cm} (۲۷)

۱۵-۲ معادله دیفرانسیل نهایی

یا چایگذاری معادله تنش بررسی در معادله ۹ انجام برخی عملیاتی بدون بعد‌سازی. معادله دیفرانسیل نهایی بر حسب فشار بند (\(P \)) به دست می‌آید:

\[\frac{d}{\rho c} \left(\frac{dY}{dX} \right) = \frac{P}{\sigma_0} \] \hspace{1cm} (۲۵)

\[\frac{2\rho c u h dY}{u h} \left[\left(\frac{\rho_0}{\rho_c} \alpha_{Y} \right) \left(U - \frac{1}{Y} \right) Y_1 + 1 \right] \] \hspace{1cm} (۲۵)

\[+ \left(1 + A(-\ln Y)^n \right) \frac{dY}{dX} = 0 \] \hspace{1cm} (۲۷)

۱۶-۲ تغییر شکل استاتیک غلظت

برای محاسبه تغییر شکل استاتیک غلظت کاری (متوسط شعاع غلظت) از فرمول هیچکانی استفاده می‌شود[۱۴] معادله ساده‌ای با توجه به ماده تغییر دهنده جنس غلظت‌ها ارایه شده که به‌صورت زیر در می‌آورد:

\[\text{استاندارد سال} ۲۴ شماره} ۱، جلد دوم، شهریور ۱۳۸۴

۲۹۰
NON-DIMENSIONAL PRESSURE

Shear Stress

Shear Stress (MPa)

Outlet Distance Inlet

Outlet Distance Inlet
شکل 5- مقایسه روند تغییرات نسبت سرعت برای $r=0.2$.

شکل 6- مقایسه روند تغییرات تیرو برای $r=0.2$.

استقلال سال ۱۳۸۴، شماره ۴، جلد دوم، شهریور ۱۳۸۴
شکل 7- مقایسه روند تغییرات گشتاور برای $r=0.2$

شکل 8- مقایسه روند تغییرات نسبت سرعت برای $r=0.4$
شکل ۹- مقایسه روند تغییرات نیرو برای \(r=0.4 \)

شکل ۱۰- مقایسه روند تغییرات گشتاور برای \(r=0.4 \)
3- روش حل
برای حل این مسئله، برنامه ای به زبان MATLAB نوشته شد. در اینجا مقداری برای سرعت ورودی u_1 حس زده می‌شود. با استفاده از این پارامتر و دیگر مقادیر ورودی کلیه پارامترهای وابسته مانند h_1 محاسبه می‌شود. سپس با شرط مرزی در نقطه $X=0$ معادله دیفرانسیل (28) حالت می‌شود. خروجی فرایند $X=1$ حل فشار در یک سری نقاط در فاصله بین 0 و 1 است. اگر فشار محاسبه شده در نقطه $X=1$ شرط مرزی را در آن نقطه ارضا کند برنامه ادامه می‌یابد و در غیر این صورت...

4- نتایج
در شکل‌های (3) و (4) توزیع فشار و تنش بر روی پلاریاژ در شکل‌های (3) و (4) توزیع فشار و تنش بر روی پلاریاژ محدوده با مشخصات $T = 107K$ و $\mu_1 = 11.38\text{Pa.s}$. برای $\alpha = 0.09$ و $w = 50.4 \text{mm}$ و $y_1 = 1.02 \text{mm}$ اولیه $\sigma_0 = 100 \text{MPa}$، $A = 0.9$ و $n = 0.355$ مقدار دیگری برای u_1 حس زده شده و فرایند بالا تکرار می‌شود. پس از حل موفقیت آمیز مسئله، نتیجه نوردی محاسبه شده و از روز آن تغییر شکل الستیک غلظت‌ها به دست می‌آید. در صورتی که اختلاف شعاع جدید و شعاع اولیه غلظت‌ها بیشتر از یک تناوب مشخص باشد، شعاع غلظت پراکنده شعاع جدید قرار داده شده و دوباره برنامه از ابتدا به حالت مسئله می‌پردازد. این کار تا حصول یک نتیجه قابل قبول تکرار می‌شود. پس از آن پارامترهای نظری و گشتاور محاسبه شده و نمودارهای لازم استخراج می‌شوند.

