Analysing of Continuous Welded Turnouts

J. A. Zakeri and F. J. Jie
School of Railway Engineering, Iran University of Science & Technology
Railway Track Department, Northern Jiaotong University, Beijing, China

Abstract: Continuous welded turnouts are important for CWR track through the railway station. According to equivalent resistance and non-linear theories and the principle of force diagram, a new method of theoretical calculation for continuous welded turnouts was developed. The continuous welded turnouts designed and installed according to the new theory behaved fairly well. The data collected on sites basically agreed with those of theoretical calculation. It was proved that the calculation theory is correct and values of calculation parameters are reasonable.

Keywords: Calculation theory of turnouts, Continuous welded turnout

 jaar علی ذاکری و فن چن چه
دانشگاه راه آهن دانشگاه علم و صنعت ایران
گروه مهندسی خط دانشگاه جیانلونگ شمالی چین - چین

بررسی محاسبات دستگاههای تعویض خط جوشکاری شده پیوسته راه آهن

چکیده - دستگاههای تعویض خط پیوسته برای خطوط جوشکاری شده طولی خصوصاً هنگام عبور از ایستگاه راه آهن بسیار مهم است.
براساس نظریه‌های مقاومت معادل و مقاومت غیر خطی و اصول توزیع نیرو در دستگاه تعویض خط، روش نظری جدیدی برای محاسبات مربوط به آنها در خطوط پیوسته توسه داده شده است. طراحی دستگاه تعویض خط پیوسته و نصب آن بر اساس محاسبات نظری روشن جدید تعریف بسیار خوبی با موارد واقعی دارد. بر اساس محاسبات نظری و داده‌های حاصل از آزمایش‌ها تابع شده است که محاسبات نظری صحیح بوده و مقادیر
پارامترهای محاسباتی قابل قبولند.

واژگان کلیدی: محاسبات نظری مربوط به دستگاه تعویض خط، دستگاه تعویض خط در خطوط جوشکاری شده پیوسته

دریافت مقاله: 19/1/1398 - دریافت نسخه نهایی: 1398/8/3
بحث نیاز به ریل‌های طولی جوشکاری شده اند. به این ترتیب با تغییر دمای ریل ریل دو انتهای دستگاه تعویض خطر جوشکاری شده طولی تحت معرض نیروهای حرارتی. شکل (1)، قرار می‌گیرند. نیروهای وارده به ریل اصلی هم‌دغدغه را متعادل می‌کنند، با وجود این، نهایتاً خروج ماهیان داخلی در معرض نیروهای حرارتی قرار می‌گیرد. این عمل باعث افت احتمال انتقال نیرو به داخل دستگاه تعویض خطر شده و قسمتی از نیرو به صورت نیروهای حرارتی اضافی به ریل اصلی وارد خواهد شد.

هدف اصلی نظیر این برای دستگاه تعویض خطر بهره‌مندی محاسبه انسیاب با انتقال نیروهای داخلی و گرما بر اساس این دستگاه تعویض خطر CWR اگر چه تعداد زیادی از دستگاه‌های تعویض خطر در کشورهای اروپای غربی نصب شده و تغییرات دمای سالانه آن‌ها کمتر از 9 درجه سانتی‌گراد است لیست همیل مطالعه اساسی برای ارائه نظریه‌های محاسباتی و آزمایش‌های تجربی بر روی مفاد آن چهار مورد است فرمول شناسایی، ساخته نصب جوشکاری بعد از انتقال نیرو مورد نیاز، محققانی که تغییرات دمای سالانه در کشورهای غربی عدم ثبات سالانه است و 9 درجه سانتی‌گراد است لیست همیل مطالعه اساسی برای ارائه نظریه‌های محاسباتی و آزمایش‌های تجربی بر روی مفاهیم طولی در دو دستگاه تعویض خطر

1 - مقدمه طول خطوط جوشکاری شده طولی (CWR) هم در خطوط مختص به سرعت‌های زیاد و هم در خطوط اختصاص یافته به قطارهای باری سنتی به سرعت افزایش یافته است. در کل دو نوع خط دو دستگاه تعویض خطر قرار دارد که تغییر خطوط دستگاه تعویض خطر با دستگاه تعویض خطر نامیده می‌شوند.

