کنترل بهینه تغییر حداکثر زمان ماهواره‌داری اجزای انعطاف‌پذیر در مانور کرنشی

اصغر ابراهیمی، سید علی اکبر موسویان و مهران میرشمس
دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

(دریافت مقاله: ۸۴/۸/۲۸ - دریافت نسخه نهایی: ۸۴/۱۰/۲۴)

چکیده - به‌پردازی روزافزون از فضای آسمان بالا رساله‌های فضانوردی را مطرح ساخته‌اند. در این مقاله، به منظور به‌حداقل رساندن مدت زمان مانور جریان‌پذیر فضاپیماهاي bang-bang عاملی و تغییرات حداکثری در مدت زمان مانور بیشتر استفاده از کنترل روش‌های حداکثر زمان به‌شکل مورد بررسی قرار می‌گیرد. اثر تغییر مقدار ناگهانی رگولاتوری، مورد بررسی در انجام سیستم تغییرات حداکثر در اجزای انعطاف‌پذیر ماهواره‌داری انجام می‌پذیرد. به منظور تغییرات در حداکثر زمان مانور، با هدف تسریع کردن نگرش علمی داده‌ها به بیشترین تقریب، پرداخته شده است. توجه داریم که در واقعیت نیز اعمال تغییرات به‌صورت روتاری صورت می‌گیرد و به‌تأثیرات زمانی تشکیل توسط یک اجزای انعطاف‌پذیر سیستم کنترل در محیط چنین‌گونه تغییرات به‌پایین بیشتری دارد.

شکل‌دهی فرمول کنترل

واژگان کلیدی: مانور را ویژه ماهواره‌دار، اجزای انعطاف‌پذیر، کنترل بیشینه، شکل‌دهی فرمول کنترل

*** - استادیار
** - دانشیار
* - دانشجوی دکترای

استقبال: سال ۱۳۸۴، شماره ۲، پژوهش ۱۳۸۴، صفحه ۱۲۷
Near-Minimum Time Optimal Control of Flexible Spacecraft during Slewing Maneuver

A. Ebrahimi, S. A.A. Mousavian, and M. Mirshams
Department of Mechanical Engineering, K.N. Toosi University of Technology

Abstract: The rapid growth of space utilization requires extensive construction, and maintenance of space structures and satellites in orbit. This will, in turn, substantiate application of robotic systems in space. In this paper, a near-minimum-time optimal control law is developed for a rigid space platform with flexible links during an orientating maneuver with large angle of rotation. The time optimal control solution for the rigid-body mode is obtained as a bang-bang function and applied to the flexible system after smoothing the control inputs to avoid stimulation of the flexible modes. This will also reflect practical limitations in exerting bang-bang actuator forces/torques, due to delays and non-zero time constants of existing actuation elements. The smoothness of the input command is obtained by reshaping its profile based on consideration of additional first-order and second-order derivative constraints. The platform is modeled as a linear undamped elastic system that yields an appropriate model for the analysis of planar rotational maneuvers. The developed control law is applied on a given satellite during a slewing maneuver. The simulation results show that the modified realistic optimal input compared to the bang-bang solution agrees well with the practical limitations and also alleviates the vibrating motion of the flexible appendage, which reveals the merits of the new control law developed here.

Keywords: Slewing spacecraft, Flexible elements, Optimal control, Command shaping

1- مقدمه

یکی از ماهواره‌های ماهواره‌ها در مدار، مانور حول محور عضوی بر فضه مدار (محور) عمود بر محور ماهواره (pitch) مقصور از ایستگاه زمینی، ایجاد ماهواره‌های استریو ایجاد زمین (LEO) راستای فرآیند بالکهای خورشیدی معمولاً زمین (roll) است و بهینه امر بااختن ماهواره المحور از ماهواره (pitch) ماهواره از ماهواره برروز یک ماهواره ماهواره از ماهواره انعطاف پذیر بالکهای ماهواره کدینگنامه نزدیک ماهواره شود. (1-2) بررسی

دینامیک و کنترل ماهواره‌های انعطاف پذیر در مانور

اصلی: (4) و نیز فضاپیماهای مجزه به بازوهای روباتیک

صلب و انعطاف پذیر، (7-10) مورد توجه بسیار از محققان است و از جنبه‌های گوناگونی مورد به‌طور قرار گرفتن است. (7-10) در تصور برداری استریو که لازم است از یک موضع

