دینامیک و کنترل حركت سیستم‌های روباتیک دارای پایه متحرک

سید علی اکبر موسویان و علیرضا میرانی
دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده - سیستم‌های روباتیک با پایه متحرک از یک محمل و یک یا چند بازوی رباتیک تشکیل می‌شوند که در موضع‌های مشخصی بر روی پایه توسط می‌شوند. در این مقاله پس از بررسی سیستم‌های حركت پایه به چهارچخ و بارز، یک روش سیستم‌های باید به صورتی باشد که در هر حالت، مدل جمع‌کردن دینامیکی با نظر به شرایط مصرفی با استفاده از تکنیک مکمل متعادل و بررسی مختصات حساسیتی گرایش گرفته می‌شود. منظور از مصرفی از یک پایه به چهارچخ با استفاده از طراحی مهندسی که با یکی از روش‌های شیب‌زدگی نمایان تنش و تنش پیوسته در امکان‌های مکانیکی و شیب‌سازی‌های کنترلی با یکی از مدل‌های مهندسی سیستم‌های آزاد است. در کل، می‌توان به توجه کردن مکمل و بارزیتی پایه در تغییرات حساسیتی گرایش گرفته می‌شود. سپس با یکی از روش‌های مکانیکی گرایش گرفته می‌شود که با استفاده از مدل‌های مکانیکی گرایش گرفته می‌شود. منظور از مصرفی از یک پایه به چهارچخ با استفاده از طراحی مهندسی که با یکی از روش‌های شیب‌زدگی نمایان تنش و تنش پیوسته در امکان‌های مکانیکی و شیب‌سازی‌های کنترلی با یکی از مدل‌های مهندسی سیستم‌های آزاد است. در کل، می‌توان به توجه کردن مکمل و بارزیتی پایه در تغییرات حساسیتی گرایش گرفته می‌شود. سپس با یکی از روش‌های مکانیکی گرایش گرفته می‌شود که با استفاده از مدل‌های مکانیکی گرایش گرفته می‌شود. منظور از مصرفی از یک پایه به چهارچخ با استفاده از طراحی مهندسی که با یکی از روش‌های شیب‌زدگی نمایان تنش و تنش پیوسته در امکان‌های مکانیکی و شیب‌سازی‌های کنترلی با یکی از مدل‌های مهندسی سیستم‌های آزاد است. در کل، می‌توان به توجه کردن مکمل و بارزیتی پایه در تغییرات حساسیتی گرایش گرفته می‌شود. سپس با یکی از روش‌های مکانیکی گرایش گرفته می‌شود که با استفاده از مدل‌های مکانیکی گرایش گرفته می‌شود. منظور از مصرفی از یک پایه به چهارچخ با استفاده از طراحی مهندسی که با یکی از روش‌های شیب‌زدگی نمایان تنش و تنش پیوسته در امکان‌های مکانیکی و شیب‌سازی‌های کنترلی با یکی از مدل‌های مهندسی سیستم‌های آزاد است. در کل، می‌توان به توجه کردن مکمل و بارزیتی پایه در تغییرات حساسیتی گرایش گرفته می‌شود. سپس با یکی از روش‌های مکانیکی گرایش گرفته می‌شود که با استفاده از مدل‌های مکانیکی گرایش گرفته می‌شود. منظور از مصرفی از یک پایه به چهارچخ با استفاده از طراحی مهندسی که با یکی از روش‌های شیب‌زدگی نمایان تنش و تنش پیوسته در امکان‌های مکانیکی و شیب‌سازی‌های کنترلی با یکی از مدل‌های مهندسی سیستم‌های آزاد است. در کل، می‌توان به توجه کردن مکمل و بارزیتی پایه در تغییرات حساسیتی گرایش گرفته می‌شود. سپس با یکی از روش‌های مکانیکی گرایش گرفته می‌شود که با استفاده از مدل‌های مکانیکی گرایش گرفته می‌شود. منظور از مصرفی از یک پایه به چهارچخ با استفاده از طراحی مهندسی که با یکی از روش‌های شیب‌زدگی نمایان تنش و تنش پیوسته در امکان‌های مکانیکی و شیب‌سازی‌های کنترلی با یکی از مدل‌های مهندسی سیستم‌های آزاد است. در کل، می‌توان به توجه کردن مکمل و بارزیتی پایه در تغییرات حساسیتی گرایش گرفته می‌شود. سپس با یکی از روش‌های مکانیکی گرایش گرفته می‌شود که با استفاده از مدل‌های مکانیکی گرایش گرفته می‌شود. منظور از مصرفی از یک پایه به چهارچخ با استفاده از طراحی مهندسی که با یکی از روش‌های شیب‌زدگی نمایان تنش و تنش پیوسته در امکان‌های مکانیکی و شیب‌سازی‌های کنترلی با یکی از مدل‌های مهندسی سیستم‌های آزاد است. در کل، می‌توان به توجه کردن مکمل و بارزیتی پایه در تغییرات حساسیتی گرایش گرفته می‌شود. سپس با یکی از روش‌های مکانیکی گرایش گرفته می‌شود که با استفاده از مدل‌های مکانیکی گرایش گرفته می‌شود. منظور از مصرفی از یک پایه به چهارچخ با استفاده از طراحی مهندسی که با یکی از روش‌های شیب‌زدگی نمایان تنش و تنش پیوسته در امکان‌های مکانیکی و شیب‌سازی‌های کنترلی با یکی از مدل‌های مهندسی سیستم‌های آزاد است. در کل، می‌توان به توجه کردن مکمل و بارزیتی پایه در تغییرات حساسیتی گرایش گرفته می‌شود. سپس با یکی از روش‌های مکانیکی گرایش گرفته می‌شود که با استفاده از مدل‌های مکانیکی گرایش گرفته می‌شود. منظور از مصرفی از یک پایه به چهارچخ با استفاده از طراحی مهندسی که با یکی از روش‌های شیب‌زدگی نمایان تنش و تنش پیوسته در امکان‌های مکانیکی و شیب‌سازی‌های کنترلی با یکی از مدل‌های مهندسی سیستم‌های آزاد است. در کل، می‌توان به توجه کردن مکمل و بارزیتی پایه در تغییرات حساسیتی گرایش گر

