Transient Site Response Analysis of Nonhomogeneous Two-dimensional Topographic Features Using BEM

M. Kamalian and A. Sohrabi Bidar
International Institute of Earthquake Engineering and Seismology

Abstract: This paper presents the complete algorithm of site response analysis of nonhomogeneous topographic structures using transient two-dimensional boundary element method (BEM). Seismic behaviour of various topographic features including canyon, half plane, sedimentary filled valley and ridge sections, subjected to incident SV and P waves are analysed. The analysis shows the efficiency of the proposed algorithm and its advantage over common transformed domains methods in forming a basis for extension to non-linear behaviour.

Keywords: Boundary element method, Time domain, Site effect, Nonhomogeneous, Two-dimensional topography effects, Scattering, Amplification
مقدمة
امروزه کاملاً اشکال است که شرایط ساختگاهی شامل ویژگی‌های مختلفی را داشته و هزینه‌های زیادی را نیاز دارند. برای نرم‌افزارهای سطح زمین، توزیع و ترکیبی‌های، ناشی از زمین‌توده‌ها و تاثیر سایر شرایط، درمانی‌های شامل ماهیت و ملانه‌ها، که هر یک با بهره‌برداری، بکارگیری و در نهایت به بهبود این مسائل می‌تواند اثر بسزایی داشته باشد، از آنجایی که محدوده فرکانسی بی‌پایان نیست و همچنین محدوده سرعت موج‌های لرزه‌ای شیشه‌ساده از 3 تا 10 هرث و همچنین محدوده سرعت موج لرزه‌ای، ساختگاه 10 متری است. کاربرد روش‌های حجمی در مسائلی که به نام محدود دارند، با مشکلات هرمان است. چش می‌شود احجام موجب انعکاس کاذب امواج در مرزهای مشترک باهم و به تبع آن انتشار خطی در سیستم می‌تواند به صورت خاص است که می‌توان انعکاس کاذب را با تهیه‌دانی چنین مزدهای جانبی‌اند، مرزهای آرام یا مرزهای ویکسون حذف کرد [1]. روش‌های دیگر و فناوری‌های جدید می‌تواند با بهبود روش‌های سازگاری به‌نها برگیرد با روش سطحی سازگاری به‌نها کوچک نیز که به پای بداند، به دلیل برخی روش‌های پیشرفته، در حال حاضر، مسائل دیفانتراکت‌ها و سیستم‌های فنی‌گرافیکی محدود، تحقیقات و آزمایشات کلاسیکی خطر است. که در حال مسائل انتشار امواج جدایی‌زا یا در پایین چه اولاً مشترک‌نامه‌ها به برخی مزدهای و در نتیجه ابعاد دستگاه محدود از محدود می‌کند. نتایج بررسی نشان داد که نتیجه‌آوری به مدل‌سازی حوزه دور را در تحلیل دینامیکی می‌تواند با تهیه و بهبود

جدول

<table>
<thead>
<tr>
<th>تابع</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>نرخهای پیکری</td>
</tr>
<tr>
<td>(t_i)</td>
<td>سرعت امواج طولی و عرضی</td>
</tr>
<tr>
<td>(t_{i,\Delta t})</td>
<td>حاله‌های اساسی تغییر مکان و تنش</td>
</tr>
<tr>
<td>(\mu)</td>
<td>نرخهای استودینامیک تغییر مکان و تنش</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>نرخهای استودینامیک نیروی مانند</td>
</tr>
<tr>
<td>(t_n)</td>
<td>توان شکل خطی زمان</td>
</tr>
<tr>
<td>(M_1(t)) و (M_2(t))</td>
<td>نرخهای مزدود (FEM) و روش‌های مرزی مانند روش اجزای محدود (BEM) و روش‌های مرکب (HYBRID)</td>
</tr>
</tbody>
</table>
تجزیه سیستم

به‌منظور به‌یادآوری خلاصه‌سازی‌های مربوط به سیستم‌های جامع، می‌توان به‌منظور تجزیه‌سازی منجر شد.

