Heat Transfer from a Tube Bank with Mass Transfer in a Duct

A.Nouri and A.M.Lavasani
School of Mechanical Engineering, Sharif University of Technology

Abstract: An experimental investigation on heat transfer coefficient is presented from three horizontal tubes in a vertical array in a duct for $500 < Re_D < 6000$. A mass transfer measuring technique based on psychrometry chart is used to determine heat transfer coefficient. The diameter of the tubes is 11 mm each spaced 40 mm apart and in-line pitch ratio varies...
in the range 0.055 < D/W < 0.22. The experimental results show that the Nusselt number of each tube increases by increasing D/W. Also the increase of the second tube Nusselt number is more than that of the third one.

Keywords: Experimental method, Heat and Mass transfer, Tube bank, Duct

<table>
<thead>
<tr>
<th>علامت بوناتی</th>
<th>وسایل</th>
<th>ضرب نفوذ جرم</th>
<th>عدد گرانش</th>
<th>ضرب انتقال گرما</th>
<th>ضرب انتقال جرم</th>
<th>فاصله بین مارکر دو لوله مجاور</th>
<th>وزن مولکولی</th>
<th>عدد ناسالت</th>
<th>فشار نشان کننده</th>
<th>عده پرانتل</th>
<th>فشار اشباع</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>Ṝ</td>
<td>gAρD³/ρν²</td>
<td>h</td>
<td>hₚ</td>
<td>L</td>
<td>m</td>
<td>M</td>
<td>Nu</td>
<td>P</td>
<td>Pr</td>
<td>Pr(T)</td>
</tr>
</tbody>
</table>

in the range 0.055 < D/W < 0.22. The experimental results show that the Nusselt number of each tube increases by increasing D/W. Also the increase of the second tube Nusselt number is more than that of the third one.

Keywords: Experimental method, Heat and Mass transfer, Tube bank, Duct
نانسلت برای هر یک از لوله‌های افزایشی می‌باشد این افزایش بین $R_e=10$ تا 198/91 درصد است. در حالی که به ازای $L/D=2$ و با به ازای $R_e=400$ و $L/D=6$ و با به ازای $R_e=200$ و $L/D=9$ تا 67 درصد نام靳ت کاهش یافته است. نتایج کاندو همچنین نشان می‌دهد که به ازای $L/D=2$ و برای یک مقدار نیمه‌های لوله چهار تیره دریافت و افزایش عدد نام靳ت لوله چهار یک برابر به سوم لوله سوم نسبت به دوم کمتر از 4 درصد است. در حالی که به ازای $L/D=6$ کاهش عدد نام靳ت لوله سوم نسبت به دوم کمتر از 72/6 درصد است.

کاندو و حاجی سیم [13] با استفاده از روش تجاری ضریب انقلال گرام‌ها از هر کم‌کم‌های گرمکوبی در محدوده 100 تا 0/2 درجه کره دریافتند. جنس لوله‌ها از مس و قطر خارجی آنها 12 یا 20 میلیمتر است. آزمایش عمدتاً در 2 درصد است. برای اندازه‌گیری ضریب انقلال گراما، ناحیه آزمایش به هشت مدول مبدل گرامیا تفکیم شده و عدد نام靳ت لوله‌ها از این اندازه‌گیری به دست می‌آمد. در این تحقیق، دمای لوله‌ها و نقاط 2 درصد است. برای اندازه‌گیری ضریب انقلال گرام‌ها در مبدل گرامیا لوله، عدد نام靳ت به اول و با لوله سوم نسبت به دوم افزایش می‌یابد و این افزایش تا مدول چهار ادامه دارد و پس از آن تا بقیه مسایل. مقادیر این افزایش برای ریپل‌های مختلف بین $0/38$ تا 0/57 درصد است. آن‌ها یک شیب 6 در الگویی را در آن $L/D=6$ که 3 کاهش می‌یابد تا به ناحیه افزایشی گرام‌ها دیگر دارد. در این تحقیق، شیبین نسبت به تنها نشانه صورت طول ادامه ریپل‌ها و نام靳ت به کار رفته است.

| نسخه | برای محاسبه ضریب مرجع داخل کانال تابعی را که با D/W سرعت جریان آزاد و عکس چرخ کرد و این افتاده از این تابع انتقال گرمای متوسط و موضعی یک لوله داخل کانال یا با دقت حسابی کرده. پرکردن و لپشته [8] برای محاسبه انقلال گرم از 1 لوله واقع در یک $D/W=2$ و $L/D=9$ انتقال گرمی از 1 لوله واقع در یک $D/W=2$ و $L/D=9$ استفاده کرده. در این تحقیق عادد ریپل‌در Re_0 صورت $Re_0 = U_c D/W$ کردن. زوکاسکاس نشان داد که مقدار Re_0, D/W و L/D Re_0 D/W در نظر گرفته شود. سرعت پیشنهادی زوکاسکاس از D/W سرعت جریان آزاد و مجدود D/W سرعت جریان آزاد و پیشنهادی D/W برای ریپل‌های مختلف Re_0 و D/W به لوله اول به ترتیب $2/97$, $2/91$ و $2/91$ درصد افزایش داشته است.