خطوط CWR بدون دستگاه تعویض خطر به مانور اضافی طول ریل به انتقال طول بلکه کار می‌رود که در این جا به مشکلی به چندین جویه نداشته و در خطوط نوع دوم، نیاز به چنین جویه‌ای وجود ندارد. اگر چه دستگاه‌های تعویض خطر این‌ها هم به صورت جوشکاری شده طولی در آمریکا به این صورت نیرو و تغییرات دستگاه تعویض خطر مشکلاتی فنی بیشتری را برای طراحی، نصب و نگهداری خطوط CWR به وجود می‌آورد[1].

سوژه‌زایی جوشکاری شده طولی یکی از مشکلات فنی خطوط CWR است که دستگاه تعویض خطر جوشکاری شده و یا با جواب مخصوص به هم متصال شدهاند و هر دو انتهای دستگاه تعویض
اثبته آگهی یافتارا ۲۳ از زاین تحقیقاتی را با استفاده از نظریه
انگار دسته‌ای تیروهای بین ریلها انجام داده اند. این نظریه‌ها بر
استن شرایط آب و هوایی، کشور، چین بررسی شده و
ازمایش‌هایی صحیر و توسط پروفسور الیک چی ری جن که و
همکاران [۴] در این مورد صورت گرفته و تطبیقی می‌باشد و
تابی آزمایش‌ها در این مقاله تشریح شده‌اند.

۲- طریق‌های دستگاه تعویض خط در خطوط
جوکسکاری شده طول

۲-۱ محاسبه انقباض و انقباض ریل داخلی
عوامل زیادی در انسان و انقباض ریل داخلی موثرند. سه
عامل اصلی عبارت‌اند از: مقاومت پلاستیک، سختی تراورس‌های
زیر دستگاه تعویض خط و گشتاور ماقوم پاندا. برای
پیچیدگی این دستگاه‌ها و مقاومت بودن ابعاد آنها، مقاومت در
برای انقباض و انقباض ریل داخلی در نقاط مختلف متفاوت
است. بنابراین، پارامتر مقاومت معادل در محاسبه انقباض و
انقباض ریل داخلی مورد استفاده قرار می‌گیرد. مقاومت طولی
معادل پارامتر است:

۲۸۳
استقلال، سال ۲۴، شماره ۱، جلد دوم، شهریور ۱۳۸۴
صفحه زیر خواهد لزوم بودان بنا برای لازم است به جای p مقدار

P_0 قرار داده شود.

مقدار انتساب با انتساب نهایی داخلی قابل انتساب (x)

فرض می‌شود به اندازه‌ی کمتر می‌تواند P_1 وارد بر نامر

دو انتهای ریل و مقاومت مداد در پایان بزرگ معلوم

مقاومت مداد در محدوده p با توجه مقدار نهایی دو تراورس

منظور می‌شود. شکل (1) تغییر طول ریل داخلی از مقدار

(مربوط به آنترین تراورس) محاسبه می‌شود. مقاومت مداد

تراورس n ام برابر خواهد بود با:

$\mathbf{p} = P_0 + a + b = \frac{P_{0n} + K_{\text{in}} f_{n-1}}{a} + \frac{2M}{ab_{n-1}} \quad (7)$

از شکل (2) تغییر مکان نقطه p به شرح ذیر محاسبه می‌شود:

$\mathbf{f_{n-1} = \frac{\Omega_n + \Omega_{n-1} a^2}{2EF} = \frac{a^2 P_n}{2EF} + \frac{a P_{n-1} P_{n-1}}{2EF} + \frac{a f_{n-1}(l_n - b_{n-1})}{2EF}}$ \quad (13)

با استفاده از مقادیر P_n و P_{n-1} و f_{n-1}، محاسبه می‌شود:

$P_n = P_0 + a + b = \frac{P_{0n} + K_{\text{in}} f_{n-1} + 2M/b_{n-1}}{2EF} \quad (8)$

یعنی:

$\mathbf{f_n = \frac{aP_{0n} + 2M/b_{n-1}}{2EF - K_{\text{in}} a}} \quad (9)$

اگر آخرین تراورس دارای 4 ریل باشد داریم:

$\mathbf{f_n = \frac{a n_0 (l_n - b_n) + 2M/b_n}{2EF - K_{\text{in}} a}} \quad (10)$

که در آن:

ضریب کشسان ریل E مقطع مقطع ریل F و

$\mathbf{P_n = K_{\text{in}} l_{n-1}, b_{n-1}}$ مقدار مربوط به نقطه n ام است، شکل (3).

$\mathbf{K_{\text{in}}, l_{n-1}, b_{n-1}}$ هنگام محاسبه f_n, مقاومت مداد P_n به دست می‌آید.