cx

\[P \times \text{شیب} = \frac{\text{شیب}}{\text{شیب زاویه}} \]

\[\text{شیب} = \frac{\text{شیب}}{\text{شیب زاویه}} \]

\[T \times \text{شیب} = \frac{\text{شیب}}{\text{شیب زاویه}} \]

\[\text{شیب} = \frac{\text{شیب}}{\text{شیب زاویه}} \]

\[\text{شیب} = \frac{\text{شیب}}{\text{شیب زاویه}} \]
به ترتیب هسته‌های دینامیکی تغییر می‌کند و نشان اگر به شرح زیر تعریف شده‌اند:

\[G_{ij}^{N+n}(r) = \frac{1}{n!} \int_{(n-1)!}^{\infty} \frac{G_{ij}(r, t - \tau)}{M_k(\tau)} \, d\tau \]

(5)

\[F_{ij}^{N+n}(r) = \frac{1}{n!} \int_{(n-1)!}^{\infty} \frac{F_{ij}(r, t - \tau)}{M_k(\tau)} \, d\tau \]

(6)

که در آن:

\[G_{ij}(r) = \sum_{n=1}^{\infty} \left(G_{ij}^{N+n}(r) \cdot t^n(x) - F_{ij}^{N+n}(r) \cdot u^n(x) \right) \]

(8)

\[c_{ij} \cdot u_i^n(\xi) = \frac{1}{N} \sum_{n=1}^{Q} \left\{ \left[t_{\xi}^{ij} \cdot \sum_{n=1}^{Q} \left(G_{ij}^{N+n}(r) \cdot N_k(n) \right) \right] \cdot |p| \right\} \]

(10)

3- جدانسازی زمانی و مکانی

جل معادلات (2) با (3) مستلزم آن که متفاوت‌های معنی‌دار در هر دو حرکت زمان و مکان جدانسازی شوند. برای این منظور به شکل زیر عمل می‌شود:

\[\text{یک جدانسازی زمانی محوری زمان با N باید به صورت تغییرات فیزیکی در هر یک از زمان‌های زمانی را به صورت زمان می‌شود.} \]

\[u_i(x, t) = M_1(t) \cdot t^n(x) + M_2(t) \cdot t^{n-1}(x) \]

(4)

\[t_{ij}(x, t) = M_1(t) - t^n(x) + M_2(t) - t^{n-1}(x) \]

(5)

3-1- جدانسازی در زمان

برای جدانسازی زمانی محوری زمان با N باید به صورت تغییرات فیزیکی در هر یک از زمان‌های زمانی را به صورت زمان می‌شود.

\[T_{n+1} = \frac{t^n - T_n}{\Delta t} \]

(5)

با توجه به معادله (4) می‌توان مقدار (2) را به شکل زیر در فضای زمان جدانسازی نمود:

\[c_{ij} \cdot u_i^n(\xi) = \left\{ \left[G_{ij}^{N+n}(r) \cdot t^n(x) \right] - \left[G_{ij}^{N+n}(r) \cdot t^{n-1}(x) \right] \right\} \cdot |p| \]

(6)

3-2- جدانسازی در مکان

برای جدانسازی مکانی از اندیس‌های این سیستم درجه دو استفاده شده است. اگر در سیستم چنداینارامتریک درجه دو از توابع شکل متغیر باشد با فرض تغییرات خطی در هر یک از زمان‌های تغییر می‌تواند را به صورت زمان می‌شود.

\[M_1(t) = \frac{t^n - T_{n+1}}{\Delta t} \& \quad M_2(t) = \frac{T_n - t^n}{\Delta t} \]

(5)

با توجه به معادله (4) می‌توان مقدار (2) را به شکل زیر در فضای زمان جدانسازی نمود:

\[c_{ij} \cdot u_i^n(\xi) = \left\{ \left[G_{ij}^{N+n}(r) \cdot t^n(x) \right] - \left[G_{ij}^{N+n}(r) \cdot t^{n-1}(x) \right] \right\} \cdot |p| \]

(6)

پیانو تعداد کل المان‌های مزدی و میانگر وزنی و [1/2] پیانو زاویه‌بندی است.
انگرلی‌های متفرگ قوی اقدام کرد. بیدهی اساس که امثالی مذکوری که منفرد و در غیر این صورت عادی نامیده می‌شود. انگرلی‌های معادله (10) به راحتی با استفاده از معنای معرفی گوس بر روی المان‌های عادی قابل محاسبه‌اند. در المان‌های متفرگ، براورد آن F2 از انگرلی‌های معادله (10) چک هسته‌های G و G0 و همچنین نابع شکل نظر نقطه محیطی‌کننده و تمهیدات دقیق‌تر طلب می‌کنند.