استلال، سال 12، شماره 1، جلد دوم، شماره 1382
گرمایی از یک سطح و ناکنون مورد توجه محقفان [۱۶-۲۸] قرار گرفته است. این روش برای پیش‌بینی دمای سطح جسم و همچنین در برابر بودن فاکتور دمای جرم در یک انتقال حرارتی استانی به سادگی قابلیت انتقال حرارت جرم از شکل‌های پیچیده و نیاز به تجهیزات پیچیده ندارد.

۲- دستگاه آزمایش
دستگاه انتقال حرارتی طبقه شکل (۱) است [۲۷] لوله‌ها به صورت یک ردیف قابل از طریق لوپلایه‌ای افقی یا محکم به یک کانال به ابعاد گوش توسط نصب شده است. قطر لوله‌ها ۹.۵۵ام. D/W = 0/۵ و ابعاد گازی ۴۰ mm، F/W = ۲/۲ است. برای تشکیل فیلم بیانی از سطح لوله‌ها به یک گرمایی پایه‌ای پردازش به منظور جذب آب و مربوط نگهداری شدن سطح لوله‌ها استفاده شده است.

سرعت گرمایی در داخل کانال محدود در کنار یک سرعت دوازده و نود هر کانال و یا محکم به کانال از شکل‌های رنگی و ضریب شکل که در تهیه مختصات کانال گرمایی نصب شده استفاده شده است. برای انتقال حرارتی توزیع سرعت و همچنین سرعت متوسط گرمایی داخل کانال ابدا شدن سطح مقطع کانال سربه مقدار نازک بوده که از گرمایی شده است. سرعت هوا در سطح یک گرمایی پایه‌ای سپس سرعت متوسط بدن آمده است. شکل هوا و آماده استفاده در ثانیه ۴-۰۵ و ساختار گازهای نسبت U۰ به مقدار ۲۰۰/۰۵ به ترتیب از ۳۰۰ و ۱۰۰ لوله‌های مورد است. دقت این وسیله در محدود سرعت U۰ به ترتیب دقت ۵۰۰/۰۳ از ۶۰/۰ لوله‌های مورد است. شکل (۲) توزیع سرعت آزاد را در عرض کانال برای سرعت‌های محکم متوسط در کانال با قطر هیروپلیکی ۲۲ کلوم به محاسبه یک حرارتی کمتر از ۴ m/s تقریباً یک‌روش و برای سرعت بالاتر به علت

شکل ۱- نحوه استقرار لوله‌ها و ترمومترها در کانال چرخان هوا
جریان عرضی یک سیال نیوتنی تراکمی تابیدر و پایدار را در اطراف یک استوانه واقع در داخل یک کانال را به روش عدید بررسی کنید. در این مطالعه Re/H = ۲۰۰ و ۵۰ و ۱۰۰ است. نتایج آن‌ها نشان می‌دهد که به‌طور تابیدر، افزایش رولری و یا به‌طور از رولری فاکتور D/W به‌عثام کاهش D/W باعث کاهش ضربه‌ای می‌شود.
در مطالعه حاکم ضریب انتقال گرمایی یک سرعت کانال مستطیلی (شکل (۱) توسط روش رطوبت سنجی و به کمک تحقیق در مکانیزم انتقال گرمایی در کانال‌های مختلفی به‌عنوان Re0 = ۲۰۰ و ۵۰۰ و ۲۲ دارند و جراین داخل کانال کاملاً توسیع یافته نیست. محدود این کمیت در تحقیقات مرتبط به کانال و زوکاسترانس به ترتیب در فواصل ۷۰۰ و ۲۸ و ۴۵ در دارند. همچنین گرمایی سیال در مطالعه
کاندرو کاملاً توسیع یافته دارد. است
روطیب سنجی توسط بدنه مختلف [۱۵] برای محاسبه انتقال

استثنای سال ۱۲، شماره ۱، جلد دوم، شهریور ۱۳۸۴

۳۱۸
شکل ۲- توزیع سرعت عرضی جریان هوای آزاد داخل کانال با قطر هیدرولوژیکی ۲۱۴ میلی‌متر (D/W=۰/۵۰)

(D/W = ۲۱۴ mm)

شکل ۳- معیار میانگین سرعت متوسط جریان هوای در کانال با دو دارایی اطمنای ۹۵ درصد

جریان‌های ثابت‌نیوایی ناشی از تغییر جهت جریان به انداره ۹۰ درجه یک‌عضا پرورشی کمتری می‌شود. لازم به ذکر است که نظر هیدرولوژیکی کانال سرعت هوا یک‌عضا پرورشی می‌شود. نسبت سرعت میانگین با دو دارایی اطمنای ۹۵ درصد برای سه کانال با قطرهای هیدرولوژیکی ۸۲ و ۱۳۹ و ۲۱۴ میلی‌متر در شکل (۳) مشخص شده است. همان طور که مشخص است این مقادیر کمتر از ۱۰۰۰ است و با کاهش قطر هیدرولوژیکی کانال کمتر می‌شود.

