Analysis of Thin-Walled Steel Sections Filled with Concrete Using Non-Linear Finite Element Method

J. Emadi
Department of Civil Engineering, Ardestan Islamic Azad University

Abstract: Being economical and performing well under cyclic loads, steel sections filled with concrete have been widely used in structural buildings. Extensive studies and experiments have been conducted to investigate the influence of different parameters and loadings on the behavior of these structural components. Based on the data available from previous experiments and studies, this paper discusses the behavior of composite columns. The results of 3D-non-linear finite element analysis of thin-walled steel sections filled with concrete are presented. Lastly, comparisons are made between results from finite element analysis and experimental data available about the specimens. Using a trial and error method, the finite element model was calibrated and was used to evaluate the capacity of specimens that were not tested in the laboratory. The capacities of the sections were calculated.*
based on the LRFD design method. The results are compared to evaluate the accuracy of the proposed method. Because of the increase in the use of high strength materials in structures, the effects of increase in concrete and steel strengths on the behavior of composite columns are discussed in this paper. Also the effects that the change in the thickness of the steel shell may have on the behavior of composite columns are argued.

Keywords: Composite columns, Box cross-sectioned columns, Non-linear finite element

فهرست علائم

 مقاطع فولادی 28 روزه نمونه ای تند یک نوع خاص از مقاطع مکب فولاد و بتن ساخته که شامل مقطع چهار گوش یا یک برابری از فولاد با ضخامت نارک به طرف کنار و تند در داخل است. مقایسه اتصالات سنگین مکب و سنگین فولادی را نشان می‌دهد که سنگین مکب حدود 50 لحاظ نهایی مصرف کنترل داشته و مقایسه سنگین مکب مختلط با سنگین فولادی نشان داده شده است که چگونه پرهش مقطع قوطی با یک نوع خاص از کاهش طول کمکس و موضعی در نتیجه بهبود وضعیت کمکس موضعی می‌شود. در شکل 2 مقطع سنگین فولادی بر شده با یک نوع خاص از کاهش طول کمکس موضعی و در نتیجه بهبود وضعیت کمکس موضعی می‌شود. در این تحقیق مسائل استفاده از مدل‌ها و رفتار مقاطع مکب همکاری با یک مورد بررسی مکب گردید. ضمن اینکه بدیهی کمکس موضعی در سنگین فولادی جعبه‌ای بینی دارای مقاومت بالا در مرجع [2] بررسی شده است.

1- مقدمه

 مقاطع فولادی پرهشی با یک نوع خاص از مقاطع مکب فولاد و بتن ساخته که شامل مقطع چهار گوش یا یک برابری از فولاد با ضخامت نارک در خارج و تند در داخل است. مقایسه اتصالات سنگین مکب و سنگین فولادی را نشان می‌دهد که سنگین مکب حدود 50 لحاظ نهایی مصرف کنترل داشته و مقایسه سنگین مکب مختلط با سنگین فولادی نشان داده شده است که چگونه پرهش مقطع قوطی با یک نوع خاص از کاهش طول کمکس و موضعی در نتیجه بهبود وضعیت کمکس موضعی می‌شود. در شکل 2 مقطع سنگین فولادی بر شده با یک نوع خاص از کاهش طول کمکس موضعی و در نتیجه بهبود وضعیت کمکس موضعی می‌شود. در این تحقیق مسائل استفاده از مدل‌ها و رفتار مقاطع مکب همکاری با یک مورد بررسی مکب گردید. ضمن اینکه بدیهی کمکس موضعی در سنگین فولادی جعبه‌ای بینی دارای مقاومت بالا در مرجع [2] بررسی شده است.

2- بررسی پیوستگی بین و جداره داخلی مقطع فولادی

 طبق آزمایشات انجام شده برآمدها متعددی بر مقاومت پیوستگی مؤثرترین که مهمترین آن‌ها سن، ابعاد نحوه عمل آوردن بین و دمای است. سن بسیاری با همگامی اعمال بارگذاری فاکتور مهمی در کاهش پیوستگی است طوری که مقاومت پیوستگی در سن یک ساله در حدود 30 درصد مقاومت پیوستگی در سن سه مساحت ضخامت بیشتر بر جداره داخلی مقطع فولادی می‌شود.