انگرلی‌های حاصله‌های G در این انگرلی‌های اندیشان آن قوی نامیده می‌شود. اولویت‌ها از یک روش غیر مستقیم که ببر مفهوم حرتک جسم سل‌ sortBy است، می‌تواند معادله زیر قابل محاسبه‌است:

\[\int_{\mathcal{Q}} I_{ij}^L \cdot |\mathbf{p}| \cdot d\mathbf{p} = \int_{\mathcal{Q}} I_{ij}^{\text{static}} \cdot |\mathbf{p}| \cdot d\mathbf{p} + \int_{\mathcal{Q}} (I_{ij}^L - I_{ij}^{\text{static}}) \cdot N_k \cdot |\mathbf{p}| \cdot d\mathbf{p} \]

انگرلی‌های اول و دوم جسم سل‌sortBy قبیل به ترتیب منفرد و عادی‌اند. انگرلی‌الاکه همان انگرلی‌های مالاناماتیک است، به راحتی با استفاده از روش غیر مستقیم باید بر حرتک یک محاسبه‌ای می‌شود. انگرلی‌های اول نیز به دلیل یک‌سکان بودن نوع و ماتریک اورانداز هسته‌های الاستاتیک و استاتیماتیک عادی است. همانند دیگر انگرلی‌های عادی با کمک قاعدآ معرفی گوس برای گیرش صورت می‌گردد.

\[\int \mathbf{R} \cdot \mathbf{U} \cdot G \cdot \mathbf{U}^T \cdot \mathbf{R}^T = 0 \]
محیط‌هایی که نیم‌صفحه هم‌کننده باشد، معادله انگرال مرزی (23) برای حل مستقیم کفایت خواهد کرد. الگوریتم اجزای مرزی فرق‌النگارکننده در تحلیل استفاده شده در این مقاله است. معادله اجزای مرزی جدیدی از توابع اجزای مرزی و اجزای محورهای طراحی شده، به کار گرفته شده است. (22) فرمولی خاصی از روش‌های اجزای مرزی، اجزای محورهای طراحی شده و ترکیب آنها را مورد استفاده قرار دهد. مشابه بخش اجزای مرزی از استفاده از علائم ایزوپارامتریک سه‌گوشه انجام می‌گیرد.

مثال‌های عدیدی این بخش به گونه‌ای طراحی شده‌اند تا کارایی و دقت الگوریتم اجزای مرزی فرق‌النگارکننده را در تحلیل دینامیک عوارض توبورگانی دو بعدی ناخنگین در فضای زمان به نمایش گذاشته و چهار عارضه در غلاف، نیم‌مرکزی، در دو ارتفاع و نیم مرکزی، را مورد توجه قرار گرفته‌اند. موج مهناز در تمامی مثال‌ها از نوع ریکر انتخاب شده است که معادله‌ای به شرح زیر دارد:

\[
f(t) = \left[1 - 2 \cdot \left(\frac{\pi}{f_p} \cdot (t - t_0) \right)^2 \right] e^{-\left(\frac{\pi}{f_p} \cdot (t - t_0) \right)^2}
\]

(15)

دریافت منطقی نیست که الگوریتم اجزای مرزی ارائه شده را در تحلیل دینامیکی پاسخ لرزه‌ای یک دره
پ (الف) تاییش مالی پ (الف) نمودار همگن نشان دهد. شکل (3) در وابستگی بیان داده می‌گردد که در معرض تاثیر امواج SV و P، در نزدیکی امواج است. در اینجا نشان داده می‌گردد که در معرض تاثیر امواج SV و P، در نزدیکی امواج است.

ب (الف) تاییش مالی P (الف) نمودار همگن نشان دهد. شکل (3) در وابستگی بیان داده می‌گردد که در معرض تاثیر امواج SV و P، در نزدیکی امواج است.