واژگان کلیدی: روبات متحرک، مدال سازی دینامیکی، قیب‌گیری غیر‌هودونومیک، کنترل حركت

* - دانشیار
** - کارشناس ارشد

استقلال سال: 24 شماره: 3 استناد 1384

193
Dynamics and Motion Control of Wheeled Robotic Systems

S. A. A. Moosavian and A. Mirani
Department of Mechanical Engineering, K. N. Toosi Univ. of Technology

Abstract: Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base nonholonomic constraints. Combining the kinematic model with the initial dynamic equations and eliminating Lagrange multiplier with natural orthogonal complement technique lead to the comprehensive dynamic model. The variables of this model include the path of a reference point of the base and the position and orientation of the end-effector. The proposed approach will be applied on a car-like platform and a manipulator with 5 degrees-of freedom, without requiring a priori knowledge of plant dynamics, and with reduced computational burden which obtained show the merits of the TJ algorithm in controlling highly nonlinear and complex systems with multiple degrees-of freedom (DOF), without requiring a priori knowledge of plant dynamics, and with reduced computational burden which motivates further work on this algorithm.

Keywords: Mobile robots, Dynamic modeling, Non holonomic constraints, Motion control.
شکل 1- یک سیستم روباتیک متحرک چرخدار

مذکور، ابتدا سیستمی با مشخصات معین که از یک پایه چهارچرخ و یک پایه روباتیک با پنجره آزادی تشکیل یافته است، معرفی می‌شود. پس از بررسی روابط سیستمیک مجموعه و نیز قوید مربوط، برای به کارگیری روش لکتریزی به محاسبه انرژی‌های جنبی و تناوبی می‌پردازیم. با حذف ضریب لاگرانژ از معادلات با استفاده از روش مکمل معادل طبیعی و تلقیق مدل سیستمیک با مدل حاصله به ارائه مدل جامع دینامیکی پرداخته و سرگرمی بصورت هر یک از اجزای مدلی از طریق تولیدی مدل نتیجه و مقایسه آن با سیستم معرفی شده، ارائه می‌شود. مدل جامع با معاوضه متقابل و فشرده برای کاربر در امور طراحی و انتخاب عملکرد و همچنین طراحی سیستم کنترل بر اساس الگوریتم‌های مناسب بر مدل و نیز در شیوه‌های کنترلی سیستم‌های متفاوت به‌دست می‌آید. سپس با طراحی سیستم کنترل در هر زمان و استفاده از آن به عنوان مقادیر مرجع، طراحی سیستم کنترلی با استفاده از دو الگوریتم TJ و MBA انجام می‌شود. استراتژی طراحی سیستم کنترلی به این صورت است که روابط ابتدا پایه زیر را به سمت نطفه هدف حرکت داده و در فاصله مشخصی از آن قرار می‌گیرد. سپس بازی از حالت استقرار به موقعیت خوشه‌شده شده کاربر حرکت می‌کند. با شیوه‌های زیر کاری و عوامل مؤثر از قبیل تغییر پارامترها، اغتشاش محیطی و توزیع، رفتار و رفتار در محیط متوالیتی پیش‌بینی و استفاده از الگوریتم‌های به‌صورت در جمعه، به‌طور کامل به معادلات دینامیکی با در نظر گرفتن قوید ناهوتوئومیک پایه ارائه می‌شود. به طوری که مدل جامع دینامیک سیستم بر حسب می‌گردد کنترل شونده (فضای عملکردنی) بیان می‌شود. به منظور استخراج مدل جامع

استقلال، سال 24، شماره 2، اسفند 1384

196
شرايط نزديك و واقعیت مورد مطالعه و بررسی قرار می‌گیرد.

