Effect of Limestone Powder on Compressive Strength of Concrete Containing Silica Fume and Optimization of Mix Design Using Response Surface Method

D. Mostofinejad and M. Reisi
Department of Civil Engineering, Isfahan University of Technology

Abstract: Silica fume has been largely used in concrete in recent decades due to its effect on improvement of strength and...
durability of concrete. On the other hand, attention has been recently paid to the use of limestone powder as a substitute for part of cement in concrete, basically because of its low price and its positive effect on the durability of concrete. The aim of the current study is the investigation of the interactive effect of silica fume and limestone powder on the compressive strength of concrete and the optimization of the mix design. To do so, 27 mix designs including 3 water-to-cementitious materials ratios (W/C=0.25, 0.3 and 0.4); 3 silica fume-to-cementitious materials ratios (SF/CM=0%, 5% and 10%); and 3 limestone powder-to-cement ratios (LP/C=0%, 15% and 30%) were used and 28-day compressive strengths of the cubic concrete specimens were determined. Then, the interactive effect of silica fume and limestone powder on compressive strength of concrete was investigated using isoresponse curves. Furthermore, the optimization of the mix design for concretes containing silica fume and limestone powder was carried out using “cost-effective factor” (CEF) which is defined compressive strength divided by cost of concrete.

Keywords: Concrete, Limestone powder, Silica fume, Compressive strength, Response surface method.
به صورت معادلات (1) و (2) خواهد بود:

\[z = a_0 + a_1 x + a_2 y \]
\[z = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 y^2 + a_5 xy \]

ضرایب \(a_i \) به ضرایب رگرسیون معروفاند و از روش حداقل مربعات خطی بدست می‌آیند. بعد از تعیین این ضرایب بدست کنترل کرد که آیا مدل به‌دست آمده مناسب است یا نه؟ این کار از طریق یک سری آزمون‌های آماری انجام می‌گردد. اگر نتایج آزمون‌های ضرایب رگرسیون را تعیین می‌کند و همچنین کنترل‌های لازم را از طریق آزمون‌های آماری انجام می‌دهد. تا مناسب بودن یا نبودن مدل رگرسیون مورد نظر مشخص شود. بعد از تعیین مدل رگرسیون، منحنی‌های هم‌پاش رسماً می‌شود و سپس از روی این نمودارها می‌توان در مورد نقش پارامترهای مورد نظر در پاسخ تابع بحث کرد.

3- روش مناسب برای جمع‌آوری داده‌ها

همان‌طور که قبلاً گفته شد، اولین گام در حل مسائل انتخاب داده‌های مناسب است. در این روش انتخاب شده برای جمع‌آوری داده‌ها علمی تر باشد. در این صورت می‌توانیم این‌ها را مدل‌سازی رگرسیون را به صورت مطلوبی تخمین ببینیم. در همین ارتباط جانشینی از روش‌های مناسب برای جمع‌آوری داده‌ها استفاده شود. می‌توان تعداد داده‌های موجود استفاده برای تخمین مدل را به حداکثر رسیدن در ادامه این قسمت، روش‌های مناسب برای جمع‌آوری داده‌ها می‌تواند راه‌حل می‌باشد.

4- تحلیل داده‌ها

راه‌حل‌های مختلفی برای مدل‌سنجی پاسخ به دست می‌آیند و این‌ها حاوی اطلاعاتی هستند که می‌تواند در حل مسائل انتخاب داده‌های مناسب است. در این صورت می‌توانیم این‌ها را مدل‌سازی رگرسیون را به صورت مطلوبی تخمین ببینیم. در همین ارتباط جانشینی از روش‌های مناسب برای جمع‌آوری داده‌ها استفاده شود. می‌توان تعداد داده‌های موجود استفاده برای تخمین مدل را به حداکثر رسیدن در ادامه این قسمت، روش‌های مناسب برای جمع‌آوری داده‌ها می‌تواند راه‌حل می‌باشد.

