Economic Design of R2R Controller using EWMA Procedure

R.B.Kazemzadeh, R.Noorossana and M. Karbasian
Department of Industrial Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, IRAN,
Department of Industrial Engineering, Iran University of Science and Technology, Tehran, IRAN

Abstract: In the last few years, Run-to-Run (R2R) control techniques have been developed and used to control various processes in industries. These techniques combine response surface, statistical process control, and feedback control techniques. The R2R controller consists of a linear regression model that relates input variables to output variables using Exponentially Weighted Moving Average (EWMA). In this paper, we have developed a R2R controller model based on quality costs. The model consists of finding optimum weight of EWMA procedure in R2R controllers with respect to conformities and

چکیده
هجکیده - آگاهی از هزینه‌های کیفیت به کارشناشان در طراحی سیستم کنترل کننده‌های Run-to-Run(R2R) به منظور بهبود کیفیت فرایند‌های تولیدی کمک موثری می‌کند. این آگاهی از لحاظ بهبود امکان‌پذیری و خطاهای در مورد هزینه‌های مربوط به این نوع کنترل کننده‌های سردر استفاده قرار می‌گیرد. در این مقاله بر اساس مدل فرایندی هزینه‌های کیفیت، هزینه‌های اقتصادی و عدم اطمینان برای فرایندهای کنترل کننده‌های EWMA (R2R) استفاده می‌شود. مدل‌سازی می‌شود سپس با استفاده از یک مدل رضایت پایدارسازی و روش های مبتنی بر تکنیک مثبتهای کوپن تاسیسات محاسبه می‌شود. پایدارسازی و روش سیستم‌های R2R استفاده می‌شود به صورت هزینه‌های مربوط به دسته‌بندی‌های کیفیت هدفگزینی شود. پایدارسازی و روش سیستم‌های R2R کنترل کننده‌های EWMA اقتصادی در عملکرد کنترل کننده‌های R2R و در نتیجه کاهش هزینه‌های کیفیت دارد. در پایان یک مطالعه موردی در سیستم ایجادکه به

واژگان کلیدی: هزینه‌های کیفیت، کنترل کننده‌های R2R، هموار کننده محورک موزون نمایی

+ - استاد
*** - دانشجوی دکترا
** - استاد
* - استاد
nonconformities costs. The validity and performance of the developed model were tested using a real case study in an optic industry application.

Keywords: Quality costs, R2R controller, EWMA

<table>
<thead>
<tr>
<th>متوسط هزینه هر خرابی خارج</th>
<th>ECEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط هزینه خرابی داخل</td>
<td>ECIF</td>
</tr>
<tr>
<td>ورودی فرآیند در مرحله</td>
<td>(n)</td>
</tr>
<tr>
<td>میزان انحراف خروجی از هدف در مرحله</td>
<td>(n)</td>
</tr>
<tr>
<td>عرض از مبدا مدل بینی</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>ضربت زاویه مدل بینی</td>
<td>(\beta)</td>
</tr>
<tr>
<td>ماتریس پایداری</td>
<td>(\Gamma)</td>
</tr>
<tr>
<td>EWMA</td>
<td>(\lambda)</td>
</tr>
</tbody>
</table>

\[\begin{align*}
 a_n &= \text{عرض از مبدا به‌کارگیری شده در مرحله} \\
 b &= \text{تهمین} \\
 \text{متوسط کیفیت خروجی} &= \text{AOQ} \\
 \text{سطح کیفیت قابل پذیرش} &= \text{AQL} \\
 \text{متوسط کل فلجات موجب} &= \text{ATD} \\
 \text{متوسط کل بازرسی} &= \text{ATI} \\
 \text{ماتریس های تطابق} &= \text{ECC} \\
\end{align*} \]

فهرست علائم

1. مقدمه

یکی از مهم‌ترین ابزار بهبود کیفیت، کنترل آماری فرآیند SPC است. با استفاده از این ورودی‌های مصرف در SPC، توان تغییرات با دلیل در مشخصات خروجی فرآیند را شناسایی می‌کند. ولی نوع دیگر تغییرات نیز هستند که در یک محدوده زمانی قابل پیش‌بینی و از طرف دیگر به تهیه و اصلاح در موقعیت موجود در فرآیند می‌توان آنها را کاهش داد. این نوع کنترل را کنترل انتظار می‌گیرد که می‌تواند (EPC) مهندسی (EPM) باشد.