۲- تعريف مشخصات سیستم
در این قسمت، به منظور تشریح روش استخراج مدل جامع دینامیکی، ابتدا یک روش جرخ‌زاوار مشکل از یک پایه چرخ (با استفاده از توابع ترمیمی) و یک پایه بینه درجه آزادی با مفاهیم لولایی مطالعه شکل (۲). که در نظر گرفته می‌شود. همچنین در نظر گرفته می‌شود که در حال حاضر چرخ‌ها یا تغییر شکل نادیده و همواره عملکرد سطح زمانی اکثر افق خود دارای مکنند. نکته: (۲) مشاهده می‌شود حکایت پایه به هر لحظه شامل دیوارن درون چرخ‌های جلو حول محور افقی خود که مناسب با انتحال مسیرهای طرفین متفاوت است، توسعه سیستم دیرافتیپ تایم‌های می‌شود. خروجی به کناره جلو و سطح زمان از نوع غلظت خالص (بدون هیچ گونه لغزندی) بهدست کاملاً رقمی است. همان طور که در شکل (۲) مشاهده می‌شود حکایت پایه به هر لحظه شامل دیوارن حول یک مرکز آن دیوار (IRC) است با هر پیشروی سیستم از یک موتور استفاده می‌شود که این موتور با گژنوار می‌تواند خود را به چرخهای جلو متصل کند. از سوی دیگر دیوار محور محصول به میل فرمان نیز در موجب دوران مناسب است. اگر یک چرخ مجازی در نظر گرفته درح منظور گژنوار با (IR) است که برای اندازه‌گیری تغییرات محصول می‌شود در بازی روابطی نیز موتور موجب دیوار لولایی مفاهیم پیش‌بردند در این چرخ انجام می‌شود. همچنین زاویه ایجاد این چرخ مجازی
برابر β است که به شکل (۳) نشان داده شده است.

\[v_F = r \cdot \omega \]

\[q = [\theta_1, \theta_2, \theta_3, \theta_4, \theta_5] \]

\[\dot{X}_c = X_{c/f} \cdot \dot{y}_{c/f} \cdot \rho_c \times \rho_c \]

\[\dot{y}_{c/f} = \dot{X}_c + X_{c/f} \cdot \dot{\rho}_c \]

\[q = [\theta_1, \theta_2, \theta_3, \theta_4, \theta_5] \]

\[X_c = [x_{c/f}, y_{c/f}, z_{c/f}] \]

\[v_F = r \cdot \omega \]

\[\dot{X}_c = X_{c/f} \cdot \dot{y}_{c/f} \cdot \rho_c \times \rho_c \]

\[\dot{y}_{c/f} = \dot{X}_c + X_{c/f} \cdot \dot{\rho}_c \]

\[q = [\theta_1, \theta_2, \theta_3, \theta_4, \theta_5] \]

\[X_c = [x_{c/f}, y_{c/f}, z_{c/f}] \]

\[v_F = r \cdot \omega \]

\[\dot{X}_c = X_{c/f} \cdot \dot{y}_{c/f} \cdot \rho_c \times \rho_c \]

\[\dot{y}_{c/f} = \dot{X}_c + X_{c/f} \cdot \dot{\rho}_c \]

\[q = [\theta_1, \theta_2, \theta_3, \theta_4, \theta_5] \]

\[X_c = [x_{c/f}, y_{c/f}, z_{c/f}] \]

\[v_F = r \cdot \omega \]
در شکل ۲- بازوی روباتیک پیچ درجه و پارامترهای مربوطه

\[\theta_\alpha = \theta_2 + \theta_3 + \theta_4 \]
\[\theta_\beta = \theta_1 + \theta_3 + \phi \]

ماسری زاکویین کل مجموعه است که تابع مختصات تعیین می‌شوند و پارامترهای هندسی سیستم است [۱۷]. از آن‌جا که مابین فضای چرخه‌ها فاقد لغزش‌اند، که فرضی کاملاً قابل قبول در سرعت‌های کم است، امتحان سرعت نقطه مبتنی اکسل عقب همواره عمود بر اکسل باقی می‌ماند. بایان‌کننده یک قید در سیستم به‌صورت زیر به دست می‌آید:

\[x_r \sin(\theta) - y_r \cos(\theta) + L \phi = 0 \] (۷)

معادله اختیار یک قید ناهمکار نیست (بعنوان انگرال پذیر نیست)، این قید به شکل دیفرانسیل \(r \) به‌صورت زیر تبدیل می‌شود:

\[X = J_r v \] (۸-الف)

در آن:

\[X = \begin{bmatrix} x_r & y_r & x_r & y_r & \dot{\theta}_r & \dot{\theta}_r \end{bmatrix}^T \] (۸-ب)

\[v = \begin{bmatrix} \cos(\beta) & \sin(\beta) & \dot{\theta}_r & \dot{\theta}_r \end{bmatrix} \]

که با تظیف سرعت نقطه \(F \) و معادله (۸) می‌توان به مدل سیستماتیک سیستم به‌صورت زیر رسید:

\[x_r, y_r \]
همسنجین انرژی پتانسیل میله‌ها به صورت زیر است:

\[T = \sum_{i=1}^{\infty} T_i \]

(13)

\[U = \sum_{i=1}^{\infty} m_i g \cdot \rho_i \]

(14)

که در آن \(g \) بردار شانه‌گازی است. به علت حرکت پایه روی مسطح افقی، \(U \) مختصات بازو‌های و پایه فاکتور اثر پتانسیل است. برای هر یک از معادلات دینامیک حرکت سیستم از روش لاگرانژ استفاده می‌کنیم. لاغرانژین سیستم به صورت زیر به دست می‌آید:

\[L(q,q) = T - U \]

(15)

معادلات لاگرانژ برای یک سیستم مکید با یک قید ناهاییتی به صورت زیر است:

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = p_i + \lambda a, \quad i = 1, \ldots, 8 \]

(16)

در این معادله \(p_i \) نیروی تعمیر یافته، \(a \) ضریب فلکت لاغرانژ است. [19]

برای تعیین نیروهای تعمیم یافته مربوط به پایه، گشتاور جلوی حرکت سیستم را با یک تیرو که در نقطه تامین جریب مجازی بازمی‌شود در جهت حرکت وارد می‌شود مدل می‌کنیم. همسنجین گشتاور \(\tau_0 \) را نیرویی تیروی عموی دیگر جریب مجازی که در انتهای شعاع و عمود بر صفحه جریب در جهت دوران آن محور محور قابی استفاده می‌نماید. مدل می‌کنیم شکل (2).