بنابراین از شکل (2) قابل محاسبه خواهد بود به عنوان $P_n = a P_n$:

$\mathbf{p = P_0 + a + b = \frac{f_{n-1}(l_n - b_n - 1) + K_{\text{in}} f_{n-1}}{a} + \frac{2M}{ab_{n-1}} \quad (12)}$

$\mathbf{K_{\text{in}(l_n - 1), b_{n-1}}}$ مقدار مربوط به نقطه x مطابق شکل (2) تغییر مکان n-1 برابر است با:
شکل ۲- نیروی ناشی از حرارت در ریل داخلی

شکل ۳- وارده بر تراورسهای دستگاه خطوط

نیروی گرمایی اضافی که از طریق لنگر مقاوم ناشی از پایانه با ریل اصلی منتقل می‌شود برای استفاده:

\[\Delta P_t = \frac{2M}{b} \]

با فرض مقاومت طولی بالاست برای یک لنگر گرمایی اضافی که در هر نقطه از دستگاه تعویض خط به ریل اصلی منتقل می‌شود به‌دست می‌آید:

\[\Delta P = \Delta P_t + \Delta P_t' = Q \]

اگر n برابر تعداد تراورسهای دستگاه تعویض خط باشد که شده در قسمتی از دستگاه تعویض خط که چهار ریل دارند، اتفاق می‌افتد.

بر اساس اصول مقاومت مصالح، نیروی گرمایی اضافی که از طریق سختی خم‌شان تراورس به ریل اصلی منتقل می‌شود برای استفاده

\[\Delta P_t = \frac{6E' f_1 f}{3b^2 - 4b^3} f = K_1 f \quad (\text{شکل ۳- a}) \] \(18\)

\[\Delta P_t = \frac{3EI \cdot 1}{(lb - b^2)^2} f = K_2 f \quad (\text{شکل ۳- b}) \] \(19\)
شکل ۴- نمودار نیروهای اضافی ریل اصلی

در انقلاب نیرو شرکت مک کننده. شکل (۴)، مقادیر نیروهای
گرمایی اضافی ریل اصلی به صورت زیر خواهد بود:

\[\Delta P_0 = P_m \]

\[x_0 = \frac{\Delta P_0^2}{2(\text{nap}_0 + P_m)} \]

\[x_i = \frac{\Delta P_i^2 + 2\Delta P_i (\text{ip}_0a + \sum_{k=0}^{i-1} \Delta P_k - \sum_{k=0}^{i-1} x_k)}{2(\text{nap}_0 + \sum_{k=0}^{i} \Delta P_k)} \]

\[\Delta P = \sum_{i=0}^{n} \Delta P_i \]

\[X = -(x_0 + \sum_{i=0}^{n} x_i) \]

\[\Delta P_i = \Delta P_{i+1} + \Delta P_{i-1} - Q_i \]

۲-۳-۲- تحلیل نتایج محاسبات

بر اساس نظریه تشخیص شده در فوری، نیروها و تغییر
شکل‌های دستگاه تعویض خط نمره ۱۲ و ۱۸ و ۳۰ با ریل
۶۰ kg/m

شکل (۵) نتایج محاسبات نیروهای گرمایی اضافی وارده به
ریل اصلی را نشان می‌دهد. نمای کل دستگاه‌های تعویض خط

استقلال، سال ۱۳۸۴، شماره ۱، جلد دوم، شهریور ۱۳۸۴

۳۸۶
شکل ۵- تهیه گرمایی اضافی ریل اصلی
بحث نیروهای اضافی و مقادیر اندازه‌گیری شده

جدول شماره ۱- مقایسه مقادیر محاسباتی و نتایج آزمون‌ها

<table>
<thead>
<tr>
<th></th>
<th>Turnout with movable frog</th>
<th>turnout with rigid frog</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>calculating values</td>
<td>testing values</td>
</tr>
<tr>
<td>inner rail</td>
<td>inner rail</td>
<td>inner rail</td>
</tr>
<tr>
<td>19 °C</td>
<td>4.9</td>
<td>3.4</td>
</tr>
<tr>
<td>14 °C</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>29 °C</td>
<td>6.8</td>
<td>4.2</td>
</tr>
</tbody>
</table>

نوع دستگاه خطوط: (1) تغییرات دما (2) تغییرات دما بر حسب میلیمتر (3) تغییرات دما

جدول شماره ۲- نتایج محاسباتی ماکزیمم وواصل‌ناهنجی محصورشده بوشیله حاصل تغییر براه