392

استکل سال 34، شماره 1، جلد نهم، شهریور 1384
نمودار 1– مقایسه اثرات مقاومت فشاری بتن، نش تنظیم مولکول و ضخامت جداره فولادی بر روی تیروی فشاری

شکل 2– مقطع عرضی سون

شکل 1– موده‌های انتخابی در مقاطع مختلط و فولادی

میزان ابساط به سیم نهایی معمولی، در نهایت بتن برای این مقاطع می‌گردد.

3– بررسی رفتار مقاطع فولادی جدار نازک پر شده

با بتن با استفاده از روش اجزای محدود

در این تحقیق نتایج حاصل از مطالعات آزمایشگاهی و LRFD روش اجزای محدود با نتایج حاصل از روش طرح مقایسه شده است. در ادامه، با توجه به نتایج آزمایش‌های انجام شده، مدل اجزای محدودی برای سونهای قوطی پر شده با بتن ارائه شده و با سعی و خطا طوری کامل‌کردن می‌شود که نتایج آن با نتایج حاصل از مطالعات آزمایشگاهی مطابقت داشته باشد، سپس با داشتن این مدل می‌توان آن برای به‌دست‌آوردن نتایج برای نمونه‌هایی که از آنها مدل آزمایشگاهی ساخته نشده

هفتاهای است [5] بنا براین مشاهده می‌شود میزان انقباض بتن در چنین مقاطعی از یکمی زیادی برخوردار است. به عبارتی، هر چه انقباض بتن بیشتر باشد میزان پیوستگی بین فولاد و بتن کمتر خواهد بود. با این حال، میزان انقباض بتن و با حذف آن عملی به افزایش پیوستگی بین بتن و فولاد کمک شیبی شده است. مؤلف این تحقیق بر این باور است، به منظور

افزایش پیوستگی بین هسته بتنی و جداره داخلی مقطع فولادی

در چنین مقاطعی، توصیه به [1] استفاده از بتن با مقاومت بالا (به‌دلیل انقباض کمتر این نسبت به بتن‌های با مقاومت معمولی) [4]. استفاده از نسبت آب به سیمان کم همراه با فوق روان کم‌شده در بتن‌های معمولی و عمل آوری مناسب، 3 ایجاد ابعاد بی‌سیلیفیز نیودن جداره داخلی

مقطع فولادی، 4) استفاده از سیمان ابساط با کنترل

افتال، سال 84، شماره 1، جلد دوم، شهریور 1384

398
جدول 1 - منشأت نمونه‌های آزمایشگاهی

<table>
<thead>
<tr>
<th>f'_c (kg cm$^{-2}$)</th>
<th>A_s (cm2)</th>
<th>F_p (kg cm$^{-2}$)</th>
<th>A_s (cm2)</th>
<th>L (mm)</th>
<th>b/t</th>
<th>t (mm)</th>
<th>b (mm)</th>
<th>B (mm)</th>
<th>تام نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2935</td>
<td>7.04</td>
<td>200</td>
<td>43</td>
<td>2</td>
<td>86</td>
<td>90</td>
<td>S1-1</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>73.96</td>
<td>2935</td>
<td>7.04</td>
<td>200</td>
<td>43</td>
<td>2</td>
<td>86</td>
<td>90</td>
<td>C1-1</td>
</tr>
<tr>
<td>500</td>
<td>129.96</td>
<td>3000</td>
<td>14.04</td>
<td>360</td>
<td>40</td>
<td>3</td>
<td>120</td>
<td>126</td>
<td>HS1-10</td>
</tr>
<tr>
<td>500</td>
<td>207.36</td>
<td>3000</td>
<td>17.64</td>
<td>450</td>
<td>50</td>
<td>3</td>
<td>150</td>
<td>156</td>
<td>HS7-10</td>
</tr>
<tr>
<td>320</td>
<td>302.76</td>
<td>3000</td>
<td>21.24</td>
<td>540</td>
<td>60</td>
<td>3</td>
<td>180</td>
<td>186</td>
<td>NS1-10</td>
</tr>
<tr>
<td>380</td>
<td>547.56</td>
<td>3000</td>
<td>28.44</td>
<td>720</td>
<td>80</td>
<td>3</td>
<td>240</td>
<td>246</td>
<td>NS7-10</td>
</tr>
<tr>
<td>380</td>
<td>846.36</td>
<td>3000</td>
<td>35.64</td>
<td>900</td>
<td>100</td>
<td>3</td>
<td>300</td>
<td>306</td>
<td>NS13-10</td>
</tr>
<tr>
<td>304</td>
<td>146.45</td>
<td>3560</td>
<td>15.35</td>
<td>611</td>
<td>40.4</td>
<td>3.15</td>
<td>121</td>
<td>127</td>
<td>S1-9</td>
</tr>
<tr>
<td>260</td>
<td>139.35</td>
<td>3570</td>
<td>20.7</td>
<td>610</td>
<td>29.2</td>
<td>4.34</td>
<td>118</td>
<td>127</td>
<td>S2-9</td>
</tr>
<tr>
<td>238</td>
<td>138.71</td>
<td>3220</td>
<td>21.7</td>
<td>610</td>
<td>27.9</td>
<td>4.55</td>
<td>118</td>
<td>126</td>
<td>S3-9</td>
</tr>
<tr>
<td>238</td>
<td>130.97</td>
<td>3120</td>
<td>26.84</td>
<td>604</td>
<td>22.3</td>
<td>5.67</td>
<td>114</td>
<td>125</td>
<td>S4-9</td>
</tr>
<tr>
<td>238</td>
<td>125.16</td>
<td>3470</td>
<td>34.26</td>
<td>608</td>
<td>17</td>
<td>7.47</td>
<td>112</td>
<td>126</td>
<td>S5-9</td>
</tr>
</tbody>
</table>