نیروهای تعمیم‌یافته بازی نیروی گشتاور دینامیکی در مفاصل است. در نتیجه، نیروهای تعمیم‌یافته مربوط به سیستم از معادلات زیر محاسبه می‌شود:

\[p_i = \sum_j (F_j \cdot \frac{\partial r_j}{\partial q_i}) + \sum_j (r_j \cdot \frac{\partial \tau_j}{\partial q_i}) \]

(17)

که در آن \(r_j \) بردار نقطه اثر اعمال نیروی \(F_j \) و \(\tau_j \) زاویه دوران مفصل زامی عوین محل اعمال گشتاور \(\tau_j \) است. با استفاده از معادله بالا می‌توان نگاشت که فضای گستار گشتاوری تولیدی را به فضای نیروهای تعمیم‌یافته بیانگر این تکه‌گذاری توسط ماتریس \(E(q) \) می‌نماید. به دست می‌آید:

\[P = E(q) \tau \]

(18)

\[A(q) \cdot q = 0 \]

(19)

معادله فوق باینگر که است که:

\[\dot{q} \in \text{Nullspace}(A(q)) \]

توجه داریم که هر \(\dot{q} \) را می‌توان بر حسب یک تکرار خاصی از بردارهای مبنای \(T \) این فضای کوچک نوشته. با انتخاب ضاریب تکرار خطي برای با عنصر بردار سرعت \(v \) خواهیم داشت:

\[q = S(q) \cdot v \]

(10)

به طور ترتیب ستوئنیاِ ماتریس \(S(q) \) شامل هفت بردار مداکر است که هریک متعلق به فضای پرچمی \(A(q) \cdot \) هستند. در نتیجه خواهیم داشت:

\[A(q) \cdot S(q) = 0 \]

(11)

اینکه با اعمال رسی معادلات سیستم از جمع و قید مرتبه، با به کارگیری روش لاگرانژ به استخراج معادلات دینامیک می‌پردازم.

۲- مدل جامع دینامیک

این مدل سرعت مطلع مرکز جرم یک تک انرژی پاژور زیاد را به دست می‌آورد. دمین منظور به هر میله در محل مرکز جرم آن یک دستگاه مختصات مطلع می‌کنیم. سرعت مطلع مرکز جرم هر میله به صورت زیر است:

\[\dot{v}_i = v_{i+1} + V + \phi \cdot k \cdot \rho_i \]

(11)

که در آن \(\rho_i \) مرکز میله یک دستگاه از درستی \(V_{i+1} \) و \(x_{i+1} \alpha_{i+1} \) گازی به دست می‌آید [18].

بنابراین انرژی جنبشی میله \(i \) و چنین به دست می‌آید:

\[T_i = \frac{1}{2} m_i v_i^2 + \frac{1}{2} \omega_i^2 I_{2} + \omega_i \]

(12)

جرم میله \(i \) و ناشور ماهیان اینرسی نسبت به دستگاه \(m_i \) کنصل به میله \(i \) در مرکز جرم و \(\omega_i \) سرعت زاویه‌ای مطلوع می‌باشد. است. با استفاده از معادله بالا می‌توان انرژی نسبت به آن میله بیان شده است. این در در روش زاویه‌ای به دست می‌آید [18] با جمع انرژی: \(T_i \) جنبشی کل میله‌ها و پایه \(T_{0} \) انرژی جنبشی کل سیستم \(T_{0} \) به دست می‌آید.
\[\begin{align*}
\bar{M} &= S^T M S J^{-1}, \\
\bar{V}_i &= S^T M \frac{d}{dt} [S J^{-1}].
\end{align*} \]

(21-B)

\[\begin{align*}
\tau &= \begin{bmatrix} t_0 & t_0 & t_0 & t_0 & t_0 & t_0 & t_0 \end{bmatrix}^T.
\end{align*} \]

(19)

\[\begin{align*}
P &= \begin{bmatrix} p_x & p_y & p_0 & p_0 & p_0 & p_0 & p_0 \end{bmatrix}^T.
\end{align*} \]

\[\begin{align*}
\dot{X} + \bar{V}_1 \dot{X} + \bar{V}_2 &= \tau^e.
\end{align*} \]

(21-الف)

\[\begin{align*}
M^* v + V^* &= \tau^e.
\end{align*} \]

(20الف)

\[\begin{align*}
M^* \tau_{\gamma,1} &= S^T M S \\
V^*_{\gamma,1} &= S^T (M S v + V) \\
\dot{\tau} &= E^T \tau = S^T E^T \tau.
\end{align*} \]

(20ب)

\[\text{پس از انجام محاسبات لازم و مشتق‌گیری‌های مربوط به جایگزینی در معادلات 16 خواهیم داشت:} \]

\[\begin{align*}
M(q) \ddot{q} + V(q, \dot{q}) &= E(q) \tau + A^T(q) \lambda, \\
V(q, \dot{q}) &= M(q) \ddot{q} + C(q, \dot{q}).
\end{align*} \]