RSM مدل‌سنجی اول [5]

به‌طور کلی اگر بتوانیم روابط که واریانس ضرایب رگرسیون حداقل شود، در این صورت این روش (طرح) برای انتخاب داده‌ها مناسب است. در صحل مدل‌سنجی اول، گروهی از رشته‌ها وجود دارد که در آنها ضرایب رگرسیون حداقل می‌شود. اگر گروهی از طرح‌ها به نام (طرح‌های معادل) مربوط در هر مدل سنجی‌ها از یکی از مدل‌های دیگر جمع‌آوری، می‌تواند مدل‌سنجی، روش‌های مناسب برای جمع‌آوری داده‌ها را به‌دست آورد.

RSM مدل‌سنجی اول [5]

به‌طور کلی اگر بتوانیم روابط که واریانس ضرایب رگرسیون حداقل شود، در این صورت این روش (طرح) برای انتخاب داده‌ها مناسب است. در صحل مدل‌سنجی اول، گروهی از رشته‌ها وجود دارد که در آنها ضرایب رگرسیون حداقل می‌شود. اگر گروهی از طرح‌ها به نام (طرح‌های معادل) مربوط در هر مدل سنجی‌ها از یکی از مدل‌های دیگر جمع‌آوری، می‌تواند مدل‌سنجی، روش‌های مناسب برای جمع‌آوری داده‌ها را به‌دست آورد.

روش مناسب در طرح‌ها اختلاف بین تقریباً از سال 1994 به بعد رواج پیدا کرده است. همان‌طور که در مرجع [6] آمده است، روش‌های رایج برای مقایسه سه نوع میکروسیستم با قیمت‌های مختلف از نظر اقتصادی از روش‌های (کانتور) پاسخ استفاده کرده‌اند. این‌ها منحنی‌های هم‌پاش را برای قیمت یک متر مکعب بین تیپ به دو می‌توان نسبت آب به مواد سیمانی و مریان آب رسماً کردن. به‌طور کلی اگر بتوانیم روابط که واریانس ضرایب رگرسیون حداقل شود، در این صورت این روش (طرح) برای انتخاب داده‌ها مناسب است. در صحل مدل‌سنجی اول، گروهی از رشته‌ها وجود دارد که در آنها ضرایب رگرسیون حداقل می‌شود. اگر گروهی از طرح‌ها به نام (طرح‌های معادل) مربوط در هر مدل سنجی‌ها از یکی از مدل‌های دیگر جمع‌آوری، می‌تواند مدل‌سنجی، روش‌های مناسب برای جمع‌آوری داده‌ها را به‌دست آورد.

۱۳۸۴ اگر پاسخ سیستمی که وابسته به دو متغیر X و Y است، باشد؛ در این صورت مدل‌سنجی رگرسیون می‌تواند اول و دوم به ترتیب استفاده می‌شود.

شکل 1- منحنی‌های از کانتورهای (منحنی‌های هم‌پاش) مربوط به روش‌های سیستمی.
شکل ۲- نحوه انتخاب داده‌ها برای مدل: (الف) مربوطه اول بر اساس طرح عاملی، (ب) مربوطه دوم بر اساس طرح مرکزی [۹]

مورد استفاده فرار می‌گیرند. به طرح‌های عاملی ۱۰ درصد موسوواند؛ به طوری که تعداد منجره‌های مستقل شرکت گردند. در پاسخ‌های است. در این طرح، مشاهده داده‌ها فقط در نقاط مربوط به محصور باقی و پایین صورت می‌گیرد. مثالی اگر پاسخ‌های وابسته به دو متغیر مستقل X و Y و هدف بررسی پاسخ‌های گردند وقتی X در محصور (X1 و X2 و Y) و Y در محصور (Y1 و Y2) تغییر می‌کند. باشد. این صورت بر اساس طرح عاملی ۳ و همان طور که در شکل (۲-الف) مشاهده می‌شود، انتخاب داده‌ها باید در نقاط که با شماره‌های ۳، ۴ و ۶ مشخص شده و به عبارتی در روز مرزی فرار دارد، انجام گیرد. برای اینکه مناسب بودن مدل پرداخته شود، لازم است بر روی تعادل از داده‌ها آزمایشات تکرار شود؛ این امر در طرح عاملی ۴ در نقطه مرکزی محصور بررسی ۴ تکرار صورت می‌گیرد. این مطلب در شکل (۲-الف) به وضوح نشان داده شده است. همان طور که در این شکل مشاهده می‌شود در نقطه وسط مرز، ۴ تکرار صورت گرفته است که با شماره‌های ۵، ۶، ۷ و ۸ مشخص است.

۲-۳- طرح‌های دوم و روش‌های مربوطه دوم [۹]

در مورد مدل مربوطه اول به گروهی از اطرافشان اشاره شد که

۱۳۸۴ استقلال، سال ۵۱، شماره ۱، جلد دوم، شهریور
جدول ۱- مصالح مورد استفاده برای ساخت یک متر مکعب بن برای طرح‌های اختیاری بر حسب kg/m^3

<table>
<thead>
<tr>
<th>وزن مخصوص برتن</th>
<th>SP</th>
<th>W</th>
<th>FA</th>
<th>CA</th>
<th>LP</th>
<th>SF</th>
<th>C</th>
<th>شماره طرح اختیاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>240 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D111</td>
</tr>
<tr>
<td>238 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D112</td>
</tr>
<tr>
<td>237 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D113</td>
</tr>
<tr>
<td>233 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D121</td>
</tr>
<tr>
<td>237 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D122</td>
</tr>
<tr>
<td>236 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D123</td>
</tr>
<tr>
<td>238 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D131</td>
</tr>
<tr>
<td>236 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D132</td>
</tr>
<tr>
<td>235 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D133</td>
</tr>
<tr>
<td>234 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D211</td>
</tr>
<tr>
<td>237 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D212</td>
</tr>
<tr>
<td>236 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D213</td>
</tr>
<tr>
<td>238 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D221</td>
</tr>
<tr>
<td>236 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D222</td>
</tr>
<tr>
<td>235 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D223</td>
</tr>
<tr>
<td>234 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D231</td>
</tr>
<tr>
<td>237 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D232</td>
</tr>
<tr>
<td>238 ± 20</td>
<td>33/0</td>
<td>173/3</td>
<td>55/1/6</td>
<td>107/6/8</td>
<td>0</td>
<td>6/4</td>
<td>6/4</td>
<td>D233</td>
</tr>
</tbody>
</table>

W = پودر سپک آهک، SF = میکروسیلس، CA = لیتیوم، SP = نرمال سیمان، LP = درشت دانه، FA = ریزدانه، C = سیمان
جدول 2- مقاومت فشاری و مقاومت پouflage F1 برای طرح‌های اختلال

<table>
<thead>
<tr>
<th>شماره طرح</th>
<th>شماره طرح</th>
<th>شماره طرح</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEF_1</td>
<td>CEF_2</td>
<td>CEF_3</td>
</tr>
<tr>
<td>CEF_4</td>
<td>CEF_5</td>
<td>CEF_6</td>
</tr>
</tbody>
</table>

نتیجه گرفته شد که اثر پودر سنگ آهک در کاهش مقاومت فشاری

بین با فاصله میکروسلیسی به مواد سیمانی بیشتر می‌شود.

1- در هر 3 سنتی‌آب به مواد سیمانی، با افزایش نسبت پودر

سنگ آهک به سیمان (LP/CM) مقاومت فشاری کاهش می‌یابد.

همچنین در هر 3 سنتی‌آب به مواد سیمانی، با توجه به

نتیجه گرفته، CEF_1 به پودر سنگ آهک به سیمان.

407
شکل ۳- منحنی‌های هم یکنواخت برای مقاومت فشاری ۲۸ روزه بین با نسبت آب به مواد سیمانی ۰/۲۵

شکل ۴- منحنی‌های هم یکنواخت برای مقاومت فشاری ۲۸ روزه بین با نسبت آب به مواد سیمانی ۰/۳

شکل ۵- منحنی‌های هم یکنواخت برای مقاومت فشاری ۲۸ روزه بین با نسبت آب به مواد سیمانی ۰/۴
بیشتر است.