جدول 2 - مقایسه نتایج

<table>
<thead>
<tr>
<th>FEM/LRFD</th>
<th>EXP/FEM</th>
<th>EXP/LRFD</th>
<th>Nu(FEM)</th>
<th>Nu(LRFD)</th>
<th>Nu(EXP)</th>
<th>شماره نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.96</td>
<td>0.96</td>
<td>0.92</td>
<td>19.8</td>
<td>20.62</td>
<td>19.8</td>
<td>S1-1</td>
</tr>
<tr>
<td>1.06</td>
<td>0.97</td>
<td>1.03</td>
<td>41.9</td>
<td>39.4</td>
<td>40.44</td>
<td>C1-1</td>
</tr>
<tr>
<td>1.16</td>
<td>1.01</td>
<td>1.17</td>
<td>112</td>
<td>96.8</td>
<td>113.3</td>
<td>HS1-10</td>
</tr>
<tr>
<td>1.20</td>
<td>1.01</td>
<td>1.21</td>
<td>169</td>
<td>140.3</td>
<td>170</td>
<td>HS7-10</td>
</tr>
<tr>
<td>1.13</td>
<td>0.91</td>
<td>1.03</td>
<td>165</td>
<td>145.4</td>
<td>150</td>
<td>NS1-10</td>
</tr>
<tr>
<td>1.19</td>
<td>1.00</td>
<td>1.19</td>
<td>310</td>
<td>260.8</td>
<td>309.5</td>
<td>NS7-10</td>
</tr>
<tr>
<td>1.11</td>
<td>0.94</td>
<td>1.04</td>
<td>427</td>
<td>384.8</td>
<td>400</td>
<td>NS13-10</td>
</tr>
<tr>
<td>1.04</td>
<td>0.95</td>
<td>0.98</td>
<td>96</td>
<td>92.4</td>
<td>91</td>
<td>S1-9</td>
</tr>
<tr>
<td>1.03</td>
<td>1.00</td>
<td>1.03</td>
<td>109</td>
<td>105.7</td>
<td>109</td>
<td>S2-9</td>
</tr>
<tr>
<td>1.14</td>
<td>0.99</td>
<td>1.13</td>
<td>113</td>
<td>98.7</td>
<td>112</td>
<td>S3-9</td>
</tr>
<tr>
<td>1.04</td>
<td>1.03</td>
<td>1.08</td>
<td>115</td>
<td>110.3</td>
<td>119</td>
<td>S4-9</td>
</tr>
<tr>
<td>1.09</td>
<td>1.06</td>
<td>1.15</td>
<td>160</td>
<td>147.3</td>
<td>170</td>
<td>S5-9</td>
</tr>
</tbody>
</table>

استفاده کردها، لازم است انجام این کار وجود نتایج آزمایشگاهی است که در ادامه توسط روش اجرای محدود به بررسی جنده نمونه که مدل آزمایشگاهی آنها قابل تشخیص شده و نتایج آن در دست است خواهیم پرداخت.