مهمک نشان دهد. شکل (3) در وابستگی بیان داده می‌گردد که در معرض تاثیر امواج SV و P، در نزدیکی امواج است.

در اینجا نشان داده می‌گردد که در معرض تاثیر امواج SV و P، در نزدیکی امواج است.

در اینجا نشان داده می‌گردد که در معرض تاثیر امواج SV و P، در نزدیکی امواج است.

در اینجا نشان داده می‌گردد که در معرض تاثیر امواج SV و P، در نزدیکی امواج است.

در اینجا نشان داده می‌گردد که در معرض تاثیر امواج SV و P، در نزدیکی امواج است.
شکل ۳ - هندسه دره خالی با مقطع نیم‌دایره

شکل ۴ - یوزگانیا حرکت سطحی به ازای فرکانس بدون بند ۰.۵ در تایش قائم

استقلال، سال ۱۳۸۴، شماره ۱۲، استادی ۱۲۸۴
Incident P-wave
Incident Angle 90

Incident SV-wave
Incident Angle 90

Amplification

X/R

Hz., Present Study
Vrt., Present Study
Hz., Wong [14]
Vrt., Wong [14]
Hz., Dravinski and Mossessian [15]
Vrt., Dravinski and Mossessian [15]
Hz., Mossessian and Dravinski [16]
Vrt., Mossessian and Dravinski [16]

SHOCK 5 - ZIPROKTAHI HARKAT SEYEHATI BE ARA VARKAN BEHDON BEHDON 1.0 DAR TA'ASH QAMEM

SHOCK 6 - ZIPROKTAHI HARKAT SEYEHATI BE ARA VARKAN BEHDON 2.0 DAR TA'ASH QAMEM

Downloaded from jcme.iut.ac.ir at 21:20 IRST on Monday March 2nd 2020
Incident P-Wave
Incident Angle 60

X/R
Amplification

Hz., Present Study
Vrt., Present Study
Hz., Wong [14]
Vrt., Wong [14]
Hz., Dravinski and Mossessian [15]
Vrt., Dravinski and Mossessian [15]
Hz., Mossessian and Dravinski [16]
Vrt., Mossessian and Dravinski [16]

P

شكّل 7- بزرگنمایی حرکت سطحی به ازای فرکانس بدون بندی در تایم با زاویه 60 درجه و موج مهاجم H.

Incident P-Wave
Incident Angle 60

X/R
Amplification

Hz., Present Study
Vrt., Present Study
Hz., Wong [14]
Vrt., Wong [14]

P

شكل 8- بزرگنمایی حرکت سطحی به ازای فرکانس بدون بندی در تایم با زاویه 60 درجه و موج مهاجم H.
شکل 9 - مقایسه تاریخچه زمانی تغییر مکان نقطه‌ای به مختصات (3/1432، 10-8) با حرکت میدان آزاد حاصله از تابش موج P با زاویه هجوم 60 درجه

شکل 10 - هندسه دره آبرنی با مقطع تیم‌دار

شکل 11 - مقایسه تاریخچه زمانی تغییر مکان انقلاب نقاط A از شکل (10) با حرکت میدان آزاد
شکل ۲۲ - تاربخچه زمانی تغییر مکان افقی نقطه A از شکل (۱۰) در دو گام زمانی مختلف

شکل ۲۳ - تاربخچه زمانی تغییر مکان نقطه B از شکل (۱۰) در دو گام زمانی مختلف
شکل 14 – پرگانه‌ای حرکت سطحی به آزادی فرانکسی بدون بدن ۰.۵

مهاجم SV مورد مقایسه قرار داده است. چنان‌که دیده می‌شود، هم‌اکنون بسیار خوب میان نتایج محاسباتی و تحلیلی و روت دارد و همانگونه که انتظار می‌رود دامنه تغییر مکان مولفه قائم در همه زمانها برابر صفر است. برای وضعیت موج مهاجم P نیز نتایج مشابهی با جایی مولفه‌های تغییر مکان به دست می‌آید.