زمین در موقعیت‌های متقاطع تصور برداری شود، سرعت بالای ماهواره در مدار (حدود ۷/5 در مدار LEO) ایجاد می‌کند که انجام مانور چرخشی با حداکثر زمان صورت پذیرد.
وضعیت برای هر مود ارتعاشی استخراج شده است. از این معادلات به عنوان معادلات وضيعت در بررسی مسئله کنترل استفاده شده است. به منظور کاهش آرات ارتعاشی ناشی از اعمال کنترل، نواحی ورودی کنترلی را به‌طور صورت نهایی درجه یک و دو مشکل دهی کرده و سپس اثرات اعمال یک گشتاور کنترلی را که با واقعیت بیشتر تبدیل کرده‌اند را می‌تواند ارزیابی کند. لازم به ذکر است که در این مقاله به‌جای حل مستقیم روش معقول، مسئله کنترل به‌جای به‌سازی به‌صورت کنترلی استفاده می‌شود. به‌طور کلی، به‌منظور کاهش آرات ارتعاشی ناشی از اعمال کنترل، نواحی ورودی کنترلی را به‌طور صورت نهایی درجه یک و دو مشکل دهی کرده و سپس اثرات اعمال یک گشتاور کنترلی را که با واقعیت بیشتر تبدیل کرده‌اند را می‌تواند ارزیابی کند. لازم به ذکر است که در این مقاله به‌جای حل مستقیم روش معقول، مسئله کنترل به‌جای به‌سازی به‌صورت کنترلی استفاده می‌شود.

2- معادلات حرکت و مدل‌سازی دینامیکی

در نظر گرفتن یک مدل ارتعاشی بینه دینامیکی، B و دستگاه مختصات مداری O دستگاه مختصات دینامیکی باعث ایجاد یک مدل است که از این معادلات حرکت برابر با مقدمات ارتعاشی در دستگاه مختصات مداری، به‌منظور ماشین در نظر گرفتن مدل. در این مدل، مانند بند ۱، مرسوم بودن میزان انحراف بالکه‌ها از حالت استاندارد (حاوی‌های سیستم) بر طبق داشته می‌باشد.

\[
T = T_1 + T_2 + T_3
\]

که در آن \(T_1 \) طول و \(T_2 \) جرم بر واحد طول است. با استفاده از این ارتباط و صرف‌نظر کردن از جمله‌های جمله‌های بالا به دنبال کوچک‌پیوستن میزان انحراف بالکه‌ها از حالت استاندارد (حاوی‌های سیستم) خواهیم داشت:

\[
T = \frac{1}{2} T_1 + T_2 + T_3
\]

که در آن جمله‌های را که عرف می‌مانند برابر با معکوس زیر به ادب ادامه کرده‌اند:

\[
I = I_1 + I_2 + I_3
\]
شکل 1- مقطع شماتیک ماهواره در حال جرخت از منظر محور O_1 و X_3

اگر نیروی Q در آن نقطه ی قرار گرفته باشد، بقیه نیروها را هدایت می‌کند:

\[Q_1 = u \quad \text{ و } \quad Q_2 = 0 \quad \text{(i,1)} \]

حالی که در برای سرپرستی مبتنی بر هزینه‌های صعودی مقاومت به شکل زیر توجه در ماده‌های اولیه را با جهت نشان داده‌اند:

\[U = \int_0^L E I (y')^2 \, dx \]

علائم یا معادل عملکرد دیفرانسیل و سختی خمشی تیپ است. حال این $y(x, t)$ یا که نشان دهنده‌ی انعطاف‌پذیری سیستم است به صورت حاصل ضرب مختصات تعمیم یافته، $y(x, t)$ و تابع شکل مکانی $\Phi(x)$ می‌تواند:

\[y(x, t) = \sum_{i=1}^n q_i(t) \Phi_i(x) \quad \text{(9)} \]