که در آن \(M(q) \) ماتریس اینرسی و \(V(q, \dot{q}) \)

آرایه ۴۸ شامل جمله‌ها و ایستگاه به سرعت است. حال اگر معادلات ۹ را وارد معادلات فوق کردیم و سپس بر اساس تکنیک \(\psi \) مکل معادله طبقی معادله حاصل را در \(S \) پیش ضرب کنیم، \(20 \) با توجه به معادله ۱۰ مدل کاهش یافته‌ای به صورت زیر به دست می‌آید:

\[\begin{align*}
M^* v + V^* &= \tau^e.
\end{align*} \]

(20الف)

\[\begin{align*}
M^* \tau_{\gamma,1} &= S^T M S \\
V^*_{\gamma,1} &= S^T (M S v + V) \\
\dot{\tau} &= E^T \tau = S^T E^T \tau.
\end{align*} \]

(20ب)

توجه داریم که از طریق حذف ضریب \(\lambda \) از معادلات استفاده از NOC بدهد به مدل کاهش یافته سیستم با حداقل تعداد معادلات (همت حالت) دست یافته ایم. این معادلات را می‌توان به تلفیق مدل سیستمیک به ضرایب مربوط به متغیرهای کنترل شونده منتقل کرد. بدين منظور با توجه به معادله \(6 \) به دست می‌آید:

\[\begin{align*}
\bar{M} \ddot{X} + \bar{V}_1 \dot{X} + \bar{V}_2 &= \tau^e.
\end{align*} \]

(21الف)

که در آن:

شکل ۴- جرخ مجازی و نیروهای مربوط به آن

\[\begin{align*}
\bar{M} &= S^T M S J^{-1}, \\
\bar{V}_i &= S^T M \frac{d}{dt} [S J^{-1}].
\end{align*} \]

(21-B)

\[\begin{align*}
\tau &= \begin{bmatrix} t_0 & t_0 & t_0 & t_0 & t_0 & t_0 & t_0 \end{bmatrix}^T.
\end{align*} \]

(19)

\[\begin{align*}
P &= \begin{bmatrix} p_x & p_y & p_0 & p_0 & p_0 & p_0 & p_0 \end{bmatrix}^T.
\end{align*} \]

\[\begin{align*}
\dot{X} + \bar{V}_1 \dot{X} + \bar{V}_2 &= \tau^e.
\end{align*} \]

(21الف)

\[\begin{align*}
M^* v + V^* &= \tau^e.
\end{align*} \]

(20الف)

\[\begin{align*}
M^* \tau_{\gamma,1} &= S^T M S \\
V^*_{\gamma,1} &= S^T (M S v + V) \\
\dot{\tau} &= E^T \tau = S^T E^T \tau.
\end{align*} \]

(20ب)
7- طراحی مسیر حرکت یا به
در مورد تعیین فاصله مناسب توقف نقطه F در نزدیکی نقطه 2 باید بازی در بین روابطی که نشان می‌دهد همگام بوده و همگام یکهای به گونه‌ای کمکی که واقعیت مجزی نهایی را به گونه‌ای تظییم

شکل (۶) توانسته که شعاع دامنه مرکزی که در شکل یا دامنه حرکت یا به گونه‌ای نهایی از روش دامنه حرکت نقطه F را بر روی خط راست منطقه شروع حرکت F به واقعیت مجزی نهایی کلار می‌دهد. در شیوه حرکتی مختلف را برای حرکت نقطه F می‌توان در نظر گرفت به طوری که هر دو شیوه به نوعی قید ناهنجاریکه پایه‌های در روش طراحی خود در نظر می‌گیرند. در شیوه اول حرکت نقطه F بر روی خط راست و در شیوه دوم حرکت یا به روش مسیر منحنی انجام می‌شود.

6- طراحی مسیر حرکت

سیستم روباتیک محورک به ویژه زمانی سیستم است که کار در حالتی از روابط به گونه‌ای باشد که خارج از فضای کاری روابط واقع شود. طراحی مسیر حرکت در روبات‌های محورک شامل طراحی مسیر حرکت یا به واروست که این امر در این مقاله به صورت جدایی‌انجام می‌شود.

استراتژی طراحی مسیر حرکت بر اساس اطلاعات تعداد

مشخصی نقطه هدف مربوط به موقعیت مجزی نهایی به این صورت است که با توجه به این تعداد از نقاط استفاده می‌شود که در این مقاله به دست آورده شده این است که برای طراحی به طراحی اولیه (نقطه 1) با اطلاعات معلم به شماره ۴ می‌شود. بازی تا انتهای نهایی در حالت استقرار باقی ماند. پس از توقف نقطه F مجزی نهایی توسط سه میله اول خود به موقعیت M ترک کاربرد و از ترک کاربرد و دو میله آخر به وضعیت ب خواهش شده دست می‌باید. این روند در مورد نقطه شروع و پایان (دو نقطه ۱ و ۲) باید می‌شود ولی قابل نعمت به تعداد نقاط میانی نیز است. در ادامه این طراحی مسیر

حرکت یا به وسیله روابطی مورد بررسی قرار می‌گیرد.

مشخصات هندسی و جرمی سیستم قابلیت در جدول (1) آمده است.