<table>
<thead>
<tr>
<th>ریل</th>
<th>تسهیلات اضافه</th>
<th>60 kg/m</th>
<th>نمره دستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>381.4</td>
<td>391.2</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>350.9</td>
<td>345.6</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>318.6</td>
<td>312.3</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>286.3</td>
<td>280.1</td>
<td>12</td>
</tr>
</tbody>
</table>

(1) ماکزیمم نیروی کششی اضافی (2) ماکزیمم نیروی فشاری اضافی (3) نیروی مخرب برای دریافت در پاشه
سوزن (4) نیروی مخرب برای برخورد در پایان‌های حاصل در انتهای لوله‌ای (5) تغییر مکان نقطه نظری سوزن (6) تغییر مکان نقطه نظری نهک متحرک

استقبال سال ۱۴ شماره ۱ جلد دوم، شهریور ۱۳۸۴
شکل 7- نیروهای گرمایی اضافی نظری و نتایج آزمون‌ها

CWR

1- نتایج گیری براساس محاسبات نظری و نتایج آزمایش‌ها، پیشنهادهای زیر CWR برای جوشکاری و نصب دستگاه تعویض خط دارای می‌باشد.

1- دستگاه تعویض خط بایستی در محدوده دمایی طراحی شده (دمای که ربل بدون نش افتاده) مورد استفاده قرار گیرد. با توجه به چپ‌پشتگی دستگاه‌های تعویض خط CWR و فجعان تجربه کافی در آزمایشات تعویض خط گرمایی این دستگاه‌ها، لازم است که از نصب و اتصال دستگاه‌های جوشکاری شده طولین در محدوده دمایی طراحی خودداری شود.

2- دستگاه تعویض خط چپ‌پشتگی در محدوده نسبت‌های خطوط

3- نتایج محاسبات نظری اضافی نیروهای گرمایی در شکل 7- نیروهای گرمایی اضافی و نتایج آزمایش‌ها بهای ربل در دستگاه‌های تعویض خط اشکال شده در فضای مورد استفاده قرار گرفته‌اند. می‌باشد. همچنین جدول 1، مقادیر نیروهای گرمایی داده‌اند. بر اساس نتایج ۷ جدول (۱) نیروهای گرمایی اضافی به‌نوبطه نشان داده می‌باشد. به این ترتیب زبان ربل و ربل بهشت شکل تکه مکرری متصل و

389

استقلال، سال ۱۳۸۲، شماره ۳، جلد دوم، شهریور ۱۳۸۲
با مقامات بالا در انتهای ریل اصلی مورد استفاده قرار گیرنده.

- هنگامی که تعدادی از دستگاه تعویض خط CWR در کنار هم نصب شوند، نیروهای گرمایی اضافی آنها به هم می‌پیوندند، وی‌لی مقادیر اضافی کمتر از حاصل جمع این نیروها برای هر یک از دستگاه‌های متفرغ، شکل (7). بنابراین کافی است که نیروها فقط برای دستگاه خطوط متفرع کنترل شوند.

تشکر و قدردانی

در پایان از حمایت‌هایی مالی انجام‌شده تحقیقات راه آهن چین و دانشگاه جیانتوئنگ شمالی چینی در انجام آزمایشات مختلف در تواحل مختلف چین تشرک و قدر دانی می‌شود.

1. heel point
2. breathing zone

4- ماکزیمم فاصله محصور بین حاصله‌ای تیغه ریل در نیرو‌ها و تغییر مکان‌های دستگاه تعویض خط CWR نتایج دارد (مرجعه به جدول 2)، بنابراین لازم است به منظور بهبود رفتار این دستگاه‌ها این فاصله به دقت انتخاب شود.

5- در دستگاه تعویض خط جوشکاری شده یک طرفه که خط انتخابی به صورت جوشکاری شده به دستگاه خطوط متصل شده است. با یاد ریل اصلی خط انتخابی در جهت زبان ریل حرکت کند. به منظور کاهش تغییر مکان نسبی بین زبانه تیغه و ریل اصلی خط انتخابی لازم است که ریل اصلی انتخابی در اساس مقصرات خاصی در قسمت مقابل حرکت 2 خط CWR. مککم شود و همچنین پیچ و مهره‌های

واژه‌نامه

مراجع

2. د. بازی، "جزوه درسی دستگاه تعویض خطوط راه آهن" دانشگاه علم و صنعت ایران، ص 6-1388.