که در آن n تعداد موهای اصلی است. باید برای نیروی Q به این شکل تعریف کنیم:

\[\Phi_i(x) = \left(\cos k_1 x - \cos k_2 x \right) - \alpha_i \left(\sin k_1 x - \sin k_1 x \right) \]

\[\alpha_i = \frac{\sin k_1 L - \sin k_2 L}{\cos k_1 L + \cos k_1 L} \quad \text{(16-ب)} \]

از سوی دیگر، نیروی اعماق بر ماهواره ارتفاعی بیرون و گسترش کرتری یک دایره ارتفاعی است. بنابراین بر اساس مفهوم کار مجازی می‌توان نوشت:

\[\delta W = u(t) \delta \theta \quad \text{(11)} \]

که در آن δW کار مجازی نیروهای اعماقی است. با توجه به...

استحکال، سال 26، شماره 2، استقلال 1384
\[
J = \int_0^T t \, dt = T_f
\]
(20)
زمان شروع مانور 0 = t_0 و زمان پایان مانور، است. معادله 18 می‌شود:
\[
\dot{y}_1 + \omega_0^2 y_1 = q_1 u
\]
\[
\dot{y}_2 + \omega_0^2 y_2 = q_2 u
\]
(21)
\[
y_n + \omega_0^2 y_n = n_0 u
\]
که در آن \(y_i \) مختصات \(u_0 \) مقدار ویژه \(\Omega \) از (فرکانس طبيعی مود 1) و \(\Omega \) الامان بردار ویژه \(\Omega \) برای 1 اسیون مود هستند. معادله اول از معادلات (21) مربوط به \(t = 0 \) امت به \(\nabla \) نشان می‌دهند. مدل صلب، \(u_0 \) مورد و خواص دانش:
\[
\dot{y}_1 = q_1 u \quad \text{of} \quad \dot{q}_1 = 0
\]
(22)
\[
\dot{y}_2 = \dot{q}_1 \quad \text{of} \quad \dot{q}_2 = 0
\]
با فرض \(\dot{y}_2 = 0 \) و \(\dot{y}_1 = 0 \) خواص دانش:
\[
\dot{y}_1 = \dot{q}_1 \quad \text{of} \quad \dot{q}_1 = 0
\]
(23)
\[
\dot{y}_1(0) = 0 \quad \text{of} \quad \dot{y}_1(t_f) = 0
\]
(24)
\[
\dot{y}_2(0) = 0 \quad \text{of} \quad \dot{y}_2(t_f) = 0
\]
(25)
با مدت نظر دانست می‌توان به دنیای طبق معادله 20، تابع هامالوتین را به صورت زیر تعریف می‌کنیم [24]:
\[
H = 1 + \lambda_1 \dot{q}_1 + \lambda_2 \dot{q}_2 = 1 + \lambda_1 \dot{q}_1 + \lambda_2 \dot{q}_2 + \lambda_3 \dot{q}_1 u
\]
(26)
که در آن \(\lambda_1 و \lambda_2 \) تغییرات وضعیت هر \(\dot{q}_1 \) هستند. با استفاده از اصل حکایت‌بایگان، ورودی کنترلی که شرایط لازم و کافی برای بهبود را رضا کند. کنترل از نوع bang-bang خواهید بود که برای مدل فوق به صورت زیر به نمایش می‌آید:
\[
u(t) = u_{\text{max}} \begin{cases} 1 & \text{if} \quad t \in [t_f - t_1, t_f] \\ 0 & \text{otherwise} \end{cases}
\]
(27)
که در آن \(t_1 = t_f - \) تابع پله یا واحد با نقطه شروع 1 است. زمان پایان مانور \(t_1 \) و زمان کلیک زنی \(t_f \) با استفاده از معادلات و ضعیفیت و شرایط مزی مسئله به نمایش می‌آید.
\[
\cos k_1, \sin k_1, \gamma = -1
\]
(17-ج)
شرایط مرزی حاکم بر این مسئله به صورت زیر در نظر گرفته می‌شوند:
\[
\Phi(0) = \Phi(0) = \Phi(t_f) = \Phi(t_f) = 0
\]
(17-ب)
به این ترتیب با داشتن معادلات (17) که بیانگر چگونگی گیردزی پادون مالک اینکه هستند و با استفاده از معادلات (16)، کلیه اجزای معادله 15(1) قابل محاسبه‌اند. این معادله به عنوان مسئله و ضعیفیت ماهواره در طراحی کنترل مورد نظر خواهد بود.

