Microstructural Effect on the Weldability of 25Cr-35Ni Cast Steel

M. Shamanian and A. Saidi
Department of Materials Engineering, Isfahan University of Technology

Abstract: The 25Cr-35Ni heat resistant steel has been widely used when resistance to oxidation and creep rupture at elevated temperatures is required. In this paper, the microstructural effect on the weldability of this alloy is investigated. The results of this study indicate that this steel has a perfect weldability in the as cast condition but does not possess good weldability in the aged condition. The as cast microstructure of 25Cr-35Ni steel consists of austenite matrix and a network of primary carbides, while the aged condition consists of austenite matrix and NbC and secondary carbides. The morphological change of primary carbides consists of austenite matrix and Nb primary and secondary carbides. The morphological change of primary carbides consists of austenite matrix and Nb primary and secondary carbides. The morphological change of primary carbides consists of austenite matrix and Nb primary and secondary carbides. The morphological change of primary carbides consists of austenite matrix and Nb primary and secondary carbides.
carbides and the secondary carbides precipitate formation, reducing the elongation and ductility of aged steel, should have enhanced the steel susceptibility to cracking, particularly in the area of the eutectic carbides, and hence, the reduced weldability of the steel. The cracking observed was of the intergranular type and spread along the eutectic carbides. It was found that the carbides in the as cast consisted of NbC and \(M_23C_6 \) whereas that of the aged steel also exhibited \(Ni_4NbSi \) and \(M_23C_6 \) carbides.

Keywords: 25Cr-35Ni cast steel, Weldability, Microstructure, As cast, Aged

1. **Mقدمه**

فولادهای ریختگی مقاوم در دمای بالا به طور وسیعی در صنایع پتروشیمی، توبنده‌های گازی، رفروش‌های تولید کاکس اجباری نشده و برای ماشین‌سازی اجباری مسئولیت 1 و تجهیزات کوره‌های عملکردی مورد استفاده قرار می‌گیرد [1 و 8]. این نوع فولادها به نحوی طراحی شده‌اند که بتوانند دمایی بالاتر از \(50^\circ C \) فولادهای مقاوم در دمای بالا دارای عناصر اصلی آلیاژی و نیز این نوع بوده و غیرشیمیایی نظیر نیوپیکر، وانادیوم و زیکر می‌تواند افزایش قدرت تنش‌جزئی به آنها اضافه کند. این نوع فولادها به عنوان پارکندگان شده‌اند که در دمایی بالا، به‌طور خاص در مقاومت بالا به در بر冇 انسپیکرهای غنی از اکسید، کربن و گوگرد در دمای بالا است [1]. مقاومت خشکی این نوع فولادها در دمای بالا و خصوصاً در فاکتور درد یکی شیب‌های کاربردی پویا که در طی فرآیند انجام ایجاد می‌شود و بین دندان‌ها و متر دانه توزیع شده‌اند و دیگری ناشی از رسوبات کاربردی ناشی از داخل دندان‌ها و تهیه‌کننده‌ی جدید است. در طی انجام دامنه‌های با از زمینه‌های طولاتی در طی سروس دهی، رسوب‌های ریز تمایل به پیوستن به یکدیگر و حصن شدن داشته و تاثیر آنها بر استحکام بخشی به تدریج کاهش می‌یابد [12].

2. **مواد و روش آزمایش**

به عنوان نمونه‌ای از فولاد‌های ریختگی 25Cr-35Ni با مقاومت خشکی بالا در برای انسپیکرهای غنی از اکسید، کربن و گوگرد در دمای بالا است [1]. مقاومت خشکی این نوع فولادها در دمای بالا و خصوصاً در فاکتور درد یکی شیب‌های کاربردی پویا که در طی فرآیند انجام ایجاد می‌شود و بین دندان‌ها و متر دانه توزیع شده‌اند و دیگری ناشی از رسوبات کاربردی ناشی از داخل دندان‌ها و تهیه‌کننده‌ی جدید است. در طی انجام دامنه‌های با از زمینه‌های طولاتی در طی سروس دهی، رسوب‌های ریز تمایل به پیوستن به یکدیگر و حصن شدن داشته و تاثیر آنها بر استحکام بخشی به تدریج کاهش می‌یابد [12].
جدول ۱ - ترکیب شیمیایی فولاد ۲۵Cr-۳۵Ni و سیم جوش مورد استفاده (درصد وزنی)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>Fe</th>
<th>Mn</th>
<th>Si</th>
<th>Nb</th>
<th>Mo</th>
<th>C</th>
<th>Cr</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>فولاد</td>
<td>35/4</td>
<td>۱/۶۵</td>
<td>۱/۳</td>
<td>۰/۰۴</td>
<td>۰/۰۴</td>
<td>۰/۰۴</td>
<td>۲۴/۴</td>
<td>۲۵/۸</td>
</tr>
<tr>
<td>سیم جوش</td>
<td>۰/۰۴</td>
<td>۰/۰۴</td>
<td>۰/۰۴</td>
<td>۰/۰۴</td>
<td>۰/۰۴</td>
<td>۰/۰۴</td>
<td>۲۵/۵</td>
<td>۲۵/۲</td>
</tr>
</tbody>
</table>