(الف) حالت همگن در حالت اخیر فرض بر آن است که ضربه به توده روبرو، سرعت موج برخی و مدول برخی مصالح آفرینی به ترتیب، مناسب، نصف و یک نشان مقدار نظر در مهندسی درده‌هستند. این منطقه توسط دراویتسکی و موسمیان [5] و موسمیان و P و SV قائم با فرانکسی غالب ۰.۵ قرار گرفته است. محيط آفرینت و محيط نیم‌صفحه به ترتیب با استفاده از و افراد اولیه مدل شبیه‌سازی گرفته شده است. با استفاده از معادلات (۲) و (۳)، به ترتیب رفتار لرزه‌ای محدوده‌های آفرینت و نیم‌صفحه را بیان می‌دارند.

در این حالت فرض بر آن است که مصالح آفرینت و محيط در هم‌اکنون خصوصیت مشابه نسبت به برخوردارند. شکل (۱۱) مولفه‌های قائم و افقی تاریخچه زمانی تغییر مکان نیم‌صفحه (حرکت آزاد) را با مقدار تحلیلی آن [۳] در وضعیت موج
شکل ۱۵ - پدیده‌بندی حرکت سطحی به ازای فرکانس بیش از ۱/۲۲۵

شکل ۱۶ - مقایسه سرعت حرکت زمانی نوری افقی نقطه A از شکل ۱۰ با استفاده از روش الگوریتمی و مرکب در گام‌های زمانی مختلف
شکل 17 - مقایسه تاریخچه زمانی تغییر مکان افقی نقاط B از شکل (10) با استفاده از روش الگوریتم مزدی و مکر در گامهای زمانی مختلف

شکل 18 - هندسه نه سیتوسی شکل در (الف) الگوریتم حل همگن و (ب) الگوریتم حل ناهمگن

شکل 19 - مقایسه منحنی‌های پز رگنما به دست آمده از الگوریتم حل همگن و الگوریتم حل ناهمگن به روش اجزای مزدی به ازای فرکانس بدون بعد ۱ و موج مهاجم SV
سکل ۲۰ - مقایسه میان‌مایه‌های یک‌گمرکی به دست‌آمده آزمایش افزایش همگن و گمرکی حلال
تاهمگان به روش افزایشی مزی به ازای فراکسیون بین بندی بعد ۱/۵ و موج مهاجم ۵۷

پس از ۲/۲۳۲۳/۹، تنها در نتیجه‌ای رضایت‌بخش به دست می‌دهد، نتایج
حالت از روش مرکب تنها به ازای گام‌های زمانی کوچکتر از
۲/۵۸/۱۸۲/۱۹ دارای دقت قابل قبول دارد. به عبارت دیگر، حالت مانده با
استفاده از روش افزایشی مزی در قیاس با روش مرکب، تعداد
گام‌های زمانی کمتری را نیاز خواهد داشت.

۳-۴- به به مقطع سیتوسی
هدف این مطالعه انجام آزمایش‌های مزی از سه روش بر روی تیم‌های تولید
در حال تحلیل دیانی‌کی به سایه‌های انسانی قرار داده. باید
منتظر تایباد با مقضی نسبی، به نسبت شکل
(ارتقای به نمایی) باید به وسیله محققان، مصالح و
متصل‌ها، به دست آورد در نظر گرفته شده است. این به در کارهای
موج اول دارد ۵/۵ و در مختصات این ناحیه
۵/۵ بیان می‌شود. شکل‌های (۱۶) و (۱۷) به ترتیب در هر یک از
نقاط (۱۰۰)، مولفه‌های افتخیز زمانی
تغییر می‌کند که با استفاده از دو روش افزایشی مرزی و ترکیب
آن یا روش افتخایی محدود (۲۱) به دست آمده است. مورد مقایسه
قرار داده است. نتایج روش افزایشی مزی به استفاده از گام
زمانی ۲/۳۳/۱۸۰ و نتایج روش مرکب با استفاده از گام‌های زمانی
۲/۳۳/۱۸۰ و ۱۸/۱۲/۱۶۰ به دست آمده است. چنان‌که دیده
می‌شود، در حالی که روش افزایشی مزی به ازای گام زمانی
۲/۳۳/۱۸۰
در فضای زمان توسط روش اجرای مرزی را ارائه می‌دهد.