مکانه اختلاف و نتایج ماتریس اینتریز به دست آمده از دو روند استخراج معمول از برآورد اصیل (7(q) و نتایج M(q) در جدول (2) در شرط آمده است. همان طور که مشاهده می‌شود، با در نظر گرفتن خطای ناشی از گرد کردن ارقام، اختلاف تناوب در وضعیت گردیده است. انتخاب تناوب در وضعیت این نوع است.

اگرچه مدل جامع دینامیک سیستم به صورتی فشرده دارد اما در قسمت بعد به طراحی مسیر حرکت در دست زمان برای

مغزه‌های مورد نظر در کنل سیستم می‌پردازد.
جدول ۱- مشخصات هندرس و جرمی سیستم

| m_0, I_0 | 500 Kg, 320 Kg.m² |
| $m_1, ..., m_5$ | 85, 32, 8, 2, 2 Kg |

جدول ۲- مقایسه اختلاف نتایج از دو برنامه مدل‌سازی اصلی و آزمایشی

| $[M_(1)(q) - M_(2)(q)]_{16,8}$ |
|-----------------|-----------------|-----------------|-----------------|
| 0 | 0 | 0 | $2E-8$ |
| 0 | 0 | $-E-7$ | 0 |
| 0 | $-E-7$ | 0 | 0 |
| $2E-8$ | 0 | $-E-7$ | 0 |
| 0 | 0 | 0 | $-E-10$ |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| $-E-11$ | 0 | 0 | 0 |

F_1 توان‌های دلخواه کاربر مستقر کرد و بیده‌ای است که حرکت از به روی مسیر منحنی خواهد بود. قید پایه را می‌توان به شکل دیفرانسیلی بصورت زیر بیان کرد:

$Pdx_{y'} + Qdy_{y'} + Rdq = 0$ \hspace{2cm} (۳۳-الف)

در این شیوه حرکت، پایه را می‌توان در نقطه توقف در هر استقلال سال ۱۲، شماره ۲، اسفند ۱۳۸۴

۲۰۲
شكل 5- تصویر نواحی کاری روی سطح افق

\[\begin{align*}
P &= \frac{\partial u}{\partial x} + v \frac{\partial w}{\partial x} \\
Q &= \frac{\partial u}{\partial y} + v \frac{\partial w}{\partial y} \\
R &= \frac{\partial u}{\partial \phi} + v \frac{\partial w}{\partial \phi}
\end{align*} \]

به صورت زیر به دست می‌آید:

\[\begin{align*}
x_f &= \sin(\phi)u + \cos(\phi)(l - v) \\
y_f &= -\cos(\phi)u + \sin(\phi)(l - v) \\
\phi &= w
\end{align*} \]

با در نظر گرفتن توابع زمانی مناسب برای \((x_f, y_f, \phi) \) به دست آورده:

\[\begin{align*}
P &= \sin(\phi) \\
Q &= -\cos(\phi) \\
R &= l
\end{align*} \]

این معادله برای اهداف طراحی مسیر مناسب نیست. بنابراین نیاز به تغییرات است که پایان در نواحی دیگری به طراحی مسیر پرداخت. این تغییرات با تبدیل قید دیفرانسیل به شکل زیر به دست می‌آید:

\[du + v dw = 0 \]
سیستم‌کنترلی و شبیه‌سازی
کنترل سیستم روباتیک مورد نظر در فضای مفصلی انجام است. به مثابه جابجایی مغناطیسی فضا کاری با مغناطیسی فضای مفصلی از سیستماتیک مستقیم به صورت زیر استفاده می‌کنیم:

\[X = f(q) = X(q)q \]

(22)

که با توجه به فید ناولونیمک مربوطه \(\phi \) از جمعه معنی‌های تعمیم‌یافته خارج شده است. سیستم با یک گذازه به چیز زیر در دیدنیکی‌های مسیر گذاری داشت:

\[\overline{V(q, \dot{q})} = \overline{M(q)q} + \overline{V(q, \dot{q})} \]

(23)

معادلات اینجا مدل جامع تغییرپذیر دینامیک سیستم است. اگر نیاز می‌توان معاونیت خطای سیستم را به شکلی خاص در مختصات تعمیم‌یافته واقعی و مفاهیم مطلوب خود هستند، به صورت زیر ترکیب داد:

\[e = q_{	ext{desired}} - q \]

(24)

شبیه‌سازی سیستم روباتیک مورد نظر توسط نرم‌افزار متلب انجام شده است. در تعیین مدل جامع دینامیکی پس از بدست آوردن معادلات مدل، نرم‌افزار متلب آن را در شکل رایانه‌ای وارد کرده و در نهایت به صورت زیر به دست آمده است:

\[\cos(\theta_{3,2}) = \frac{1}{2L_2L_3} \left(\frac{L_1}{L_2} - L_2^2 - L_3^2 \right) \]

(30)

\[\sin(\theta_{3,2}) + \gamma = \frac{L_3}{\sqrt{\rho^2 + (L_1 - z_2)^2}} \]

که در آن:

\[\tan(\gamma) = \frac{L_1}{\rho}, \quad \rho = L_2 \]

به مثابه محاسبه \(\theta_{4,2} \) از معادله (4) استفاده می‌کنیم:

\[\theta_{4,2} = \theta_{\text{desired}} - \theta_{2,2} - \theta_{3,2} \]

(31)

خال که مقدار شروع و پایان زاویه‌ای مفصل معلوم است.
در کنار حلقه تکرار زمانی در هر مرحله از θ انتگرال‌گیری و به متغیرهای حالت سیستم در انتهای هر گام زمانی به دست می‌آید.