3- طراحی کنترل حداکثر زمان پراپ مولد صلب
در این قسمت از مقاله کنترلی که در این مقاله نمودار سطح زمان از تحلیل مدل که فقط مورد حمایت اولیه استخراج مدل که در آن \(\gamma = 0 \) است در نظر گرفته می‌شود و قانون کنترلی استخراج شده بر روی مدل سیستم با مودهای محاسبه‌شده بر این مورد دو مدل 3 و 4 مورد سیستم با فرکانس و0 اعمال شده و نتایج استخراج می‌شوند. بنابراین در استخراج قانون کنترلی، این مدل مورد نظر است و آثار اعمال این قانون کنترلی بر روی مدل مورد محاسبه‌شده است. مدل مورد و ضعیفیت ماهواره، در مدل زاویه‌گیری این معادله 15 (1) به صورت زیر خلاصه می‌شود:
\[
\text{pitch} = \text{MX} + \text{KX} = \text{Fu}
\]
(18)
که در آن \(X = \) بردار تعمیم‌یافته جایی است که با معادله 14 تعریف می‌شود و F و K و M می‌شود.
\[
\text{u} = \text{MX} + \text{KX} = \text{Fu}
\]
(19)
که مدت معین جرمی، سختی و کنترلی هستند که قبلی توسط معادلات (16) تعریف شده‌اند. فرمول کنترلی (10) را به صورت زیر محدود می‌کنیم:
\[
-u_{\text{max}} \leq \text{u}(t) \leq u_{\text{max}}
\]
(19)
وظیفه کنترل بهینه حداکثر زمان، اندازه‌سیستم از اینکه وضعیت وظیفه کنترل بهینه حداکثر زمان، اندازه‌سیستم از اینکه وضعیت به بکار و ضعیفیت نهایی معین
\[
X_0 = [0, 0, \ldots, 0]
\]
و اینکه \(\text{u}(t) \in [0, 0, \ldots, 0] \)

بهینه‌گی به صورت زیر خواهد بود:
ب- با فید مشتق اول، ج- با فید مشتق دوم bang-bang

4- طراحی کنترل کهنه بهینه نزدیک حداقل زمان
الف- اعمال فید مشتق اول تابع کنترلی، کنترل بهینه حداقل زمان که در قسمت قبل برای موردکل بیان داشت آمد، از نوع است که در شکل (3-الف) نمایش داده شده است.
در صورت اعمال این فرمول کنترلی بر روی ماهواره به دلیل تغییر ناگهانی ورودی کنترلی در زمان‌های کلیدزنی، می‌توان

در شکل 2-توابع ورودی کنترلیalf-شکل

بیان شده است که با معادله زیر بیان می‌شود:

\[u(t) = \begin{cases} 10 & \text{for } 0 \leq t \leq 1 \\ -10 & \text{for } 1 < t < 3 \\ 0 & \text{for } t \geq 3 \\ \end{cases} \]

\[u_2(t) = \begin{cases} 20 & \text{for } 0 \leq t \leq 2 \\ -20 & \text{for } 2 < t < 4 \\ 0 & \text{for } t \geq 4 \\ \end{cases} \]

\[u_3(t) = \begin{cases} 30 & \text{for } 0 \leq t \leq 0.5 \\ -30 & \text{for } 0.5 < t < 1.5 \\ 0 & \text{for } t \geq 1.5 \\ \end{cases} \]

\[u_4(t) = \begin{cases} 40 & \text{for } 0 \leq t \leq 1 \\ -40 & \text{for } 1 < t < 2 \\ 0 & \text{for } t \geq 2 \\ \end{cases} \]
5- تبدیل مسئله کنترل بهینه به مسئله بهینه سازی با توابع مقید

در قسمت قبل توابع کنترلی \(u_1(t) \) و \(u_2(t) \) به ترتیب برای کنترل حداکثر زمان و نزدیک حداکثر زمان با قیود مشابه اول و دوم به دست آمده است. برای تنظیم پارامترهای این توابع \(t_1 \) و \(t_2 \) به ترتیب مابین 1 تا 4-ب) انتخاب می‌شود.