جدول ۲ - مشخصات جوشکاری نمونه‌ها

<table>
<thead>
<tr>
<th>پاساژ</th>
<th>۱۳۰</th>
<th>۱۵</th>
<th>۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>عنصر</td>
<td>حریان (A)</td>
<td>ولتاژ (V)</td>
<td>سرعت جوشکاری (m/s)</td>
</tr>
<tr>
<td>یریز</td>
<td>۹۰</td>
<td>۱</td>
<td>(مشکل ۲-۲) است.</td>
</tr>
<tr>
<td>یریز</td>
<td>۱</td>
<td>۱</td>
<td>(مشکل ۲-۲) است.</td>
</tr>
<tr>
<td>حرارت ورودی (J mm-۱)</td>
<td>۱۳۶۵</td>
<td>۹۴۵</td>
<td></td>
</tr>
</tbody>
</table>

(۲) نشان دهنده ریز ساختار همین نمونه با استفاده از میکروسکوب الکترونی در حالت استفاده از الکترون‌های ثانویه (۱۰) (مشکل ۲-۲) الکترون‌های برگشتی (BE) (مشکل ۲-۲) است.

به منظور آزمایش خواص مکانیکی این فولاد در شرایط مختلف ریز ساختاری، تعادل نمونه کشش بر اساس استاندارد ASME بک (b) : ۳۶۲ T:PA!j، (د) تهیه [۵] و با استفاده از دستگاه کشش آزمایش شد.

(۳) نشان دهنده ریز ساختار این فولاد در شرایط پر شده است. در حالت اول ریز ساختار شامل زمینه آستینی همراه با کاربیدهای اولیه قربانی کربن شده و کاربیدهای ریز ثانویه در زمینه آستینی است. شکل (۵) نشان دهنده ریز ساختار همین نمونه با استفاده از میکروسکوب الکترونی در حالت استفاده از الکترون‌های ثانویه (۱۰) الکترون‌های برگشتی (BE) (مشکل ۵-۵) است. این نشان دهنده شکل (۵-۵) است.

به منظور بررسی ریز ساختار، نمونه‌ها با ابعاد ۲۰۰×۲۰۰ میلی متر از نمونه ریختگی و پیشرفت درجه شد. نمونه‌ها با استفاده از کاغذ سنبده‌های کاربید سیلیسیم از ۱۰ تا ۴۰۰۰ سنبده زنی شده و سپس بر روی پارچه کتانی همراه با خمیر آبی‌رنگ در طول ۱۰ ثانیه در اندوزه ذرات آلومینیوم ۱ و ۰/۳ میکرون پولیش شدند. پس از آن نمونه‌ها در محلول شامپانل ۴۵/۰ استabilizer پز ۲۰ و ۱۵% اکسید کاربیدریک و پس از آن به منظور بررسی ریز ساختار، نمونه‌ها با استفاده از میکروسکوب نوری و همچنین الکترونی در شرایط پر شده است.

۳- تأثیر

ریز ساختار فولاد ۲۵Cr-۳۵Ni که در شرایط ریختگی در دو بزرگ‌سایز متفاوت در شکل (۱) نشان داده شده دارای زمینه آستینی همراه با شیب‌های از کاربیدهای برگشتی است.

شکل (۱) نشان دهنده ریز ساختار این فولاد در حالت اول است. در حالت اول ریز ساختار شامل زمینه آستینی همراه با کاربیدهای اولیه قربانی کربن شده و کاربیدهای ریز ثانویه در زمینه آستینی است. شکل (۵) نشان دهنده ریز ساختار همین نمونه با استفاده از میکروسکوب الکترونی در حالت استفاده از الکترون‌های ثانویه (۱۰) الکترون‌های برگشتی (BE) (مشکل ۵-۵) است. این نشان دهنده شکل (۵-۵) است.
شکل ۱- ریز ساختار فولاد ۲۵Cr-۳۵Ni در شریط ریختگی

شکل ۲- تصاویر میکروسکوپی الکترونی از فولاد ۲۵Cr-۳۵Ni در شریط ریختگی

نتایج خواص مکانیکی فولاد ۲۵Cr-۳۵Ni در این حالت نشان می‌دهد که در این حالت ساختار زمینه آستینی‌های همراه با کاربیدهای یوتکنیک در مزه دانه‌ها است. شکل (1-الف) نشان می‌دهد که زمینه آستینی‌های عاری از هگزونه رسوبات است. بررسی ساختار میکروسکوپی این نمونه با استفاده از میکروسکوپ الکترونی از نوع الکترون‌ساز های مختلف اطلاعات اضافه‌تری نسبت به نمونه‌های مختلف را فراهم می‌دهد.