برای مطالعه رفتار ستوهای کنار فلز پوشیده با بین، ابتدا مدلسرای سه بعدی آنها به شده و سپس توسط روش اجرای محدود غیر خطی مورد بررسی قرار گرفته‌اند. هستند بینی ستوهای توسط ستوهای مکعبی 20 گره و هر گره یا 3 درجه آزادی

استقبال، سال 24، شماره 1، جلد دوم، شهریور 1384

394
شبکه ۳ - مدل اجزای محدود و المان‌های آن

شبکه ۴ - منحنی نفس - کرنش ایجاد شده فولاد [۸]

سبینماتیک است که در این نوع مسائل، مسطح سلیم یا از وارد شدن به محدوده پلاستیکی بدون آنکه بزرگتر شود جایز نیست. در صورتی که شکل یا مقدار افزایش فولاد و باعث مصرفی از منحنی‌های نفس - کرنش نشان داده شده در شکل‌های (۴) و (۵) استفاده شده است [۸ و ۹].

۴- مشخصات نمونه‌ها: مقایسه نتایج آزمایشگاهی و ضوابط آینه‌نامه ای با نتایج حاصل از روش اجزای محدود

در این قسمت با توجه به نمونه‌های آزمایشگاهی موجود،
سایر اندازه‌گیری‌های دیگر تغییر شکل‌ها و تکرنش‌ها [8].

عمل عemode اختلاف بین نتایج آزمایشگاهی و نتایج روش اجزای محدود می‌توان بصورت زیری باید:

1- در حین قسمت و با توجه به اینکه مدل اجراي محدود از شده نتایج مورد قبولی از خود نشان داده است، می‌توان از این

این استقلال سال 22. شماره 1، جلد دوم، شهریور 1384

365
مدل برای نمونه‌هایی با ابعاد دیگر که از آنها نمونه آزمایش‌گاهی تهیه نشده است نیازمند قدرت و نتایج بدست آمده را با تناخ تأثیر می‌دهد. LRFD مقایسه کرد.

5- مقاومت فشاری بن

نمونه مورد نظر در این قسمت یک سرنو مربعی به ابعاد 250x250 تا مربع ضخامت جدار فولادی 5 میلی و نشت سیم فولادی مصرفی Fy = 400KN/cm² است و توسط بین با مقاومت‌های مختلف سیمی است، در جدول (3) بارمحوری سیمی راه‌اندازی شده است. برای نشان دادن میزان افزایش ضریبی مطلق و شده است. در این زمینه یک سیم نو مدل شده از این زمینه به دلیل کمبود تحقیقات توسط به مطالعات آزمایشگاهی می‌شود.

5- فولاد مصرفی

با توجه به مقاومت و باربری تیتر فولاد با مقاومت بالا، استفاده از این نوع فولاد باعث کاهش ابعاد نمونه سیمی می‌شود که علاوه بر مزایای معمولی و اقتصادی نه نوا کاهش وزن سازه و ابعاد فندراسیون را بهره‌بردار بکند. نتایج لازم‌ترین خواهد بود با مقاومت بالا سازه ابعاد می‌کند. نمونه مورد نظر در این قسمت همان نمونه قبلی است با این نتایج که این بین مصرفی دارای مقاومت فشاری Fy = 240KN/cm² و مقدار Fy = 400KN/cm² کیلوگرم‌برسانتیمتر مربع می‌باشد.