3- در بنهایی حاوی پودر سنگ آهن در نسبت‌های آب به مواد سیمانی (W/CM) برابر 3 و 4، با افزایش نسبت میکروسیلس به مواد سیمانی (SF/CM) مقاومت فشاری افزایش می‌یابد؛ ولی در (W/CM) برابر 25، با افزایش تا حدود 1

شکل 7- منحنی‌های هم‌پایه پودر سیمان: (ب) قیمت پودر سنگ آهن 20/0 قیمت سیمان

(الف) قیمت پودر سنگ آهن 50/0 قیمت سیمان

(الف) قیمت پودر سنگ آهن 100/0 قیمت سیمان

(الف) قیمت پودر سنگ آهن: 20/0 قیمت سیمان

(الف) قیمت پودر سنگ آهن: 50/0 قیمت سیمان

(الف) قیمت پودر سنگ آهن: 100/0 قیمت سیمان

تا 2 درصد، مقاومت فشاری تقریباً ثابت می‌ماند و با افزایش می‌یابد.

4- با توجه به نزدیکتر شدن خطوط کانتورها (منحنی‌های هم‌پایه) در جهت افی در هر 3 نسبت آب به مواد سیمانی، می‌توان نتیجه گرفت که تأثیر میکروسیلس بر مقاومت فشاری McG 1384
شکل 8- منحنی‌های هم‌پایه مربوط به CEF برای ذهن با نسبت آب به مواد میکروسیلیس 0/4،0%.

(الف) قیمت پودر سنگ آهک: 0/5% قیمت سنگ آهک: 2/0% قیمت سنگ آهک با افزایش میکروسیلیس به مواد میکروسیلیس بیشتر می‌شود.

CEF 5-2- منحنی‌های هم‌پایه برای CEF در شکل‌ها (الف) تا (ز)، منحنی‌های هم‌پایه برای CEF رسم شده است. با دقت در این شکلها نتایج زیر حاصل می‌شود:

1- شکل کلی کانترهای مربوط به حالت میزبان سنجش به گرفته شده است (حالت الاف) و حالتی که قیمت پودر سنگ آهک برای 20% قیمت سنگ آهک در نظر گرفته شده است (حالت ب) در نسبت‌های آب به سنجش در نظر گرفته شده است (حالت ب) در نسبت‌های آب به سنجش برای 20% و 3/2 میلی‌گرم‌الکترون؛ اگر چه نمودارهای مربوط به نسبت آب به مواد میکروسیلیس برای 25% در حالت (الف) و (ب) با هم تفاوت دارند که در ادامه به آنها اشاره می‌شود.

2- در نمودارهای مربوط به نسبت آب به مواد میکروسیلیس برای 25% در حالت (الف)، در نمودارهای مربوط به نسبت آب به مواد میکروسیلیس برای 3/2 در حالت (الف) و (ب)، به ازای هر مقدار CEF می‌تواند دو نقطه روی نمودار کانترهای پیدا کرده که: یک مقدار مربوط به LP/C می‌باشد و مقدار دیگر مربوط به LP/C باشد.

بحث و نتیجه‌گیری

علاوه بر نتیجه‌گیری‌های که بر روی منحنی‌های هم‌پایه ارائه شد، اینچه به‌طور کلی در رابطه با استفاده از پودر سنگ آهک با توجه به نتایج آزمایشات مقاومت فشاری قابل بررسی است.
1- limestone powder
2- optimization
3- isoresponse curve
4- response surface method
5- Rougeron
6- Aitcin
7- Nehdi
8- Mindess
9- first order orthogonal designs
10- factorial designs
11- central composite designs
12- cost effective factor

References:
7. ACI Committee 211, “Proportions for Normal, Heavyweight, and Mass Concrete,” ACI-211-1.
8. ACI Committee 211, “Guide for Selecting Proportion for High-Strength Concrete with Portland Cement and Fly Ash,” ACI 211.4R-93, American Concrete Institute, 13 pp., Michigan, 1998.

10. رژه‌های مهندسی عمران، دانشگاه صنعتی اصفهان، 1379.
11. ری، م. وریسی تأثیر عوامل شیمیایی آب دریا (سولفات و کلسیم) بر برخی خواص مکانیکی بن با مقاومت پلاس بنا توجه به تنش‌های در دست دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان، 1382.