برای اعمال قانون کنترلی، نظریه‌های مختلفی وجود دارد. [21] در این مقاله ذیل نحویه کنترلی زیر مورد بحث قرار می‌گیرد.

مگرند:
1. الگوریتم مبتنی بر مدل
2. الگوریتم تنها به زاک‌بولین

در ادامه الگوریتم کنترلی اول و سپس الگوریتم کنترلی دوم بر سیستم اعمال و تابع شبیه‌سازی مورد بحث قرار می‌گیرد.

10 - قانون کنترلی مبتنی بر مدل

این قانون که تا نام اختصاصی MBA به آن اشاره می‌کرد بر اساس تغییر خطا سطحی پس‌خوراند δ کنترلی θ را به صورت زیر ارایه می‌کند:

$$t = \frac{1}{\tilde{M}} \tilde{J} \tilde{\tau} + \tilde{K} \cdot \tilde{e} + K_p \cdot e + \tilde{\psi} (q, q' \cdot \cdot)$$

محاسبه شده این طراحی سطحی بر اساس اختلاف بین مقادیر K_p و K_v ایده‌الا فاصله مقادیر حقیقی وجود داشته باشد. ضرایب متغیرهای مربوط به سطح خطا در سطح و موضعیت اندر طرح مدل دینامیکی به طور دقیق حساب شده باشد و به قدرت دینامیکی طرح اعتماد شود.

شکل 7- تعیین θ_1 و θ_2

قاب‌های شده است. شکل‌های (8 و 9) خطا سطحی مختلف تعمیم‌یافته نیاز به طور مشابه به صفر می‌رسد.

همان طور که مشاهده می‌شود، با توجه به رسیدن کلیدی خطا به صفر، به کارگیری سیستم کنترلی فاصله منجر به پایداری سیستم می‌شود. بهره‌های انتخاب شده مقداری کوچک

\[\hat{M} = M, \quad \hat{V} = \hat{V}, \quad \hat{J} = J \]
شکل 8- خطاای بخشی از مختصات تعیین‌یافته بر حسب زمان با اعمال الگوریتم کنترلی MBA

شکل 9- خطاای بخشی از سرعت‌یئ تدعیین‌یافته بر حسب زمان با اعمال الگوریتم کنترلی MBA

بوده و سرعت میل خطا به سمت صفر بالا ایست. برای حرکت یا به، زمانی تا خروج به سمت صفر بالا ایست. برای حرکت باره 3 ثانیه در نظر گرفته شده است، که موجب می‌شود مقدار متوسط شکل (100) پایه با سرعت کم و حرکتی آرام به تعیین توقف برسد. میل خطعا به صفر برای (9) کند برای (9) پایه با سرعت به سمت صفر میل کند. در این حالت جلوگیری کرده در میله اول که تحت تأثیر اییرنسی ناشی از حرکت یا به و تأثیر این اییرنسی بر روی میله های دیگر واقع است، بیشترین مقدار گشتاور را در جن حرف یا به و نسبت موقعیت وجود نیاز دارد و پس از توقف یا به گشتاور کمتری مصرف می‌کند. از این حیث، وضعیت میله نپجم با میله اول مشابه است و در مورد آن تیر گشتاور مصرفی قبل از توقف یا به بیشتر است. بیشترین گشتاور لازم در سیستم مربوط به میله دوم است که با توجه به طول
شکل 10- مسیر حرکت نقطه مرکز پایه (F)

MBA

شکل 11- گشتاور اعمالی عملگرهای بر حسب زمان با اعمال الگوریتم کنترلی

بلند و چرم و اینرپسی زیاد آن این مقدار طبیعی به نظر می‌رسد. این میله همچنین باید چرم و اینرپسی میله های بعد از خشود و اینرپسی ناشی از حرکت پایه را نیز به نحوی جبران کند. تولید گشتاور در سه میله آخر در مقایسه با عملگرهای دیگر الگوریتم بسیار کمتر و در حدود 5 درصد است که علت آن کمتر یوند چرم و اینرپسی خود این میله ها و تأثیر اینرپسی حرکتی

سایر اجرا بر روی آنهاست.

به متن‌لار در نظر گرفتن ملاحظات عملی و وجود اختلاف بین مدل کنترلی و سیستم واقعی با احتمال تغییرات در مقادیر پارامترها در نظر گرفته می‌شود. این اختلاف ناشی از تفاوت در پارامترهای جرمی و ابعاد هندسی و همچنین خطاهای موجود در مولتزا دستگاه است. در این صورت مدل دینامیکی منطبق بر
واقيتی نیوی و خواهان دیش:}

\[\hat{M} \neq \hat{M}, \hat{V} \neq \hat{V}, \hat{J} \neq \hat{J} \]

بدین ترتیب، در هر یک از عناصر ماتریسی فاکتور به اندازه
10 درصد خطای نسبی به حالت واقعی در نظر می‌گیریم. برای
علیه بر خطای حاصل بهره‌های کترلری "\(K \)"، میانگین ثابت به
\(K_{p1} = 625 \) و \(K_{p2} = 50 \) است. این افزایش بهره‌ها
پاز همین میزان خطای کاهش و به صفر رسیدن نمونه‌ای
از ناتج مربوط به در ادامه اینا می‌شود. شکل (12). خطای سایر
مختصات تعمیم‌یافته نیز مشابه است.