5- ضخامت جداره فولادی

همان‌طور که اشاره شده میزان افزایش تا توسط فولادی با افزایش ضخامت جداره فولادی است تحقیقات نشان داده است که مقادیر مناسب برای نیروی محوری، محصولات (45) و در خارج از این محصولات فولادی توانایی دورگیری مناسب برای جلوگیری از مهندسی به‌کارگیری است که نتایج[10] نمونه مورد نظر در این قسمت همان نمونه قبلی است با این تفاوت که این بین مصرفی دارای مقاومت‌های متفاوت شده است. در جدول (3) بارمحوری سیمی راه‌اندازی شده است. برای نشان دادن میزان افزایش ضریبی مطلق و شد، در این زمینه به دلیل کمبود تحقیقات توسط به مطالعات آزمایشگاهی می‌شود.
جدول ۳ - بررسی اثرات مقاومت نواری به
<table>
<thead>
<tr>
<th>نام نمونه</th>
<th>LRFD/FEM</th>
<th>Nu(FEM)</th>
<th>Nu(LRFD)</th>
<th>f_y' (kg cm^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1.00</td>
<td>117</td>
<td>117.4</td>
<td>0</td>
</tr>
<tr>
<td>C2</td>
<td>0.91</td>
<td>235</td>
<td>215</td>
<td>200</td>
</tr>
<tr>
<td>C3</td>
<td>0.90</td>
<td>266</td>
<td>240</td>
<td>250</td>
</tr>
<tr>
<td>C4</td>
<td>0.89</td>
<td>297</td>
<td>264</td>
<td>300</td>
</tr>
<tr>
<td>C5</td>
<td>0.88</td>
<td>326</td>
<td>288</td>
<td>350</td>
</tr>
<tr>
<td>C6</td>
<td>0.88</td>
<td>357</td>
<td>313</td>
<td>400</td>
</tr>
<tr>
<td>C7</td>
<td>0.87</td>
<td>388</td>
<td>337</td>
<td>450</td>
</tr>
<tr>
<td>C8</td>
<td>0.86</td>
<td>419</td>
<td>361</td>
<td>500</td>
</tr>
</tbody>
</table>

میانگین

جدول ۴ - بررسی اثرات نش ناشی فولاد
<table>
<thead>
<tr>
<th>نام نمونه</th>
<th>LRFD/FEM</th>
<th>Nu(FEM)</th>
<th>Nu(LRFD)</th>
<th>F_y'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>0.89</td>
<td>297</td>
<td>264</td>
<td>2400</td>
</tr>
<tr>
<td>Y2</td>
<td>0.88</td>
<td>333</td>
<td>293</td>
<td>3000</td>
</tr>
<tr>
<td>Y3</td>
<td>0.88</td>
<td>365</td>
<td>317</td>
<td>3500</td>
</tr>
<tr>
<td>Y4</td>
<td>0.91</td>
<td>433</td>
<td>390</td>
<td>5000</td>
</tr>
<tr>
<td>Y5</td>
<td>0.94</td>
<td>516</td>
<td>488</td>
<td>7000</td>
</tr>
</tbody>
</table>

میانگین

جدول ۵ - مشخصات نمونه‌ها و بررسی اثارات فشاری ضخامت جداره فولادی
<table>
<thead>
<tr>
<th>نام نمونه</th>
<th>LRFD/FEM</th>
<th>Nu(FEM)</th>
<th>Nu(LRFD)</th>
<th>Ac(cm²)</th>
<th>As(cm²)</th>
<th>b/t Ratio</th>
<th>t(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.87</td>
<td>280</td>
<td>243</td>
<td>585.64</td>
<td>39.36</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>T2</td>
<td>0.89</td>
<td>297</td>
<td>264</td>
<td>576</td>
<td>49</td>
<td>48</td>
<td>5</td>
</tr>
<tr>
<td>T3</td>
<td>0.85</td>
<td>332</td>
<td>284</td>
<td>566.44</td>
<td>58.56</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>T4</td>
<td>0.86</td>
<td>355</td>
<td>305</td>
<td>556.96</td>
<td>68.04</td>
<td>34.3</td>
<td>7</td>
</tr>
<tr>
<td>T5</td>
<td>0.87</td>
<td>372</td>
<td>325</td>
<td>547.56</td>
<td>77.44</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>T6</td>
<td>0.86</td>
<td>402</td>
<td>345</td>
<td>538.24</td>
<td>86.76</td>
<td>26.7</td>
<td>9</td>
</tr>
<tr>
<td>T7</td>
<td>0.86</td>
<td>423</td>
<td>364</td>
<td>529</td>
<td>96</td>
<td>24</td>
<td>10</td>
</tr>
</tbody>
</table>

میانگین

۶- نتیجه‌گیری و پیشنهادات

۱- پرکردن مقاطع فولادی توخالی، با یکنوازی افزایش ضخامت ناشی از فولادهای با نسبت عرض به طرفی باربری، اثرات ضخامت زیاد در جداره فولادی ایجاد می‌گردد.

۲- با توجه به نتایج ناشی از مدلسازی نمونه‌های توسط روش اجزای محدود و مقایسه نتایج با نتایج ناشی از مطالعات آزمایشگاهی، این نتیجه حاصل شده که کارگیری