اما بررسی همین نمونه با استفاده از دکتیور الکترون‌سازی دهتهای ۱۰۰۰ میکرومتری ساختار دیده شده در شریط ریختگی و کاربیدهای ترمه موجود در شبکه کاربیدی در مرز دانه‌ها و در زمینه‌هایی از کروم‌اند.

۴-بحث

بررسی ساختار میکروسکوپی فولاد ۲۵Cr-۳۵Ni در شریط ریختگی نشان می‌دهد که در این حالت ساختار زمینه آستینی‌های همراه با کاربیدهای یوتکنیک در مزه دانه‌ها است. شکل (1-الف) نشان می‌دهد که زمینه آستینی‌های عاری از هگزونه رسوبات است. بررسی ساختار میکروسکوپی این نمونه با استفاده از میکروسکوپ الکترونی از نوع الکترون‌ساز های مختلف اطلاعات اضافه‌تری نسبت به نمونه‌های مختلف را فراهم می‌دهد.

اما بررسی همین نمونه با استفاده از دکتیور الکترون‌سازی دهتهای ۱۰۰۰ میکرومتری ساختار دیده شده در شریط ریختگی و کاربیدهای ترمه موجود در شبکه کاربیدی در مرز دانه‌ها و در زمینه‌هایی از کروم‌اند.

نتایج خواص مکانیکی فولاد ۲۵Cr-۳۵Ni در این حالت نشان می‌دهد که در این حالت ساختار زمینه آستینی‌های همراه با کاربیدهای یوتکنیک در مزه دانه‌ها است. شکل (1-الف) نشان می‌دهد که زمینه آستینی‌های عاری از هگزونه رسوبات است. بررسی ساختار میکروسکوپی این نمونه با استفاده از میکروسکوپ الکترونی از نوع الکترون‌ساز های مختلف اطلاعات اضافه‌تری نسبت به نمونه‌های مختلف را فراهم می‌دهد.

اما بررسی همین نمونه با استفاده از دکتیور الکترون‌سازی دهتهای ۱۰۰۰ میکرومتری ساختار دیده شده در شریط ریختگی و کاربیدهای ترمه موجود در شبکه کاربیدی در مرز دانه‌ها و در زمینه‌هایی از کروم‌اند.

نتایج خواص مکانیکی فولاد ۲۵Cr-۳۵Ni در این حالت نشان می‌دهد که در این حالت ساختار زمینه آستینی‌های همراه با کاربیدهای یوتکنیک در مزه دانه‌ها است. شکل (1-الف) نشان می‌دهد که زمینه آستینی‌های عاری از هگزونه رسوبات است. بررسی ساختار میکروسکوپی این نمونه با استفاده از میکروسکوپ الکترونی از نوع الکترون‌ساز های مختلف اطلاعات اضافه‌تری نسبت به نمونه‌های مختلف را فراهم می‌دهد.

اما بررسی همین نمونه با استفاده از دکتیور الکترون‌سازی دهتهای ۱۰۰۰ میکرومتری ساختار دیده شده در شریط ریختگی و کاربیدهای ترمه موجود در شبکه کاربیدی در مرز دانه‌ها و در زمینه‌هایی از کروم‌اند.
شکل ۳- تحلیل EDS کارپیده‌ای اولیه در نمونه ریختگی (الف) کارپیده‌ای تبیره (ب) کارپیده‌ای روشن

شکل ۴- ریز ساختار فولاد ۲۵Cr-۳۵Ni در شرایط پر شده در دو پُرپما به متفاوت
شکل 5- تصاویر میکروسکوپی الکترونی از فولاد 25Cr-35Ni در شرایط پیم شده (الف) با استفاده از الکترون‌های ثانویه (SE) (ب) با استفاده از الکترون‌های برگشتی (BE).

جدول 3- خواص مکانیکی فولاد 25Cr-35Ni در شرایط مختلف.