نتایج معیارهای متغیرهای مربوط به دست‌آوردهای حالتی باید یکی از شش حالت بهینه کلاسیک باشد:

- کلاسیک
- بانگ-بانگ
- معیارهای مربوط به دست‌آوردهای حالتی
- مدل‌های خطی با انتخاب
- مدل‌های خطی با انتخاب خواص
- مدل‌های خطی با انتخاب خواص

تابع معیار بهینگی نیز برای هر حالت معیار مدل‌های معیارهای حالتی، مطابق معادله (20)

\[
H = t_f + \sum_{i=1}^{n} \lambda_i f_i
\]

که در آن \(\lambda_i \) ها، مقیاس‌های الگوریتم 15 و \(n \) تعداد قیدونه، \(f_i \) و

\[
u_2(t) = a_{u_2} \sum_{j=0}^{5} b_{1j}(t-t_j) l(t-t_j)
\]

که در آن \(-1, 1, 1, -1, -1, 1 \) هستند و \(b_{1j} \) به ترتیب از مجموعه‌ای انتخاب شده است. در بررسی نقاط ضعیف، شیب پاره‌خط‌های سایری از مقدار آنرا انتخاب می‌شود. بدین ترتیب این شیب به شکل نزدیک‌تر به شکل بانگ-بانگ بهبود می‌یابد و تا کافی دقت، نیاز به ترکیب است تا به شکل بانگ-بانگ بهبود یابد.

- اعمال شرط تابع کنترلی در صورتی که دینامیک

- ماهورهای از انعطاف‌پذیری با یک تکرار باشد، تغییر تابع

- کنترلی به صورتی که در قسمت قبل ارائه شده مبتنی است آن

- چنان کاربردی نیست و دانش ارائه‌های اجزای انعطاف‌پذیر نا

- حس قابل قبول کافی نیست. در این صورت لازم است که تغییر

- علامت دادن تابع کنترلی با هم مبتنی شود. به اینکه

- پاره‌خط‌های مابین شکل (1-ب) را به‌پایه‌ای به شکل منحنی درجه

- دوم همانند شکل (1-ج) در نظر گرفت. تابع کنترلی معروف بین

- حالت علائم است از

\[
u_3 = \frac{a_{u_3}}{2} \sum_{j=0}^{10} b_{2j}(t-t_j) l(t-t_j)
\]

که در آن \(1, 2, 1, 2, 1, 2, 1, 1 \) هستند.

- مدل‌های خطی با انتخاب

- شیب پاره‌خط‌های بعضی شرایط تابع کنترلی در شکلهای

- (2-ب) و (3-ب) براستگی قابل رسم خواهند داشت و معادلات

- معروف آن‌ها نیز به‌صورت زیر به‌دست می‌آید:

\[
u_2(t) = a_{u_2} \sum_{j=0}^{5} b_{1j}(t-t_j) l(t-t_j)
\]

\[
u_3(t) = a_{u_3} \sum_{j=0}^{10} b_{2j}(t-t_j)
\]

\[
\text{استقلال سال} \text{24، شماره} \text{2، اسفند} \text{1384}
\]
تشکیل توابع زیر:

\[g_i = \frac{\partial H}{\partial \xi_i} = 0 \quad (i = 1, \ldots, n) \]

\[g_j = \frac{\partial H}{\partial \xi_j} = 0 \quad (t_j = t_0, t_1, \ldots, t_f) \] (34)

به تعداد مجموع \(z_i \) و راه معادله \(g_i \) و \(g_j \) خواهیم داشت.

که با حل این معادلات پارامترهای مسئله به دست می‌آیند.

بدين ترتیب، شرط لازم برای بهینگی توسط معادله (26)

احتمال می‌شود که به پارامترهای مسئله به دست آید.