است که این دو شرط از ارضا شرط تسلیم در ابتدا و انتهای ناحیه کاری به دست می‌آید.

\[
\begin{align*}
X = 0 &\implies p_2 = \sigma_k - 1 \\
X = 1 &\implies p_1 = \sigma_k - 8 \\
\end{align*}
\]

σ_k و σ_k فشار در ابتدا و انتهای ناحیه کاری، و p_1 و p_2 تنش تسلیم کرانه مختصات در ابتدا و انتهای ناحیه کاری و X کشش از جلو و X کشش از عقب اعمال به ورق است.
با توجه به این شکل‌ها مشاهده می‌شود که این مدل در های‌کاربردی سیستم‌های تجربی و آزمایشگاهی استفاده می‌شود که سه پارامتر خصوصی و کشان در یک درصد کاهش سطح مقطع ثابت و ابستگی جدیدی به سرعت غلظت تجویز داشته.

در شکل‌های (11) و (12) رونده‌گیری نیرو و کشان در درصد کاهش سطح مقطع بین مدل حاضر و مدل سا مقبلا شده است. این نمودارها برای رونده‌گیری نیرو و ورق و غلظت با مشخصات با استفاده از اکستراگش مدل و به همین ترتیب می‌توان که پارامترهای مورد نیاز را استخراج کرد.

علاوه بر دقت از مراحل دیگر این مدل، کوتاه بودن زمان حل است که این خود امکان کاربردی مدل حاضر را در عمل امکانپذیری می‌سازد. زیرا عملکرد مدل فراوانی نور، پارامترهای رونده‌گیری و ورق و همچنین پارامتر کاری واحد به طور مداوم تغییر یافته و لازم استفاده از یک مدل سریع اجتناب ناپذیر است.

![TORQUE Graph](image)

شکل 12 مقایسه رونده‌گیری‌های گشتاور نسبت به درصد کاهش ضخامت

\[D = 102 \text{ mm} \]

\[\text{قطر فشار سطح مقطع} = 0.4 \]

\[\text{محدوده تاریخی} = 0.25 \text{ m/sec} \]

\[\alpha = 0.1 \text{ K}^{-1} \]

\[G = 70 \text{ (GPa)} \]

\[0.4 \text{ Pa} \cdot \text{s} \]

\[10^{-1} \]

\[0.1 \text{ K}^{-1} \]

به هر حال نمودارها حاصل‌اندازه‌های معنی‌دار است با این تفاوت که نمودارها هموارترند.

در مربع (8) مقادیر نظیری و تجربی نیرو و گشتاور برای رونده‌گیری نیرو و گشتاور برای مشخصات بالا درصد کاهش سطح مقطع‌های 70 و 200 و سرعت‌های غلظت متفاوت شده است و تولید نرمال مناسب برای مقایسه نتایج این مدل با مدل ارائه شده در آن است. شکل‌های (8) نمایانگر مقایسه رونده‌گیری‌های پارامترهای نسبت سرعت \(\frac{U_1}{U_2} \) نیرو و گشتاور نورت نسبت به سرعت غلظت بین داده‌های تجربی، مدل سا و مدل حاضر برای کاهش سطح مقطع 0.2 ر است. شکل‌های (8) نمایانگر همانند شکل‌های قبل بوده با این تفاوت که داده‌ها برای کاهش سطح مقطع 0.4 هستند.

استناد: 24، شماره 1، جلد دوم، شهریور 1384

296
1. hydrodynamic lubrication
2. mixed lubrication
3. boundary lubrication
4. inlet zone
5. work zone
6. outlet zone
7. Nadai
8. A.G. Atkins
9. Wilson
10. Lugt
11. Roberts
12. Bedi
13. Cheng
14. Chung-Yeh-Sa
15. Ludwik
16. back tension
17. Polyphenyl ether
18. mineral oil
19. visco plastic
20. Bair and Winer