2. مقدمه

SPC به این صورت کنترل SPC و EPC سباق تربیتی به واسطه نیاز به واسطه SPC و EPC را کنترل کند. این امر در این کنترل کننده‌ها، این امر تربیت مدل رگرسیونی خلیج به صورت بهینه بر پایه کرایه‌کرده‌ها، این امر برای ارزش‌های اصلی به‌روز نظیری برخوردند.

3. مقدمه

نمونه‌های کنترل شوهرت نیز توسیع شده‌اند. اغلب تحقیقات آن‌ها را می‌توان به عنوان روش‌های طراحی نهایی اتصالات گردنبندی کرد. در مرجع [8] پیش‌نهاد شده که انتشار نمونه به‌بهانه برای کنترل میانگین استقلال سال 1384 شماره 3، اسفند

Downloaded from jome.iut.ac.ir at 11:23 IRST on Monday October 14th 2019

R2R در یک دوای مشخصات خروجی در فرآیند کنترل از جمله مادگی، واریانس و پایداری محدودیت مشود. سپس بر اساس آنها در نمای سوم مدل برای کمک به کنترل زنگ خطرهای کلیت طراحی می‌شود.

2- مشخصات اساسی آماری خروجی در فرآیند R2R

کنترل اولین قدم در توسعه سیستم کنترل R2R. توسعه یک مدل زگرسیونی است که به صورت واقعی رابطه بین متغیرهای قابل کنترل و مشخصه‌های کیفی مورد علاقه را بیان می‌کند. سپس در این مقاله فرض می‌کنیم که یک متغیر قابل کنترل (ورودی) و یک مشخصه کیفی (خروجی) داریم.

فرض اساسی در این حالت این است که فرآیند حالتی دنیانکی ندارد. این به آن معنی است که مشخصه‌های کیفی در مراحل n ورودی X_{n-1} در انتخاب مراحل n (انتهاق مرحله‌های n) بستگی دارد. در حالی که دراین مقاله بحث شده، رابطه بین زماني حاصل موجود یک تعداد کل بازرسه‌هاي مورد نیاز برای پی بردن به وجود یک تغییر خاص کمپته شود و یا به عبارت دیگر کمپت کردن پارامتر که به معنی کمپت شدن هزینه‌های کل است. روشهای مشابه برای مطالعه اقتصادی دیگر نمودارهای کنترل در مراجع [19]-[21] استفاده شده است.

مرجع [22] تجزیه و تحلیل‌های نمودارهای EWMA را مفهومی می‌کند. مرجع [23] از شبه سازی مونت کارلو برای بررسی جریان خورشیدی مختلف از نمودار کنترل X به شکل تعداد استراتفیزی تهیه فرآیند می‌شود. استفاده می‌کند. نتایج آنها، شده در مرجع [24] حاکی از این است که روشهای کنترل که به اساس یک نمونه در فواصل زمانی تابت عمل می‌کند، به‌همین دلیل در این مقاله کنترل به‌واسطه نمودارهای EWMA تهیه می‌شود. همچنین در مراجع [15]-[17] یک طراحی عمومی اقتصادی ارائه شده است. مدل مطرح شده در آن مراجع، شکل هزینه‌های نمودارهای در حالت تحت کنترل، هزینه‌های تولید موجود در حالت خارج از کنترل، همچنین هزینه‌های تولید موضوع علل تغییر در فرآیند و زنگ خطرهای اشاره‌یابی است. در مراجع [18] گزارش شده که اقتصادی‌ترین حالت برای نمودارهای کنترل با...
که در آن
\[
\begin{align*}
b &= \beta \lambda_n, \\
a_n &= \lambda (y_n - bx_n) + (1 - \lambda) a_{n-1}
\end{align*}
\]