با توجه به سیستم انعطاف‌پذیری و کلیدزدایی باید کنترل، به جای تغییرات تکراری، تغییرات را در یک بانه

زمانی معین \(\Delta t \) که تشکیل کننده شبپاره‌خط‌های معرف تغییر

شکل 3- توابع پله‌ای مشتق‌اف ورودی کنترلی الف- مشتق اول مربوط به \(u_i \) ب- مشتق دوم مربوط به \(u_i \)
۷- شبیه‌سازی برای ماهواره انعطاف پذیر

یک ماهواره با اجزای انعطاف پذیر با ماموریت سنگین از دور زمین به منظور توضیح‌برداری از طرف ملی و مادون قرمز از سطح زمین را در نظر می‌گیریم. این ماهواره دارای قابلیت توضیح‌برداری است و به‌طور فرضی می‌کنیم که دوربین‌های شناسایی یا CRT و در آن ثابت‌اند. نیازی به کربن‌ها و شیب‌های زاویه‌ای برای این ماهواره ایجاد نمی‌کند. به‌طور مثال، همان‌طور که در بخش قبل بیان گردید، با افزایش مدت زمان انعطاف‌های فرمان کنترلی می‌توان این ارتعاشات را کاهش داد.

اگر شیب‌های انعطاف‌های فرمان کنترلی در منحنی شکل (۲-۶) با برای ۱ æ از نظر بکریم، در واقع این مقدار اختیاری به دست می‌آید و به‌طور کلی مورد نظر برای کاهش ارتعاشات انتخاب می‌شود، آن گاه با کارگیری انعطاف‌های خود بزرگ‌تر، به‌وسیله کلیدزنی و زمان‌های معین مناسب می‌تواند در زمان اثربخشی دو مدل ارتعاشات ناگهانی فرمان کنترلی در زمان‌های کلیدزنی از حالت اتیسم نماید.

ارتعاشات تغییرات فرمان کنترلی در زمان‌های کلیدزنی است. همان‌طور که در بخش قبل بیان گردید، با افزایش مدت زمان انعطاف‌های فرمان کنترلی می‌توان این ارتعاشات را کاهش داد.

اگر شیب‌های انعطاف‌های فرمان کنترلی در منحنی شکل (۲-۶) با برای ۱ æ از نظر بکریم، در واقع این مقدار اختیاری به دست می‌آید و به‌طور کلی مورد نظر برای کاهش ارتعاشات انتخاب می‌شود، آن گاه با کارگیری انعطاف‌های خود بزرگ‌تر، به‌وسیله کلیدزنی و زمان‌های معین مناسب می‌تواند در زمان اثربخشی دو مدل ارتعاشات ناگهانی فرمان کنترلی در زمان‌های کلیدزنی است. همان‌طور که در بخش قبل بیان گردید، با افزایش مدت زمان انعطاف‌های فرمان کنترلی می‌توان این ارتعاشات را کاهش داد.

اگر شیب‌های انعطاف‌های فرمان کنترلی در منحنی شکل (۲-۶) با برای ۱ æ از نظر بکریم، در واقع این مقدار اختیاری به دست می‌آید و به‌طور کلی مورد نظر برای کاهش ارتعاشات انتخاب می‌شود، آن گاه با کارگیری انعطاف‌های خود بزرگ‌تر، به‌وسیله کلیدزنی و زمان‌های معین مناسب می‌تواند در زمان اثربخشی دو مدل ارتعاشات ناگهانی فرمان کنترلی در زمان‌های کلیدزنی است. همان‌طور که در بخش قبل بیان گردید، با افزایش مدت زمان انعطاف‌های فرمان کنترلی می‌توان این ارتعاشات را کاهش داد.

کوتها در زمانی است که برای این مانور با یک روش می‌کنیم.

نسبت زیاد æ = ۰ به بخش می‌دهد.

اگر تابع کنترلی æ(t) تابع (۱) با برای ۱ æ از نظر بکریم، در واقع این مقدار اختیاری به دست می‌آید و به‌طور کلی مورد نظر برای کاهش ارتعاشات انتخاب می‌شود، آن گاه با کارگیری انعطاف‌های خود بزرگ‌تر، به‌وسیله کلیدزنی و زمان‌های معین مناسب می‌تواند در زمان اثربخشی دو مدل ارتعاشات ناگهانی فرمان کنترلی است. همان‌طور که در بخش قبل بیان گردید، با افزایش مدت زمان انعطاف‌های فرمان کنترلی می‌توان این ارتعاشات را کاهش داد.