کاریبدهای تیره (الف) کاریبدهای روشن (ب) کاریبدهای روشن (EDS).
شکل 7- ساختار میکروسکوپی مناطق مختلف جوش برای نمونه‌ای با ساختار اولیه ریختگی

<table>
<thead>
<tr>
<th>شرایط</th>
<th>ازدیاد طول (٪)</th>
<th>استحکام کششی (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ریختگی</td>
<td>86</td>
<td>293</td>
</tr>
<tr>
<td>پیر شده</td>
<td>84</td>
<td>12</td>
</tr>
</tbody>
</table>

بررسی ساختار میکروسکوپی فولاد 25Cr-35Ni در شرایط پیر شده در شکل (9) ارائه شده و نشان می‌دهد که در طی پیر شدن فولاد تغییرات متالوژیکی مهمی رخ داده است. شبکه تقریباً بی‌پوسته کاربیدهای گیاهیکی اولیه که عملکرد در طی پیر شدن بیش از معمولی بیشترین ممکن است. در ساعت 0-100، در ماده بالای رزگری صورت گرفته و ذرات رز کاربید ثانویه از زمینه فوق انشبی آستینی تشکیل می‌شود (4-1-). بررسی ساختار میکروسکوپی این نمونه با استفاده از دکترین الکترونیکی برگشتی در میکروسکوپ الکترونیکی شکل (5-2) نشان می‌دهد که شبکه کاربیدی در مرز دندان‌ها مشکل از دو نوع کاربید تری و روشن بوده و همچنین کاربیدهای ریزی با زنگ تری در زمینه مشاهده می‌شود. تحلیل نقطه‌ای کاربیدهای نمونه پیر شده، شکل (6-1) نشان می‌دهد که کاربیدهای تری موجود در شبکه کاربیدی همچنان درگذشته در میکروسکوپ الکترونیکی، نشان می‌دهد که شبکه کاربیدهای اولیه در مرز دانه‌ها مشکل از دو نوع کاربید متفاوت بوده که یکی نسبت به دیگری زنگ روشن‌تری دارد. شکل (7-1) بزرگ. نتایج تفاوت در رنگ این کاربیدها به دلیل تفاوت در وزن اتمی عناصر تجمع یافته این کاربیدهاست. کاربیدهای غنی از عنصری با وزن اتمی کمتر به رنگ تری و کاربیدهای غنی از عناصری با وزن اتمی بیشتر به رنگ روشن مشاهده می‌شوند. تحلیل نقطه‌ای کاربیدها، شکل (2) نشان می‌دهد که کاربیدهای تری غنی از کروم و آهن بوده و مقاوم تا حداکثر در بررسی سایر محققان در زمینه فولادهای مقاوم به حرارت و زنگ نشان می‌دهد که این کاربیدها از نوع نشان دهنده کروم و آهن) است و کاربیدهای M23C6 اولیه به رنگ روشن غنی از نیوزیم بوده و از نوع

هستند [1-2].

استقلال، سال 34، شماره 1، جلد دوم، شهریور 1384

333
بنا به چهار خواص مکانیکی فولاد 25Cr-35Ni غنی از کروم و آهن بوده و تغییرات را نسبت به کاربردهای نیمه نرم و همچنین استحکام خرسنی آن تأثیر گذاشته است. پایداری تانوی در طی پیر عضدها ترکیب آنها تغییر کوتاه به سبب افزایش استحکام کشی و همچنین استحکام خرسنی آن می‌شود. اما درصد این فلزات در طی پیر عضدها ترکیب آنها نسبت به کاربردهای نیمه نرم و همچنین استحکام خرسنی آن می‌شود و تغییرات را نسبت به کاربردهای نیمه نرم و همچنین استحکام خرسنی آن می‌شود.

![50 µm](image-url)
مشکل و قدردانی

نیویندگان مقاله از معاونت محترم پژوهشی دانشگاه صنعتی
اصفهان به خاطر کمکهای‌مان به طرح تحقیقاتی جوشکاری
فولادهای مقاوم در دمای بالا که زمینه‌لارم برای این پژوهش را
مهم کرد، تشکر و قدردانی می‌کنند.

۵- نتیجه‌گیری

پایه‌های پژوهشی شناس می‌دهد که:
۱- ریز‌ساختار فولاد ۲۵Cr-۳۵Ni زمینه استوینی و شبکه ای از کاربیدهای اولیه از نوع
NbC بوده در حالی که ریز‌ساختار این فولاد در شرایط پر
شده دارای زمینه استوینی و شبکه ای از کاربیدهای اولیه
کروی M23C6 و تبدیل پایه‌ها به
کاربیدهای ریز‌تالوئوس از نوع
M23C6 است.

واژه‌نامه

1. petrochemical
2. gas turbines
3. reformers
4. direct reduction processes
5. supersaturated matrix
6. as cast
7. aged
8. welding procedure specification (WPS)
9. American Society for Mechanical Engineering (ASME)
10. gas tungsten arc welding (GTAW)
11. direct current electrode negative (DCEN)
12. optical microscopy
13. scanning electron microscopy
14. energy dispersive spectrometer
15. secondary electron (SE)
16. backscattered electron (BE)
17. ductility

استقلال، سال ۳۴، شماره ۱، جلد دوم، شهریور ۱۳۸۴

۳۳۵