(4)

\[
y_n = \alpha + \beta x_{n-1} + \epsilon_n
\]

(5)

\[
y_n = \alpha - \frac{\beta}{b} a_{n-1} + \delta_n + \epsilon_n
\]

(6)

دسته نیز از این تحلیل می‌شود که به عنوان مدل دوم R2R در قدم دوم، بر اساس اندازه‌گیری خروجی فرآیند و مقایسه با پیش بینی بر اساس مدل رگرسیون و استفاده از برای اختلاف حاصل بین پیش بینی مدل EWMA و قابلیت در مقایسه با در این حالت فضای حالت به‌همین‌نام کنترل دارد.

\[
x_n = \frac{T - \alpha}{\beta}
\]

(7)

(8)

(9)

(10)

\[
A = \begin{bmatrix} 1 - \lambda \xi & \lambda \\ 0 & 1 \end{bmatrix}, \quad W_n = \begin{bmatrix} \lambda (\alpha + \epsilon_n) \\ 1 \end{bmatrix}
\]

(11)

(12)

ورودی و خروجی به صورت معادله (1) که یک مدل ساده خطا است تعیین می‌شود:

\[
y_n = \alpha + \beta x_{n-1} + \epsilon_n
\]

(1)

\[
y_n = \alpha + \beta x_{n-1} + \epsilon_n
\]

(13)

\[
\tilde{y}_n = a_n + bx_{n-1} = T
\]

(14)

\[
x_n = \frac{T - a_n}{b}
\]

(15)

استقلال سال 24، شماره 2، سفند 1384
دریافتی که یک معاوضه با انتخاب مقدار مختلف λ مشاهده و وجود خوده داشته. در صورتی که $\lambda = 0$ باشد (یعنی کنترل وجود ندارد) میزان داده‌های موجود ورود به پایین یک‌پارامتریک λ باشد و از طرف دیگر $\lambda = 1$ باشد اریپ کاهش می‌یابد و در عرض واریانس زیاد می‌شود.

در نتیجه، برای ۳-طرح اقتصادی فرایندهای EWMA با استفاده از R2R کنترل کننده‌های

آگاهی از هزینه‌های کیفیت به محدود نبرد انتظار نحوه استفاده از هزینه‌های کیفیت در در تغییرات محدود کرده و آنان را در بررسی کشش‌هایی که عمل آمده و اریپ میزان اثر تغییرهای مختلف بهبود بیاکه می‌دهد. این آگاهی در جهت کاهش تعداد اشتباهات و خطاهای در مورد هزینه‌های سرخش‌های مربوطه مورد استفاده قرار می‌گیرد. با توجه به این که در کنترل کننده R2R فرایند را به‌طور باقی می‌ماند. لذا از روش "هزینه‌های پایه فرایند" در این راستا استفاده از کنترل کرده در این مدل هزینه‌های کیفیت

فرایند به دو نسبت تقسیم می‌شوند:

- هزینه‌های تطبیق: هزینه‌هایی که صرف رسیدگی در

شکل ۲- فرایند پهن‌گام کردن a_n و نگهداری فرایند در تزدیکی حالت ایجاد

از طرف دیگر برای حل این معادله دارای [2] :

$z_n = A^n - z_0 + \sum_{j=1}^{n-1} A^{n-j-1} w_j$

(13)

مانی به‌طوری‌یکی، حالت پایدار دارد که $1 - \lambda \xi \leq |\lambda| \\ $ $1 - \lambda \xi \\ $

(14)

بر اساس نظریه فضای حالت توان نتیجه‌گیری کرده که موقعیت مشخصه کیفی، حالت پایدار دارد که $Z_0 = 0$, در آن صورت با فرض پایدار بیشتر

دارای [2] :

$\lim_{n \to \infty} \sum_{j=0}^{n-1} (1 - \lambda \xi)^{n-j-1} = \frac{1}{\lambda \xi}$

(15)

$y_n = \frac{\delta}{\lambda \xi} \sum_{j=0}^{n-1} (1 - \lambda \xi)^{n-j-1} + \epsilon_j + \epsilon_j$

(16)

از رابطه بالا به دست می‌آوریم

AMSE$\left(y_n \right) = \lim_{n \to \infty} \frac{\sigma^2 + \lambda \xi \sigma^2}{2 - \lambda \xi} + \frac{\delta^2}{\lambda \xi}$

(17)

در معادله (17) مقدار $\lambda \xi$ میزان اریپ خروجی است. باید دقت در این معادله می‌توان

استقلال، سال ۱۳۸۴، شماره ۴ اسفند ۱۳۸۴
به اهداف خود می‌شنود.

- هزینه‌های عدم تطابق: هزینه‌هایی که به دلیل عدم تطابق خروجی با معیارهای تعیین شده فرایند ایجاد می‌شود.

1-3 هزینه‌های تطابق

در فرآیند طراحی که از کنترل گیرنده‌های استفاده می‌کند یکی از مهم‌ترین هزینه‌های تطابق هزینه‌هایی است. هزینه‌های ارزیابی طبق تعیین استاندارد ISO 9004 هزینه‌هایی هستند که برای آزمایش کیفیت به مانند حصول اطلاعات از اینهای خواسته‌های کیفیت بر آورده می‌شود. صرف می‌شود.

در علوم فرآیندهای برای بررسی کیفیت قطعات از روش بازرگانی به صورت اصلاح و پذیرش استفاده می‌شود. در این حالت بر اساس طرح‌های نمونه‌گیری استخراج شده از جداول استاندارد ABC از دسته محصولات تولید شده در هر مرحله نمونه‌گیری می‌شود. در صورتی که اعداد معیوب در نمونه کمتر از مقدار مربوط به حرکت نمونه‌گیری بود، کل درست پذیرفته می‌شود. در غیر این صورت کل دسته بازرگانی صد در صد شده و محصول سالم وارد انتها می‌شود.

شکل (3) نحوه استفاده از طرح‌های اصلاح و پذیرش را نشان می‌دهد. در این شکل:

\(\text{Pa} \) : احتمال پذیرش دسته و

\(1-\text{Pa} \) : احتمال رد دسته است.

بدیهی است ارزیابی مشخصات کم‌فرکار دیگری در اجرای هزینه است. بنابراین با مشخص کردن متوسط تعداد بازرگانی (ATI)\(^i\) \(\text{Pa} \) می‌توان نسبت به تخمین‌های اقدام کرد [26]

\[
\text{ATI} = N(1 - \text{Pa}) + n\text{Pa} \quad (18)
\]

\[
\text{Pa} = \sum_{x=0}^{n} \binom{n}{x} p^x (1-p)^{n-x} \quad (19)
\]

که در آن:

\(N \) : اندازه محصول

\(n \) : عدد پذیرش

\(p \) : عدد پذیرش

\(x \) : عدد پذیرش

\(\text{Pa} \) : احتمال پذیرش

\(N \) : اندازه نمونه و

\[
\text{ECC} = C_1 \text{ATI} \quad (20)
\]

\(C_1 \) : متوسط درصد معیوب تولید است.

نمونه‌گیری اصلاح و پذیرش بررسی می‌شود. در طرح اصلاح و پذیرش چه در مرحله نمونه‌گیری و چه در مرحله بازرگانی صدایی تعدادی معیوبشانویسی می‌شود که ضرر ناشی از وجود آنها را می‌توان به حساب هزینه خرابی داخلی کدآوری. برای محاسبه متوسط این هزینه، مقدار متوسط قطعات خراب تبیین داده شده را محاسبه کنیم. متوسط این قطعات عبارت‌اند از:

\[
\text{ATD} = nP \cdot \text{Pa} + NP'(1 - \text{Pa}) \quad (21)
\]

\(P \) : درصد نام‌بندی با توجه به معادله (21) متوسط هزینه‌های خرابی

\(\text{ECIF} = C_2 \text{ATD} \quad (22) \)

\(C_2 \) : درصد هزینه‌های خرابی

\(\text{ATI} \) : متوسط تعداد بازرگانی در این حالت پذیرش است.

\(n \) : اندیس معیوب

\(p \) : عدد درصد

\(N \) : اندازه نمونه

\(\text{Pa} \) : احتمال پذیرش

\(\text{Pa} \) : احتمال رد

\(P \) : درصد نام‌بندی

\(C_1 \) : متوسط درصد معیوب تولید

\(C_2 \) : درصد هزینه‌های خرابی

\(P' \) : درصد نام‌بندی

\(n \) : اندیس میان‌بردار

\(\text{Pa} \) : احتمال پذیرش

\(1-\text{Pa} \) : احتمال رد
طرح نمونه‌گیری:
نمونه‌گیری از طریق متوسط معیوب محصول به وسیله توزیعی.

افزار:
m: میزان جریمه خرابی محصول در سال i.
A: تعداد ساعاتی کارایی.

ن ag: میزان جریمه قطعه خرابی محصول دهاده شده.

بازرسی:
بازرسی 100/0.

شکل 3- فرآیند بازرسی به صورت اصلاح و بزیرش

مقدار خالص هزینه‌های خرابی خارج را معکوس می‌کند. واضح است این ضریب در صورت زیاد بودن اندازه محصول نسبت به اندازه نمونه به سمت یک می‌کند.
اما از طرف دیگر ممکن است مشتری همان موقعیت از این محصول استفاده نکند و هنگام استفاده از محصول در طول زمان گزارنده موجه اشکال در آن شود بنابراین منابع پیشنهادی برای تخمین هزینه‌های خرابی خارج در هر زمان عبرت است از:

\[ECEF = C_3 \cdot N \cdot AOQ \sum_{i=1}^{m} A_i \cdot p_i \] \hspace{1cm} (24)

\[A_i = A (1 + r)^i \] \hspace{1cm} (25)

که در آن:
A: میزان جریمه خرابی محصول در سال i.
r: نرخ بهره سالانه.

\[PAQ = P \cdot \frac{(N-n)}{N} \] \hspace{1cm} (26)

ضریب تصحیح به منظور حذف قطعات معیوب تشخیص داده شده در نمونه‌گیری است و قبلاً که عدد بزرگر است. در این حالت

طرح نمونه‌گیری به صورت بازرسی و بزیرش.
شکل 4- ساختار کنترل کننده R2R در فرآیند کاهش ضخامت عدسی

جدول 1- معیارهای پیشنهادی طرح نمونه‌گیری

<table>
<thead>
<tr>
<th>اندازه نمونه (N)</th>
<th>کد نمونه‌گیری</th>
<th>سطح بازاری</th>
<th>AQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>E</td>
<td></td>
<td>1%</td>
</tr>
</tbody>
</table>

جدول 2- طرح نمونه‌گیری بر اساس جداول استاندارد ABC-STD-105E و معیارهای جدول 1

<table>
<thead>
<tr>
<th>اندازه نمونه (n)</th>
<th>عدد پذیرش (c)</th>
<th>عدد رد (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

