Heat Transfer from a Tube Bank with Mass Transfer in a Duct

A.Nouri and A.M.Lavasani
School of Mechanical Engineering, Sharif University of Technology

Abstract: An experimental investigation on heat transfer coefficient is presented from three horizontal tubes in a vertical array in a duct for 500<Re<6000. A mass transfer measuring technique based on psychrometry chart is used to determine heat transfer coefficient. The diameter of the tubes is 11 mm each spaced 40 mm apart and in-line pitch ratio varies...
in the range $0.055 < D/W < 0.22$. The experimental results show that the Nusselt number of each tube increases by increasing D/W. Also the increase of the second tube Nusselt number is more than that of the third one.

Keywords: Experimental method, Heat and Mass transfer, Tube bank, Duct
نسلت برای هر یک از لوله‌ها افرایش می‌یابد برای این افرایش بین Reₐ=۵۰ تا ۱۸۷/۹۱ درصد است. در حالتی که بی‌های ازای L/D=۲۰۰ و با برای ای L/D=۱۲۳ برای این افرایش از ۵ تا ۱۵۰/۰۲۰۰/۰۰۰ درصد راه‌اندازی کرده و در جریان خطر احتمال قیمت می‌باشد. در حالتی که بی‌های از L/D=۲۰۰ و با برای ای L/D=۸۰ درصد راه‌اندازی کرده و در جریان خطر احتمال قیمت می‌باشد.

کاندو و حاجی شیخ [۱۳] با استفاده از روش تجزیه‌برداری افرایش قرار داده شده با برای ای L/D=۲۰۰ و با برای ای L/D=۲۰۰ نسبت ۱/۱۰۰ درصد راه‌اندازی کرده و در جریان خطر احتمال قیمت می‌باشد.

در نظر گرفته شود سرعت پیشنهادی دو L/D و همکارانش [۹] از D/W = ۸ در L/D = ۲۰۰ و L/D = ۲۰۰ تا ۱/۱/۱۰۰ و L/D = ۲۰۰ و L/D = ۲۰۰ درصد راه‌اندازی کرده و در جریان خطر احتمال قیمت می‌باشد.

کاندو و حاجی شیخ [۱۱ و ۱۲] با استفاده از روش تجزیه‌برداری افرایش قرار داده شده با برای ای L/D=۲۰۰ و با برای ای L/D=۲۰۰ نسبت ۱/۱۰۰ درصد راه‌اندازی کرده و در جریان خطر احتمال قیمت می‌باشد.

کاندو و حاجی شیخ [۱۳] با استفاده از روش تجزیه‌برداری افرایش قرار داده شده با برای ای L/D=۲۰۰ و با برای ای L/D=۲۰۰ نسبت ۱/۱۰۰ درصد راه‌اندازی کرده و در جریان خطر احتمال قیمت می‌باشد.
2- دستگاه آزمایش

دستگاه اندازه‌گیری مطلق شکل (۱) است [۳۷] ولورمها به صورت یک ریز قائم از سه لوله‌ای آفتاب قوسی می‌باشد و این چهار گوش نسبت به سر شده در ۴۱ mm قفل‌شده به سر شده و ۱۵۰۰ mm فاصله و نسبت به سر شده دیگر ۴۰ mm قفل‌شده است. برای تشکیل فیلم مایع روی سطح لوله‌ها یک چرخ دوباره به منظور جذب AB و مرطوب به گاهی شده لوله‌ها استفاده شده است.

سرعت جریان هوا در داخل کانال در محدوده $U_w/8 m/s$ تغییر است. برای یکسال وخیم جریان سرعت کوچک و روی هوا به کانال جریان نسبت شده استفاده شده است. برای اندازه‌گیری توزیع سرعت در هر هوا دخالت کانال استفاده شده است. برای این کانال توزیع سرعت و همچنین سرعت متوسط جریان هوا داخل کانال ابتدای سطح کانال لوله‌ها نازک شده است. استفاده شده است. سرعت یک سرعت متوسط مشابه از ۴۰-۵۰ V1 و سخت کارخانه نسبت به $U_w/2 m/s$ متوسط کانال است. دقیقاً وسیله در محدوده سرعت $0.3 m/s$ و $0.1 m/s$ است. شکل (۲) توزیع سرعت آزاد را در عرض کانال برای سرعت‌های متوسط در کانال با قطر هیدرولوژیکی ۱۱ mm متوسط در کانال بیش از حداکثر سرعت در سرعت‌های کمتر هم خواسته است توزیع سرعت در سرعت‌های کمتر ۴ m/s تقریباً یکسانی و بسیار سرعت بالاتر به علت

به طور کلی توجه به داده است. استفاده سال ۱۳۸۲، همچنین جریان سیال در مطالعه کانال کاملاً توسط یافته نیست. محدود این کنترل آنها در تحقیقات مربوط به کانال و زوکاسکس به ترتیب در فواصل به طور کلی متوسط در کانال با قطر هیدرولوژیکی ۱۱ mm متوسط در کانال با قطر هیدرولوژیکی ۱۱ mm توزیع در کانال با قطر هیدرولوژیکی ۱۱ mm

سطح سنجی توزیع بندیکت فیلد [۱۵] برای محاسبه انتقال

۳۱۸
شکل 2- توزیع سرعت عرضی جریان هواي آزاد داخل کانال با قطر هیدرولیکی ۲۱۴ میلیمتر (D/W=۰/۵۵)

\[U = 2.15 \]
\[U = 24.4 \]
\[U = 15.2 \]

شکل 3- معیار میانگین سرعت متوسط جریان هوا در کانال با دارچین اطمینان ۹۵ درصد

۳۱۹
سیب با تعمیم کمیتهای (Δ(D)) که به ترتیب معرف خط‌های ناشی از اندازه‌گیری دماهای سطح، نقطه شیمی، نسبت همگنی شیمی در ناحیه تبیخ فیلم مابه و قطع لوله است خطاً عدد ناسالم محاسبه خواهد شد.

5- نتایج و بحث

اندازه‌گیری از یک دیف کوامل سه لوله‌ای واقع در یک کانال در محدوده 600 ≤ Re/D ≤ 20000، Re دو/0.005، به‌طور کلی به‌طور خیلی کوچک است. لذا نتایج جابجایی آزاد نسبت به جابجایی اجباری سیستم ناجی است به طوری که آن می‌توان صرف‌نظر کرد. ممکن است نمره‌های مابه و تبیخ فیلم و تشکیل بقای ضربی انتقال گرم در محدوده

اختلاف بین تابع تبیخ کمتر کد زوکاسکاس و چرچیل برای یک لوله در جریان آزاد در شکل (4) به ترتیب کمتر از 15 و 14 درصد است. شکل (5) نتایج آکیالوا و تحقیق حاضر برای

\[
\Delta(\text{Nu}) = \text{Nu}_1\left[\frac{\Delta(\text{m}^*)}{\text{m}^*} + \frac{\Delta(T_w)}{T_w} - \frac{\Delta(T_{dew})}{T_{dew}}\right] \\
\times \left[\frac{\text{dP}(T_w)}{\text{dT}_w} + \frac{\Delta(T_{dew})}{T_{dew}} \times \frac{\text{dP}(T_{dew})}{\text{dT}_{dew}}\right]^{\left(\frac{1}{3} \frac{\text{dP}^a}{\text{dP}_a} + \frac{1}{3} \frac{\text{Sc}}{\text{Pr}} + \frac{1}{3} \frac{\Delta \text{AB}}{\text{dAB}}\right)} \times \frac{\text{dP}_{\alpha}}{\text{dT}_{\alpha}} + \frac{1}{3} \frac{\text{dPr}}{\text{dT}_{\alpha}} + \frac{1}{3} \frac{\text{Pr}}{\text{dPr}}\right]^{\frac{1}{15}}
\]

\[
\Delta T_r + \left[\frac{\text{AD}}{D}\right]
\]

\[
\Delta(m^*) = \left(\frac{\text{AD}}{D}\right)^{\frac{1}{3}} (\Delta(T_r), \Delta(T_w), \Delta(T_{dew}), \Delta(D), \Delta(D))
\]

به منظور حذف انتقال گرم از دو سر لوله ها و دو بعده شدن انتقال گرم از روش رابطه سنتی استفاده شده است. به علت کوچک بودن اختلاف ذخیره سطح لوله و سطح اطراف تبیخ، فیلم مابه فقط در انتقال گرمای جابجایی است. با اندامه‌گیری تبیخ فیلم مابه و استفاده از نسبت بین مکانیسم‌های انتقال گرم و جرم ضربی انتقال گرمای جابجایی محاسبه شده است. ابتدا نرخ جریان آب از پورتری مدرج که به سطح لوله‌ها انتقال می‌یابد. اندامه‌گیری می‌شود. آن از سواهاخواهی تعبیه شده روی سطح لوله به‌طور جریان می‌یابد و فیلم تازه‌ی رستر سطح پرحش می‌گردد. با عبور جریان هوا در اطراف لوله ها در اطراف انتهای اجرای محور وارد جریان هوا می‌شود. پس از گذشت 1/2 ساعت برای رسیدن به حالت پایدار پذیری تبیخ فیلم آب و دمای سطح هر لوله اندازه‌گیری می‌شود. با استفاده از نسبت بین مکانیسم‌های انتقال گرم و جرم (29) عدد ناسالم متوسط از معادله زیر محاسبه می‌شود.

\[
\text{Sh} = \frac{\text{M} \text{P} \text{D}}{\text{m}^*} = \frac{\text{CRe}^m \text{Pr}^{0.33}}{\text{Sh}^{0.33}}
\]

\[
\text{Nu} = \frac{\text{Pr} \text{Sh}^{0.33}}{\text{Sc}^{0.33}} = \text{CRe}^m \text{Pr}^{0.33}
\]

\[
\text{Sh} = \frac{\text{M} \text{P} \text{D}}{\text{m}^*} = \frac{\text{CRe}^m \text{Pr}^{0.33}}{\text{Sh}^{0.33}}
\]

\[
\text{Nu} = \frac{\text{Pr} \text{Sh}^{0.33}}{\text{Sc}^{0.33}} = \text{CRe}^m \text{Pr}^{0.33}
\]

\[
\text{Sh} = \frac{\text{M} \text{P} \text{D}}{\text{m}^*} = \frac{\text{CRe}^m \text{Pr}^{0.33}}{\text{Sh}^{0.33}}
\]

\[
\text{Nu} = \frac{\text{Pr} \text{Sh}^{0.33}}{\text{Sc}^{0.33}} = \text{CRe}^m \text{Pr}^{0.33}
\]

\[
\text{Sh} = \frac{\text{M} \text{P} \text{D}}{\text{m}^*} = \frac{\text{CRe}^m \text{Pr}^{0.33}}{\text{Sh}^{0.33}}
\]

\[
\text{Nu} = \frac{\text{Pr} \text{Sh}^{0.33}}{\text{Sc}^{0.33}} = \text{CRe}^m \text{Pr}^{0.33}
\]

4- محاسبه خطا

همانطور که مشخص است دقت محاسبه عددهای ناسالم از معادله (1) بستگی به دقت اندازه‌گیری و مکانیسم اندازه‌گیری از قبیل ثرمومتری، بورتر، زمان سنج و کولر دارد. برای تخمین این خطا از معادله (1) مشتق گرفته می‌شود.

\[
\text{دمال سال 24 شماره 1 جلد دوم شهریور 1384}
\]
\[Nu = 0.3 + \frac{0.62 \cdot Re^{0.67} \cdot Pr^{0.33}}{\left(1 + 0.41 \cdot Pr^{0.67}\right)^{0.7}} \left(1 + \frac{Re}{28300}\right)^{0.68} \]

\[Nu = 0.683 \cdot Re^{0.66} \cdot Pr^{0.57} \left(\frac{Pr}{Pr_{ref}}\right)^{0.13} \]

\[Nu = 0.4 \left(1 + 1.18(D/W)^{3}\right) Re^{0.5} \cdot Pr^{0.57} + 0.06 \left(1 + 1.18(D/W)^{3}\right)^{3} Re^{0.57} \cdot Pr^{0.37} \]

\[\frac{D}{W} = 0.22 \]
یک لوله در یک کانال را نشان می‌دهد. همان طور که از شکل مشخص است تابلط خوبی بین دراک راه و وجود دارد و اختلاف بین آنها کمتر از 10 درصد است. لازم بذره است که چون توان تست نسبت D/W در رابطه پیشنهادی ۳/۳ است لذا در
D/W تست‌های مستقل از آن مستند. با توجه به مطالعه ذکر شده اختلاف مطالعه حاضر با تاجی دیگران کمتر از 15 درصد است.

در شکل (۶) مقایسه عدم نسلت دادن شده است. همان طور که مشخص است باید به ازای 6/3 حداکثر ۳۲ درصد لازم باشد. با وجود دادن شده آنها کمتر از 4/8 حداکثر را دارند. همچنین در رابطه کمتر از 1/000 سه نسلت لوله اول دو لوله دیگر پیشتر است. لازم برای بودن قرار دادن این اختلاف را می‌توان مربوط به خصوصیت شده لوله‌های خطر دانست. با توجه به اینکه در دسته‌ای که مطالعه مجموعه ل/D = ۶/3 انتقال گرمایش بین آنها کمتر گرفته شده است لازم باشد. این نتایج که گرفته شده در دسته‌ای کمتر از 3/۶ حداکثر است آزمایش‌های حاصل کانادو با توجه به است با توجه به اینکه نتایج داده محسوس قابل توجه بود.

صفحه است برای مقایسه در شکل (۷) نتایج فوق برحس قطر لوله تعیین یافت است.

شکل (۷) خطای اندازه‌گیری عدم نسلت لوله اول را نشان می‌دهد. ملا حافظ می‌شد که با افزایش عدد ریزولنژ خطا Re به خاصیت بیافته است و از حدود 0/۹۹۹ به حداکثر 0/۶۰۰ رسیده است. علت آن افزایش جرم تبخیر و کاهش دمای سطح است. خطای اندازه‌گیری نسلت لوله‌های دوم و سوم نیز بین 14/۲۷ درصد است. همچنین تراکم خطای آزمایشات فوق در حدود 17 تا ۲۷ درصد است. با توجه به مقدار خطای اندازه‌گیری و همچنین اختلاف مطالعه حاضر با تاجی زوکاسکاک، آکیتا، چرچیل و کانادو نتایج حاصل قابل قبول است.

شکل (۸) نسبت عدد نسلت لوله‌های ریزولنژ دوم و سوم را نشان می‌دهد. ملاحظه
شکل 7- تغییرات خطای اندازه‌گیری عدد ناسالت لوله اول

شکل 8- نسبت عدد ناسالت لوله‌های دوم و سوم نسبت به لوله اول

شکل 9- تغییرات عدد ناسالت لوله اول برای D/W مختلف

$Nu = \frac{D}{W} = 0.11$

$Nu = \frac{D}{W} = 0.22$

$Nu = \frac{D}{W} = 0.055$

استقلال، سال ۱۳۸۴، شماره ۱، جلد دوم، شهریور ۱۳۸۴

322