برای انداره‌گیری دوره‌های مسطح لوله‌ها از دو ترم‌کوپل سیمی نوع TP-01 مدل K علاوه بر نگاه‌های پایین و بالایی مسطح لوله گرفتن پایین و پاشی، در نقاط سکون پایین و بالایی سطح لوله
روش اندازه‌گیری

به منظور حذف اندازه‌گیری از دو سر لوله‌ها و دو بعید شدن اندازه‌گیری از روش رطوبت شنج استفاده شده است. به علت کوک‌بودن اختلاف دما بین سطح لوله و سطح اطراف تبخیر فیلم مایع فقط در اثر اندازه‌گیری گرمای جابجایی است. با این‌دسته که برخی از اتاق‌های ارائه مانند داشتن یک محاسبه‌ساز بهتری در این روش جریان آب به نحوی مدرج که به سطح لوله‌ها اندازه‌گیری می‌شود. آب از سوئچاتیا تعیین شده روز سطح لوله به بیرون جریان می‌یابد و فیلم تازه روز سطح پارچه شکل می‌گیرد. با استفاده از اطلاعات لوله‌ای فراپیون تبخیر اتاق‌های می‌شود و آرام جریان هوا می‌شود. پس از گذشت 1/2 ساعت برای رسیدن به حالت پایدار میزان تبخیر فیلم آب و دما سطح فر لوله اندازه‌گیری می‌شود. با استفاده از نسبت‌های نسبت مکانیزم‌های انتقال گرم و جرم[29] عدد ناسیل متوسط از معادله زیر محاسبه می‌شود.

\[\text{Nu} = \frac{Sh}{Sc} (Re)^{0.33} = C Re^n P_l^{0.33} \]

که در آن \(Sh \) عدد شرود متوسط و از معادله زیر بدست می‌آید.

\[Sh = \frac{M_p P_a D}{M_w P_a D_{AB} (P(T_w) - P(T_{dew}))} \]

در این معادله \(P(T_w) \) و \(P(T_{dew}) \) به ترتیب فشار ایجاد بخار آب در دماهای سطح و نطفه شیمیائی و تبخیر آب در طریق محسوس است.

محاسبه همتا

همانطور که مشخص است دقت محاسبه عدد ناسیل از معادله (3) برای این اندازه‌گیری و سایر اندازه‌گیری‌های از قبیل ترمومتری، بورتر، زمان سنج و کوله‌سنج دارد. برای تخمین

این خطای از معادله (1) مشتق‌گری می‌شود.

320

استتقال، سال 24، شماره 1، جلد دوم، شهریور 1384
یک لوله در یک کانال تاننا می‌دهد. همانطور که از شکل مشخص است، اندازه‌بندی در حدود 12 درصد است. لازم برحسب اینکه بیشتر از 25 درصد D/W نسبت دوشی‌های نکشی، به نوبه خود، D/W نسبت های کم‌تر از 15 درصد است.

در شکل (7) مقایسه عدد ناسیت بدون شده می‌باشد. لازم برحسب اینکه نتایج کاندو برای لوله مرحله شده است. همانطور که مشخص است، فاقد است یا از 6 حداکثر 12 درصد. به نوبه خود، D/W نسبت به از 5 درصد کمتر است.

در این مطالعه، اندازه‌بندی متوسط به روش قائم سه لوله‌ای در داخل کانال مستطیلی و در چند جزییات تاکید کرده‌ایم که کاملاً توسط پیشرفت نیست، به‌طور تجربی با استفاده از روش رصد سنجی بررسی شده است. نتایج تحقیق حاضر نشان می‌دهد یک افزایش در حدود 15 تا 27 درصد است. قرار گرفته است. نتایج اندازه‌گیری ذکر شده ممکن ناشی از اندازه‌گیری باشد.

7- نتیجه‌گیری

در این مطالعه، اندازه‌بندی متوسط به روش قائم سه لوله‌ای در داخل کانال مستطیلی و در چند جزییات تاکید کرده‌ایم که کاملاً توسط پیشرفت نیست، به‌طور تجربی با استفاده از روش رصد سنجی بررسی شده است. نتایج تحقیق حاضر نشان می‌دهد یک افزایش در حدود 15 تا 27 درصد است. قرار گرفته است. نتایج اندازه‌بندی متوسط به روش‌های مختلف و سه لوله‌ای را نسبت به لوله‌های دیگر نسبت به لوله‌های دیگر 1/23 نشان می‌دهد. ملاحظه

استناد: سال 42، شماره 1، جلد دوم، شهروند 1384
شکل 7- تغییرات خطا انددازه‌گیری عدد ناسلت لوله اول

\[\frac{D}{W} = 0.11 \]

\[\frac{D}{W} = 0.22 \]

شکل 8- نسبت عدد ناسلت لوله‌های دوم و سوم نسبت به لوله

شکل 9- تغییرات عدد ناسلت لوله اول برای \(\frac{D}{W} \) مختلف

\[\frac{D}{W}=0.22 \]
\[\frac{D}{W}=0.11 \]
\[\frac{D}{W}=0.055 \]
M. H. Rahim, M. B. M. Begum, and M. N. S. Islam.

References:

References:

