Economic Design of R2R Controller using EWMA Procedure

R.B. Kazemzadeh, R. Noorossana and M. Karbasian
Department of Industrial Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, IRAN,
Department of Industrial Engineering, Iran University of Science and Technology, Tehran, IRAN

Abstract: In the last few years, Run-to-Run (R2R) control techniques have been developed and used to control various processes in industries. These techniques combine response surface, statistical process control, and feedback control techniques. The R2R controller consists of a linear regression model that relates input variables to output variables using Exponentially Weighted Moving Average (EWMA). In this paper, we have developed a R2R controller model based on quality costs. The model consists of finding optimum weight of EWMA procedure in R2R controllers with respect to conformities and non-conformities. The R2R controller is developed using the EWMA procedure, which is a statistical method for monitoring processes. The model is used to determine the optimum weight of the EWMA procedure in the R2R controller, which is determined based on the quality costs of the process. The results show that the EWMA procedure can be used to improve the performance of R2R controllers in various industries.
nonconformities costs. The validity and performance of the developed model were tested using a real case study in an optic industry application.

Keywords: Quality costs, R2R controller, EWMA

Table

<table>
<thead>
<tr>
<th>ECEF</th>
<th>ECIF</th>
<th>β</th>
<th>n</th>
<th>a_n</th>
<th>b</th>
<th>AOQ</th>
<th>AQL</th>
<th>ATD</th>
<th>ATI</th>
<th>A, W</th>
<th>ECC</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.x</td>
<td>1.n</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1- مقدمه

یکی از مهم‌ترین ابزار بهبود کیفیت، کنترل آماری فرآیند SPC است. با استفاده از نوین و روش‌های مطرح در SPC می‌توان تغییرات با دلیل در مشخصات خروجی فرآیند را شناسایی کرد. ولی نوع دیگر تغییرات نیز هستند که در یک محصول دمای قابل پیش بینی نیستند و از طرف دیگر با توجه به اصلاح در محصولات مورد در فرآیند می‌توان آنها را کاهش داد. این نوع کنترل را بر پایه تنظیم "کیفیت می‌گیرد، کنترل مقدمه" می‌نامند (EPC).

سابقه ترکیب EPC

برای کنترل مقدار هدف 90 میلادی EPC سایه‌پسی ترکیب این رابداید. در این راستا کنترل کننده‌های SPC و EPC کنترل کننده‌ها. ابتدا یک مدل رگرسیونی خطی به صورت بهره‌برداری بر رفتار فرآیند پرداخت کرده به طوری که رابطه بین خروجی و ورودی را به خوبی تشخیص دهد. سپس در هر مرحله پیوسته، به صورت مستمر، عرض از زیر مدل بیانگر تغییرات نکته داشتن خروجی حول مقدار ایده‌آل و به‌کارگیری این بهبودگر مبنای براساس اختلاف بین مقادیر خروجی EWMA توسط روشی

و باقی و پیش بینی، انجام می‌شود. [2] شکل (1)، ساختار عمومی کنترلند به دست آمده.

تاکنون در استفاده از کنترلند های EWMA کمتر به مباحث هزینه‌های کیفیت، برداشته شده است و تجزیه و تحلیل‌های افتتاحیه بیشتر بر روی ابزار R2R کمتر است. در سال 1954، گیتیک و روبرنیکی از اسپرینت منحلی افتتاحیه را در سیستم‌های کیفیت مطرح کردند. آنها از مدل مار کووی برای نشان دادن مختلف فرآیند استفاده کردند [3] بعضی از محققین معنی کردند. نا کیک مدل کی رابین در این مدل لازم شده است در [2] ارزش کننده از میان آنها می‌توان به

نمونه‌های کنترل شهرت زیر توس‌تختن محیط از نظر افتتاحیه برسی شده است. اغلب تحقیقات این تأثیر در این توان به

عنوان روش‌های طراحی به افتتاحیه کنترلند کرده. در مرجع [8] پیش‌نهاد نشده که از این جهت نظامه بهبود به‌کار برای کنترل می‌گذارند.

R2R در نظر گرفتند، مشخصات خروجی در فرایند کنترل از جمله میانگین، واریانس و پایداری معادله می‌شود. سپس بر اساس آنها در نظر گرفته مدل برای کنترل کننده Zمنیاتی می‌شود.

2- مشخصات اساسی آماری خروجی، در فرایند

R2R کنترلی

اولین قدم در توسعه سیستم کنترل R2R ممکن است به صورت واقعی رابطه بین متغیرهای خروجی و کنترل و مشخصات خروجی که مورد علاقه را بیان می‌کند. مدل

زگرسونی است که به صورت واقعی رابطه بین متغیرهای خروجی و کنترل و مشخصات خروجی که مورد علاقه را بیان می‌کند. مدل

زگرسونی است که به صورت واقعی رابطه بین متغیرهای خروجی و کنترل و مشخصات خروجی که مورد علاقه را بیان می‌کند. مدل

Zمنیاتی حساسیت به تغییرات در داده‌های برای یک میانگین مورد نیاز برای یک بردن به وجود یک تغییر خاص کمینه شد و با به عبارت دیگر کمینه کردن بازرسی که به معنی کمینه شدن هزینه‌های کل است. روش‌های مشابه برای مطالعه اقتصادی دیگر

Nمودارهای EWMA در مراجع [21-26] تجزیه و تحلیل‌های نهایی اقتصادی دیگر را معرفی کردند. مرجعت [24] از شیوه سازی مونت كارلو برای پیش‌بینی خاصی را معرفی کرد که به شکل

Nمودارهای EWMA که شکل 1 نشان داده است. نتایج آنها شده در مرجع [24] حاکی از آن است که

روش‌های انتخاب کردن یک نمونه در فواصل زمانی ناپایدار می‌کند. این مرجعت بیان کرد که انتخاب

نمونه و فاصله نمونه‌گیری باید در هر مقطع زمانی براساس احتمال پیشین اینکه فرایند در حالت خارج از کنترل به سر می‌برد نشود. روش‌هایی از قبل برنامه ریزی یپا به مقدار

نسبتاً زیادی در تغییرات به تعیین شده انتخاب است. همچنین در مراجع [19-15] یک راهکار عمومی اقتصادی ارائه شده است. مدل مطرح شده در آن مراجع، شیوه هزینه‌های

نمونه‌گیری در حالت تحت کنترل، هزینه‌های تولید معیوب در حالت خارج از کنترل، همچنین هزینه‌های تشخیص علی قبیل،

در فرایند و زنج خطره‌ای است. در مرجع [18] گزارش شده که اقتصاد‌دانان حالات در انتخاب

Nمودارهای EWMA کنترل با استقلال، سال 14، شماره 2، اسفند 1382

شکل 1- ساختار عملی فرایند کنترل

R2R
که در آن نتیجه‌گیری به

\[\text{شکل (2) روندها تجربه را نشان می‌دهد.} \]

حال فرض کنید که احتمالات از هدف در فرآیند از مدل زیر برای برد است:

\[y_n = \alpha + \beta x_{n-1} + \delta_n + \epsilon_n \]

(5)

که در آن \(\delta \) میانگین احتمال در هر مرحله است. میانگین مربع احتمالات این فرآیند برابر است با:

\[\text{AMSE}(y_n) = \lim_{n \to \infty} E(y_n^2) \]

(6)

اصطلاح منجانی این حقيقة نشان می‌شود که این نوع EWMA کنترل کندگی ها به‌خاطر شرایط اولیه در معادلات دارای تغییرات کوتاه مدت بوته که باید از شرایط پایداری آن جدا شود. با توجه به معادله‌های بالا معادله حل‌کننده به‌طور خروجی به صورت زیر نویس می‌شود:

\[y_n = \alpha - \xi a_{n-1} + \delta_n + \epsilon_n \]

(7)

که در آن \(\xi = \beta / b \)

(8)

برای حل مجموع معادلات دفرانتیال در این کنترل کندگی از روش فضای حالت به‌کار است. فرض کنید برای محل حالت زیر معرفی می‌شود

\[z_n = (a_{n-1}, n) \]

(9)

با این تعریف می‌توان معادلات فوق را در فضای حالت به صورت زیر نشان داد.

\[z_{n+1} = Az_n + W_n \]

(10)

که در آن

\[A = \begin{bmatrix} 1 - \lambda \xi & \lambda \delta \\ 0 & 1 \end{bmatrix} \]

(11)

\[W_n = \begin{bmatrix} \lambda (\alpha + \epsilon_n) \\ 1 \end{bmatrix} \]

(12)

ورودی و خروجی به صورت معادله (1) که یک مدل ساده خطا است تعریف می‌شود:

\[y_n = \alpha + \beta x_{n-1} + \epsilon_n \]

(1)

کاستر بایان باور است که در صورتی که فضای مربوط به‌منظورهای قبلی کنترل کچک باشد، می‌توان از مدل ساده رگرسیون خطی به عنوان تغییر مدل‌های غیر خطی استفاده کرد [2].

در این رابطه \(\alpha \) پارامتر بوته و \(\beta \) نویز سیاست است.

همچنین در معادله (1) این فرض وجود دارد که هر تأخیری بین فعالیت کنترلی و اثر آن روی \(y_n \) وجود ندارد. به همین نتیجه در مسائل تولید گسترش قطاعی این یک فرض منطقی است. در این مرحله \(\alpha \) و \(\beta \) با اساس روش‌های مختلف قابل تخمین‌اند.

از آنجا که این روش به صورت کلیکس با کنترل ما روی قدم دوم R2R بعنوان کنترل و تنظیم مستمر می‌پردازد.

روی قدم دوم R2R کنترل دوم انداره‌گیری خروجی فرآیند و مقیاسی با پیش‌بینی بر اساس مدل رگرسیونی و استفاده از برای اختلاف حاصل از پیش‌بینی مدل و EWMA روندهای عرض از مدل زمان‌ورودی در مرحله بعد (\(x_n \)) بر اساس مقدار جدید \(a_n \) مشخص می‌شود [22].

از آنجا که فرآیند دینامیک می‌باشد، فعالیت کنترلی به‌صورت اساس حداقل واریانس حل‌های هدف \(T \) برای مدل (1) عبارت است از:

\[x_n = \frac{T - \alpha}{\beta} \]

(2)

عملیات کنترلی (3) بر روی سیستم، قبل از شروع مرحله اعمال می‌شود. کنترل کننده ر2ر این تعیین می‌کند که ضریب زاویه \(\beta \) و عرض از مبدأ \(\alpha \) نسبت به زمان متغیر است [2]. در این حالت فعالیت کنترلی از پیش به‌پایه مقدار پاسخ

\[\tilde{y}_n = a_{n-1} + b x_{n-1} = T \]

(3)

\[x_n = \frac{T - a_n}{b} \]

استناد: سال 1384، شماره 2، استقلال 18.
3-طرح اقتصادی فرایندهای EWMA با استفاده از R2R

کنترل کننده‌های EWMA

آگاهی از هزینه‌های کیفیت به مدیران باید تنظیم نحوه سرمایه‌گذاری در بهبود کیفیت کمک کرده و آنان را در بررسی کوشش‌های به عمل آمده و ارزیابی میزان اثر فعالیت‌های مختلف بهبود پایدار می‌دهد. این آگاهی از جهت کاهش تعداد اشتباهات و خطاهای در مورد هزینه‌های مربوطه مورد استفاده قرار می‌گیرد. با توجه به این که در کنترل کننده‌ای R2R فرایندهای هزینه‌پذیر می‌کنیم، لذا از روش "هزینه‌پذیر فرایندهای EWMA در این راستا استفاده باید کرد. در این مدل هزینه‌های کیفیت فرایندهای EWMA به دو تکمیل می‌شوند:

- هزینه‌های تطابق: هزینه‌هایی که صرف رسیدن فرایندهای EWMA

\[z_n = A^n z_0 + \sum_{j=1}^{n-1} A^{n-j-1} w_j \]

\[y_n = \frac{(T - a_{n-1})b}{b} \]

\[y_n = T + \varepsilon_n \]

\[\beta = b \]

\[\alpha = a_{n-1} \]

\[\alpha + 4n \]

\[a_n \]

\[T - a_{n-1} \]

\[\frac{1}{b} \]

\[\frac{(T - a_{n-1})b}{b} \]

\[+ \]

\[y_n - bx_{n-1} \]

\[\frac{1}{\lambda \xi} \]

\[\frac{1}{\lambda \xi} - \frac{1}{\lambda \xi} \sum_{j=0}^{n-1} (1 - \lambda \xi)^{n-j-1} \epsilon_j + \epsilon_j \]

\[AMSE(\gamma_n) = \text{Lim}_{n \to \infty} \text{Var}[\gamma_n] = \frac{\sigma^2}{2 - \lambda \xi} + \frac{(\delta)^2}{\lambda \xi} \]

\[\frac{(\delta)^2}{\lambda \xi} \]

\[\text{در معادله (16) مقدار } \frac{\lambda \xi}{\delta^2} + \text{واریانس و میزان اربی خروجی است. با دقت در این معادله می‌توان} \]

\[19 \]

\[1384 \]
به اهداف خود می‌شوند.

- هزینه‌های عادم تطابق ذیلینه‌ای که به دلیل عدم تطابق خروجی با می‌برای تعیین شده فرامی‌اند، ایجاد می‌شود.

3-1-2 هزینه‌های عادم تطابق

هزینه‌های عادم تطابق معمولاً به دو دسته هزینه خرایی داخلی و هزینه خرایی خارجی تقسیم می‌شود[20].

هستند که که از تحول کالا به مسئولی به مصوبات هزینه‌ای صورت می‌گیرد. بعبارت دیگر هزینه‌های که به تعداد اطمینان کننده می‌شود، صرف می‌شوند.

هستند که با حساب هزینه خرایی داخلی تحویل داده شود. صرف می‌شود. سیستم می‌شود و توجیه مالی وارد این شده.

همانطور که قبل اشته شد خروجی فرایند توسط نمونه‌گیری مطالعه و پذیرش بررسی می‌شود. در طرح مطالعه و پذیرش چه در مرحله نمونه‌گیری و چه در مرحله بارزی سیستم تعداد قطعات معیوب شناسایی می‌شود که یک ضرور تا به وجود آنها می‌توان به حساب هزینه خرایی داخلی کاهش بگیرد. برای محاسبه متوسط این هزینه، مقدار متوسط قطعات خراب تنش خازن داده شده را محاسبه کنیم. متوسط این قطعات عبارت‌اند از:

\[ATD = nP_a + nP_b(1 - Pa) \] (21)

نتایج بنا به محاسبه متوسط هزینه‌های خرایی داخلی برای استفاده در این شده:

\[ECIF = C_2 \cdot ATD \] (22)

به اشته شده می‌شوند.

3-1-3 هزینه‌های تطابق

در فرآیند تولیدی که از کنترل کننده‌ای استفاده می‌کند یکی از مهم‌ترین هزینه‌های تطابق هزینه ارزیابی است. ISO 9004، هزینه‌های ارزیابی طبق تعیین استاندارد 9004. این هزینه‌های هستند که برای آزمایش کیفیت به مصوبات اطمینان از اینکه خواست‌های کیفیت برآورده شده، صرف می‌شود.

در علوم فیزیک در بررسی کیفیت قطعات از روش‌های نوین به صورت اصل و پذیرش استفاده می‌شود. در این حالت بر اساس طرح‌های نمونه‌گیری استخراج شده از جداول استاندارد ABC، از دسته‌های محصولات تولید شده در هر مرحله نمونه‌گیری می‌شود. در صورتی که اعداد معیوب در نمونه کمتر از میلیواده عدد پذیرش طرح نمونه‌گیری بود، کل دسته پذیرفته می‌شود. در غیر این صورت کل دسته‌بندی مورد صد درصد نمونه‌گیری و محصول سال سال وارد این شده.

شکل (3) نمودار استفاده از طرح‌های اصلاح و پذیرش را نشان می‌دهد. در این شکل:

\[Pa : پذیرش دسته \]

\[1 - Pa : احتمال پذیرش دسته \]

بدین‌گونه است ارزیابی مشخصات‌های هزینه ارزیابی به صورت کلی می‌توان به تعیین این هزینه‌ها اقدام کرد[20].

\[ATI = N(1 - Pa) + nPa \] (18)

\[Pa = \sum_{x=0}^{n} \binom{n}{x} P_a^(x)(1 - P_a)^^{n-x} \] (19)

که در آن:

\[N : \) انداده محصول\]

\[Pa : \) عدد پذیرش\]

استقلال، شماره 2، 1384، استاد
طرح نمونه‌گیری:

اندازه نمونه: N

اندازه‌بندی: n

عدد پذیرش: Ac

میزان درصد معیوب محصوله: P'

بارزیسی/100%

شکل ۳- فاین پذیرش به‌صورت اصلاح وذیرش

مقدار خالص هزینه‌های خرابی خارجی را معکوس می‌کند. واضح است این ضریب در صورت زیاد بودن اندازه محصوله نسبت به اندازه نمونه به سمت یک میل می‌کند.

اما از طرف دیگر ممکن است مشتری همان موقع از این محصول استفاده نکند و همگام با استفاده از محصول در طول زمان گزارش موجه شکایت در آن شود بنابراین مدل بی‌شناسید برای تخمین هزینه‌های خرابی خارج در هر زمان عبارت است از:

$$ECEF = C_3 \cdot N \cdot AQQ \sum_{i=1}^{m} A_i \cdot p_i$$ (۲۴)

$$A_i = A(1 + r)^i$$ (۲۵)

که در آن:

- C_3: میزان جریمه خرابی محصول در سال ۱
- r: نرخ بهره سالیانه
- A_i: جریمه خرابی محصول در سال اول
- m: تعداد سال‌های گذشته

احتمال استفاده در سال i که پذیرش است.

$: P$ میزان خرابه‌های واحد ضریب خرابه‌ای چرا تحویل داده شده بود

C_3: میزان محصوله به‌صورت خرابه‌ای در هر زمان عبارت است از:

$$P = P^*$$

ضریب تصحیح P^* به‌منظور حذف قطعات معیوب تشخیص داده شده در نمونه‌گیری است وقیت به عدد پذیرش Ac طرح نمونه‌گیری برگرداری صفر باشد. در این حالت $P^* = 0$.

$AOQ = P^* (N - n) / N$ (۲۳)

اهداف مورد نظر بخش ۱۲، شماره ۳، استناد: ۱۲۳

۲۱ استناد، سال ۲۴، شماره ۳، استناد ۱۳۸۲
با گذشتی در روبروی EWMA

اکنون که مدل‌های هر دوی مورد بررسی یک با هم متفاوتی پایان به مقدار
ساخت که با تعیین مقادیر \(\lambda \) در کنترل کننده با خروجی

EWMA

حداقل بررسی به عبارت دیگر، در اثر افزوده‌ی پیش‌تر

یکی گرد و ناب بر نیو.

ولی با یاد توجه داشت که در EWMA ریجی به

صورت پوسته اندوگری می‌شود (\(y_n \)) حال اگر مشخصه

کیفی خروجی دارای توزیع مشخصی باشد. می‌توان متوسط

درصد قطعات معیوب تولیدی را در EWMA را کنترل کننده

محاسبه کرد. به طور کلی درصد معیوب در این حال

EWMA

برای است با:

\[P' = P(y_n \geq USL) + P(y_n \leq LSL) \] \hspace{1cm} (26)

\[y_n \] به ترتیب حدود فنی بالا و پایین

مانند. با ظرفیت توزیع نرمال، \(P' \) به صورت زیر محاسبه

می‌شود:

\[P'(Z_{y_n} = \frac{USL - \mu y_n}{\sigma y_n}) + P(Z_{y_n} \leq \frac{LSL - \mu y_n}{\sigma y_n}) \] \hspace{1cm} (27)

\[y_n \] که در آن \(\mu y_n \), \(\sigma y_n \), میانگین و انحراف میانگین

مانند که در معادله (27) به این اشاره شد. بنابراین مدل

هر دوی (28) را می‌توان برای به دست آوردن حداقل هر دوی

کیفیت طراحی کرد.

\[\text{Min} \ EEC + ECIF + ECEF \]

subject to

\[0 < \lambda \leq 1 \]

\[1 - \lambda \leq 1 \]

\[\lambda \]

در مدل (28)، ECIF و ECEF و ECEF و ECC

همگین تابعی که بعد از اجرای مدل، مقدار بهینه آن به دست می‌آید.

حدوده‌ی 1.2 - 1.2 نیز پایداری فرانکین را تضمین می‌کند.

\[2-2\text{ آزمون مدل} \]

برای بررسی عملکرد مدل در تخمین پارامترهای کننده

استلال، سال 26، شماره 2، استقلال، 1384
جدول 1- معیارهای پیشنهادی طرح نمونه‌گیری

<table>
<thead>
<tr>
<th>انتخاب محموله (N)</th>
<th>کد نمونه‌گیری</th>
<th>AQL %</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>E</td>
<td>1</td>
</tr>
</tbody>
</table>

جدول 2- طرح نمونه‌گیری بر اساس جداول استاندارد ABC-STD-105E

<table>
<thead>
<tr>
<th>انتخاب نمونه (n)</th>
<th>عدد پذیرش (c)</th>
<th>عدد رد (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

جدول 3- میزان خروجی و ورودی در 20 دوره متوالی تولید

<table>
<thead>
<tr>
<th>ضخامت (میلیمتر)</th>
<th>غلظت (مول/لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.012</td>
<td>3.024</td>
</tr>
<tr>
<td>0.0125</td>
<td>3.0251</td>
</tr>
<tr>
<td>0.0123</td>
<td>3.0245</td>
</tr>
<tr>
<td>0.0123</td>
<td>3.0247</td>
</tr>
<tr>
<td>0.0128</td>
<td>3.0255</td>
</tr>
<tr>
<td>0.0129</td>
<td>3.0258</td>
</tr>
<tr>
<td>0.0127</td>
<td>3.0253</td>
</tr>
<tr>
<td>0.012</td>
<td>3.0241</td>
</tr>
<tr>
<td>0.0125</td>
<td>3.0248</td>
</tr>
<tr>
<td>0.0126</td>
<td>3.0253</td>
</tr>
<tr>
<td>0.0126</td>
<td>3.025</td>
</tr>
<tr>
<td>0.0124</td>
<td>3.0249</td>
</tr>
<tr>
<td>0.0126</td>
<td>3.0251</td>
</tr>
<tr>
<td>0.0127</td>
<td>3.0255</td>
</tr>
<tr>
<td>0.0128</td>
<td>3.0254</td>
</tr>
<tr>
<td>0.0125</td>
<td>3.0252</td>
</tr>
<tr>
<td>0.0125</td>
<td>3.0248</td>
</tr>
<tr>
<td>0.0126</td>
<td>3.0251</td>
</tr>
<tr>
<td>0.0126</td>
<td>3.0255</td>
</tr>
<tr>
<td>0.0125</td>
<td>3.0252</td>
</tr>
</tbody>
</table>

استقلال، سال 1384، شماره 2، استاد 4
شکل ۵- برآورد مدل به رفتار فرایند

(۵) نشان داده شده است، همجین شکل (۷). درصد هریک از آینده هریک جامعه در تشکیل به نسبت هریک از آینده هریک جامعه در تشکیل به سطح رشد H

۲۴
شکل 6- مشخصات آماری و کارایی فرآیند قیمت از به کار گیری کنترل کننده R2R

جدول 4- مقادیر C1, C2, C3 در محاسبه هزینه کمیت

<table>
<thead>
<tr>
<th>متغیر پارامتر هزینه عدم اطمینان</th>
<th>میانگین پارامتر هزینه داخلی (C2)</th>
<th>میانگین پارامتر هزینه خارجی (C3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C1) 9.8</td>
<td>5.1</td>
<td>12.5</td>
</tr>
</tbody>
</table>

جدول 5- میانگین هزینه‌های کمیت قبل از به کارگیری کنترل کننده

<table>
<thead>
<tr>
<th>هزینه‌ها</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC</td>
<td>3525</td>
</tr>
<tr>
<td>ECIF</td>
<td>1005.3</td>
</tr>
<tr>
<td>ECEF</td>
<td>3520.6</td>
</tr>
<tr>
<td>مجموع هزینه‌ها</td>
<td>8050.9</td>
</tr>
</tbody>
</table>

شکل 7- درصد میانگین هزینه‌های کمیت قبل از به کارگیری کنترل کننده R2R
جدول 6- نتایج حاصل از 20 مرحله متوالی تولید تحت کنترل

<table>
<thead>
<tr>
<th>نتایج (میلیمتر)</th>
<th>گل‌فم (مول بر لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0133</td>
<td>3.02429</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02474</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02476</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.0248</td>
</tr>
<tr>
<td>0.0135</td>
<td>3.02464</td>
</tr>
<tr>
<td>0.0138</td>
<td>3.02507</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02474</td>
</tr>
<tr>
<td>0.0137</td>
<td>3.02485</td>
</tr>
<tr>
<td>0.0137</td>
<td>3.0248</td>
</tr>
<tr>
<td>0.0135</td>
<td>3.02461</td>
</tr>
<tr>
<td>0.0138</td>
<td>3.02508</td>
</tr>
<tr>
<td>0.0138</td>
<td>3.02512</td>
</tr>
<tr>
<td>0.0137</td>
<td>3.02494</td>
</tr>
<tr>
<td>0.0135</td>
<td>3.02451</td>
</tr>
<tr>
<td>0.0134</td>
<td>3.02442</td>
</tr>
<tr>
<td>0.0137</td>
<td>3.02498</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02471</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02482</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02484</td>
</tr>
<tr>
<td>0.0136</td>
<td>3.02476</td>
</tr>
</tbody>
</table>

شکل 8- مشخصات آماری و کارایی فرآیند بعد از به کار گیری کنترل کنده
5- نتیجه گیری و پیشنهادات

در این مقاله کنترل کنده R2R به منظور سازی اقتصادی شده است این امر از طریق توسعه یک مدل اقتصادی که هزینه‌های کیفی را با تعيین مقادیر بهینه، که به انجام مرسد و پس از استفاده از فرآیند کنترل R2R بهینه شده، علاوه بر افزایش توانایی فاینک، هزینه‌های کیفی نیز کاهش می‌یابد. علاوه بر این با اجرای این مدل نسبت هزینه‌های تهیه به هزینه‌های عدم تهیه به سمت یک میل می‌کند که نشان دهنده کمترین هزینه کیفیت در سطح کیفیت موجود است.

برای تحقیقات آتی، استفاده از مدل‌های جدید معیاره که پوتند هم‌سان، توانایی فاینک، میانگین معنی و هزینه‌های کیفیت را به مقادیر مورد نظر تصمیم گیرندگی نمایند. پیشنهاد می‌شود همچنین می‌توان در اجرای مدل توسعه داده شده در این مقاله، برای هر نوع هزینه کیفیت بک وزن در نظر گرفت و نتایج حاصله را در هزینه‌های کیفیت و کیفیت محصول بررسی کرد.

پارامترهای هزینه‌های (C1, C2, C3) موسط هزینه‌ها در این حالت بررسی شده است. جدول (7)، مقادیر متوسط هزینه‌های کیفی و بخش (9)، درصد آنها را نشان می‌دهد. در این روش‌کرکرد، جذب هزینه‌های انقباض به هزینه‌های عدم انقباض یرایت 95/0 است که نشان از بهینگی هزینه‌های کیفی است زیرا به این نسبت به سمت یک میل کرده است [24]. به عبارت دیگر در این روش‌کرکرد با سطح کیفیت بالاتری، هزینه‌های کیفیت کمتری هم داشته‌اند.

واژه‌نامه

1. exponentially weighted moving average
2. statistical process control
3. adjustment
4. engineering process control
5. stability
6. single input single output
7. white noise
8. state-space
9. average total inspection
10. internal failure cost
11. external failure cost
12. average outgoing quality
13. upper specification limit
14. lower specification limit

استناد: سال ۱۳۸۴، شماره ۲، استناد ۱۳۸۲