جدول 3- میزان خروجی و ورودی در 20 دوره متوالی تولید

<table>
<thead>
<tr>
<th>ضخامت (میلیمتر)</th>
<th>غلظت (مول بر لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.012</td>
<td>3.024</td>
</tr>
<tr>
<td>0.0125</td>
<td>3.0251</td>
</tr>
<tr>
<td>0.0123</td>
<td>3.0245</td>
</tr>
<tr>
<td>0.0123</td>
<td>3.0247</td>
</tr>
<tr>
<td>0.0128</td>
<td>3.0255</td>
</tr>
<tr>
<td>0.0129</td>
<td>3.0258</td>
</tr>
<tr>
<td>0.0127</td>
<td>3.0253</td>
</tr>
<tr>
<td>0.012</td>
<td>3.0241</td>
</tr>
<tr>
<td>0.0125</td>
<td>3.0248</td>
</tr>
<tr>
<td>0.0126</td>
<td>3.0253</td>
</tr>
<tr>
<td>0.0126</td>
<td>3.025</td>
</tr>
<tr>
<td>0.0124</td>
<td>3.0249</td>
</tr>
<tr>
<td>0.0126</td>
<td>3.0251</td>
</tr>
<tr>
<td>0.0127</td>
<td>3.0255</td>
</tr>
<tr>
<td>0.0128</td>
<td>3.0254</td>
</tr>
<tr>
<td>0.0125</td>
<td>3.0252</td>
</tr>
<tr>
<td>0.0125</td>
<td>3.0248</td>
</tr>
<tr>
<td>0.0126</td>
<td>3.0251</td>
</tr>
<tr>
<td>0.0126</td>
<td>3.0255</td>
</tr>
<tr>
<td>0.0125</td>
<td>3.0252</td>
</tr>
</tbody>
</table>
(5) نشان داده شده است. همنهای شکل (7) درصد هریک از این همیشه برای نمایش می‌دهد. نسبت هریک‌ها اطلاعات به هریک‌های عدم اطلاعات برای ۲۸/ است که نشان از عدم پیشگی هریک‌های کیفی است. زیرا بر اساس استاندارد هریک‌های کیفی (BS 6143) موقعیت این هریک‌ها حداقل هستند که این نسبت به سمت یک میل کند[24].

از قدم دوم برای پایه‌های کنترل کننده R2R معادله‌ای گرداندن و پراکندگی بر اساس داده‌های جدول (3) است. نواحی فرآیند محاسبه شده است. نتایج این محاسبات که در شکل (۶) آمده است، نشان دهنده کارایی پایین‌ترین جدول CPk<1 و مقادیر زیاد ضایعات است. بر اساس آمار گذشته در این فرآیند متوسط فاکتورهای هریک‌های تعیین و عدم تطبیق (C1, C2, C3) محاسبه و در جدول (۴) نشان داده شده است. همنهای نواره گزینه ۴ سال، در زمان سالانه ۲۰ درصد و جریمه محصول در سال اول برای ۸۵ واحد پول است. با توجه به محدودات (20), (22) و (24) و پراکندگی جدول (4) میزان متوسط هریک‌های کیفی محاسبه و در جدول

استقلال: سال ۲۴، شماره ۲، آسفند ۱۳۸۴

24
مشخصات آماری و کارایی فرایند قبل از به کار گیری کنترل کننده

جدول 4- مقادیر C_1, C_2, C_3 در محاسبه هزینه کیفیت

<table>
<thead>
<tr>
<th>متغیر پارامتر هزینه عدم اطباق</th>
<th>متغیر پارامتر هزینه عدم اطباق داخلی</th>
<th>متغیر پارامتر هزینه عدم اطباق خارجی</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>(C_2)</td>
<td>(C_3)</td>
</tr>
<tr>
<td>9.8</td>
<td>5.1</td>
<td>12.5</td>
</tr>
</tbody>
</table>

جدول 5- متوسط هزینه های کیفی قبل از به کار گیری کنترل کننده

<table>
<thead>
<tr>
<th>ECEF</th>
<th>3525</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECIF</td>
<td>1005.3</td>
</tr>
<tr>
<td>ECEF</td>
<td>3520.6</td>
</tr>
<tr>
<td>مجموع هزینه</td>
<td>8050.9</td>
</tr>
</tbody>
</table>

شکل 7- درصد متوسط هزینه های کیفی قبل از به کار گیری کنترل کننده
جدول 6- نتایج حاصل از 20 مرحله متوالی تولید تحت کنترل