کوتها در زمانی است که برای این مانور با یک روش می‌کنیم.

نسبت زیاد æ = ۰ به بخش می‌دهد.

اگر تابع کنترلی æ(t) تابع (۱) با برای ۱ æ از نظر بکریم، در واقع این مقدار اختیاری به دست می‌آید و به‌طور کلی مورد نظر برای کاهش ارتعاشات انتخاب می‌شود، آن گاه با کارگیری انعطاف‌های خود بزرگ‌تر، به‌وسیله کلیدزنی و زمان‌های معین مناسب می‌تواند در زمان اثربخشی دو مدل ارتعاشات ناگهانی فرمان کنترلی است. همان‌طور که در بخش قبل بیان گردید، با افزایش مدت زمان انعطاف‌های فرمان کنترلی می‌توان این ارتعашات را کاهش داد.

کوتها در زمانی است که برای این مانور با یک روش می‌کنیم.

نسبت زیاد æ = ۰ به بخش می‌دهد.
جدول ۱ - مشخصات اصلی ماهواره نمونه

<table>
<thead>
<tr>
<th>فاصله مرکز جرم نمونه</th>
<th>مانند انریس (بدنه انریس)</th>
<th>طول بالکه (هر بالکه)</th>
<th>حجم بالکه (هر بالکه)</th>
<th>کشش کنترلی بالکه</th>
<th>ارتفاع مدار</th>
<th>وزن کل ماهواره</th>
</tr>
</thead>
<tbody>
<tr>
<td>L=b=m A/0/</td>
<td>I₁=132 Kgm²</td>
<td>L=4 m</td>
<td>E₁=100 / /Nm²</td>
<td>D₁=20 / /Kg/m²</td>
<td>uₐₐₖ=20 Nm</td>
<td>H=650 Km</td>
</tr>
</tbody>
</table>

جدول ۲ - پارامترهای مودال معادله حرکت ماهواره انطباق پذیر در ماتور زاویهای

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ₁</td>
<td>0/248</td>
<td>0/248</td>
<td>0/248</td>
<td>0/248</td>
<td>0/248</td>
</tr>
<tr>
<td>ωₙ</td>
<td>1/55</td>
<td>1/55</td>
<td>1/55</td>
<td>1/55</td>
<td>1/55</td>
</tr>
</tbody>
</table>

جدول ۳ - زمانهای ماتور i و کلیدزنی بر حسب ثانیه

<table>
<thead>
<tr>
<th>u</th>
<th>t₁</th>
<th>t₂</th>
<th>t₃</th>
<th>t₄</th>
<th>t₅</th>
<th>t₆</th>
<th>t₇</th>
<th>t₈</th>
<th>t₉</th>
<th>t₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>u₁</td>
<td>1/55</td>
</tr>
<tr>
<td>u₂</td>
<td>1/55</td>
</tr>
<tr>
<td>u₃</td>
<td>1/55</td>
</tr>
</tbody>
</table>

شکل ۴ - نوسانات نقطه انتهایی بالکهای خوسندی در صورت اعمال گشتاور کنترلی حداکثر زمان، (t)

استقلال سال ۱۳۸۴، شماره ۲
شکل ۵- نوسانات نقطه انتهایی بالکهای خورشیدی در صورت اعمال گشتاورهای کنترلی نزدیک حداکثر زمان.

شکل ۶- مقایسه وضعیت بالکهای خورشیدی ماهواره در صورت اعمال گشتاورهای (۵۳۳، ۶۳۳، ۵۳۶) و (۸۳۵، ۵۳۵، ۵۰۲) کنترلی.
An A New Minimum-Time Control Law for a One-Mode Model of a Flexible Slewing Structure,” IEEE Transactions on

1. low earth orbit
2. solar panel
3. flexibility
4. uncertainty
5. state equations
6. pontryagin
7. Hamiltonian
8. coupled
9. body fixed coordinates
10. orbital coordinates
11. kane method
12. virtual work
13. state vector
14. fixed-free cantilever
15. performance index
16. Eigen vector
17. co-state variable
18. switching time
19. lagrange multipliers

References

Mراجع

استنادات: سال 24, شماره 2, اسفند 1384

134