<table>
<thead>
<tr>
<th>غلظت (میلی‌گرم)</th>
<th>ضخامت (میلی‌متر)</th>
<th>a₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0138</td>
<td>3.02474</td>
<td>3.0028</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02474</td>
<td>3.0028</td>
</tr>
<tr>
<td>0.0137</td>
<td>3.02488</td>
<td>3.0029</td>
</tr>
<tr>
<td>0.0135</td>
<td>3.02486</td>
<td>3.0028</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02474</td>
<td>3.0028</td>
</tr>
<tr>
<td>0.0138</td>
<td>3.02476</td>
<td>3.0027</td>
</tr>
<tr>
<td>0.0137</td>
<td>3.02485</td>
<td>3.0027</td>
</tr>
<tr>
<td>0.0135</td>
<td>3.02461</td>
<td>3.0026</td>
</tr>
<tr>
<td>0.0138</td>
<td>3.02508</td>
<td>3.0027</td>
</tr>
<tr>
<td>0.0137</td>
<td>3.02494</td>
<td>3.0027</td>
</tr>
<tr>
<td>0.0135</td>
<td>3.02445</td>
<td>3.0028</td>
</tr>
<tr>
<td>0.0134</td>
<td>3.02442</td>
<td>3.0027</td>
</tr>
<tr>
<td>0.0137</td>
<td>3.02498</td>
<td>3.0027</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02471</td>
<td>3.0028</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02482</td>
<td>3.0026</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02484</td>
<td>3.0028</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02476</td>
<td>3.0027</td>
</tr>
</tbody>
</table>

شکل 8- مشخصات آماری و کارایی فراوری بعد از به کار گیری کنترل کننده R2R

استقلال سال 1384، شماره 2، استقلال
5- نتیجه گیری و پیشنهادات

در این مقاله کنترل کننده R2R بهینه سازی اقتصادی شده است این امر از این نکته است که مدل اقتصادی که هزینه‌های کنیفت را با توجه به نیازهای کنگره، به انجام می‌رسد. با استفاده از فراوانی کنترل R2R بهینه شده، علاوه بر افزایش توانایی فرایند، هزینه‌های کنیفت نیز کاهش می‌یابد.

علاوه بر این با اجرای این مدل نسبت هزینه‌های تطابق به هزینه‌های عدم تطابق به سمت یک میل کننده که نشان دهنده کمترین هزینه کنیفت در سطح کنیفت موجود است. برای تحقیقات آتی، استفاده از مدل‌هایی که بتوانند هم‌امام، نمونه‌بندی، میانگین مربع خطا و هزینه‌های کنیفت را به مقدار مورد نظر تصمیم‌گیری کنند، بیشترین می‌شود. همچنین می‌توان در اجرای مدل توسعه دادن شده در این مقاله، برای هر نوع هزینه کنیفت بکر وندر نظر گرفت و نتایج حاصله را در هزینه‌های کنیفت و کنیفت محصول برسی کرد.

پارامترهای هزینه‌های (C1, C2, C3) متوسط هزینه‌ها در این حالت بررسی شده است. جدول (7)، مقاور متوسط هزینه‌های کنیفت و شکل (9)، درصد آنها را نشان می‌دهد. در این روش کنترل R2R، نسبت هزینه‌های اتفاق به هزینه‌های عدم اندازه‌برداری/95% است که نشان از هزینه‌های کنیفت است زیرا که این نسبت به سمت یک میل کننده است[24]. به عبارت دیگر در این روش کنترل R2R نسبت کنیفت بالاتری، هزینه‌های کنیفت کمتری هم داشته‌اند.

واژه نامه

1. exponentially weighted moving average
2. statistical process control
3. adjustment
4. engineering process control
5. stability
6. single input single output
7. white noise
8. state-space
9. average total inspection
10. internal failure cost
11. external failure cost
12. average outgoing quality
13. upper specification limit
14. lower specification limit

استناد: سال 1384 شماره ۲