\[\text{خطای } K \text{ که در اینجا نمایش داده شده است، نسبت به}
\text{سایر مختصات تعمیم‌یافته از مقدار قابل توجه برخوردار است.}
\text{که علت آن را پایان دادیم که تعیین تغییرات بارم‌ها}
\text{سنجحو کرد و همین امر موجب خطای کاهش در } K_0 \text{ شده}
\text{است. بنابرهم خطای ذکری به دارنده یک مقدار می‌رسد که}
\text{مطابق اندازه یا بایاد مقدار بودن کویرالیتی به مدل است.}
\text{در مورد خطای در رده سرعتی و ضعیف بستری وجود دارد و با}
\text{توحد وجود خطای الوله در آنها کلم خطاهای مربوط به}
\text{ساعت سیستمی به صرف می‌کنیم.} \text{گشتاورهای عمومی در}
\text{این قسمت به میزان بسیار جزئی نسبت به حالت ایجادتال}
\text{افزایشی می‌یابد که علت آن مربوط به برگزار بودن بهره‌های}
\text{تعتیمی است.}

\[\text{باید در نظر داشته که میزان} 10 \text{درصد نامتعینی پارامترهای}
\text{جری و هادسی در خصوص سیستمهای رویاکیت که بر اساس}
\text{انجام امور هندهسی و طراحی به‌صورت نسبتاً دقیقی ساخته}
\text{می‌شوند. بسیار بالاتر از حد نصیحه و تایید به دست آمده}
\text{حاکی از قابلیت استفاده بررسی‌گرهای کویرالیتی MBA است.}

11- تأثیر اغتشاشات محیطی

در این قسمت فرض می‌کنیم که علاوه بر 3 بک
گشتاورهایی خارجی اغتشاشی نیز در سیستم اثر می‌کند. این
نیروها را می‌توان به عنوان تأثیر مدل نشده اضطراب و سایر
عوامل بیروئی بر سیستم در نظر گرفت که در روند شبیه‌سازی

استقلال: سال 24، شماره 2، اسفند 1384

193
شکل 12- خطای پیشین از مختصات تعیین‌بندی با اعمال گروهی MBA پس از نظر گرفتن نامی‌نمایه‌های جرمی و هندسی

شکل 13- ورودی اغتشاشی به سیستم بر حسب زمان

شکل 14- خطای پررخت از مختصات تعیین‌بندی بر حسب زمان با اعمال گروهی MBA پس از نظر گرفتن اغتشاش محیطی

استقلال، سال 1384، شماره 12، صفحه 209
شکل ۱۵- خطای ایستادگی از مختصات تعمیم‌پذیر و گشتاورهای برخی عملکرد با اعمال الگوریتم کنترلی TJ

شکل ۱۶- خطای موقعیت مجزی نهایی با اعمال الگوریتم کنترلی TJ

ساده و بهصورت زیر است [۲۱]:
\[\tau^* = J^T(K_p_e + K_v \dot{e}) \]
این الگوریتم به منزله فنر و دمپری است که بین موقعیت و سرعت واقعی سیستم و مقادیر مطلوب مربوطه قرار گرفته و در هر لحظه این مقادیر واقعی را به مقادیر مطلوب خود نزدیکتر می‌کند. از مزایای این روش، عدم وابستگی به مدل دینامیکی سیستم و نیز اندکی پدید حجم محاسبات لازم است که موجب استفاده از آن در سیستم‌های پیچیده دینامیکی با تعداد درجات بالاست. از سوی دیگر استفاده از این الگوریتم، مستلزم استفاده از بهره‌های کنترلی برگ است. به علاوه در این الگوریتم، مصری مرکب‌ها را نسبت به حالت ایده‌آل بیشتر می‌کند. این امر را با توجه به تأثیر مقاوم‌طلبی پایه و بارو بر روی یکدیگر و ماهیت پیچیده و بسیار غیر خطی سیستم می‌توان توجیه کرد. برای غلبه بر تأثیر آن نیز به ناحیه‌ای بهره‌های حالت ایده‌آل را تا حد ممکن کاهش داد، البته این امر به نوبه خود موقعیت کنترل پاسخ خطای سیستم می‌شود.

۱۲- قانون کنترلی زاکوویچ ترانه‌زاده
دومین الگوریتم مورد استفاده در انتخاب کنترل، الگوریتم است. قانون کنترلی ارائه شده توسط این الگوریتم بسیار TJ

استقبالی سال ۱۳۸۴، شماره ۳، اسفند
تشکل 17- گشتاورهای اعمالی عملکدها در صورت استفاده از الگوریتم کنترلی \(TJ \)

روش سیستماتیکی برای انتخاب بهره‌کنترلی وجود ندارد و استفاده از روش سعی و خطأ در انتخاب بهره‌های راهکار رایج است. نظر به سوالی بر جریان این الگوریتم، بهبود ساختار آن به‌منظور رفع نیاز به ضرایب بهره‌کنترلی بزرگ (که باعث خود به ضعف جدی در روابط نوازندگی در سیستم‌های واقعی می‌شود) در مقالات دیگری تشریح شدکنست [22-23]. الگوریتم بهبودیافته زاکوبی ترجمه شده، با بهره‌های کنترلی معنی‌داری، عملکردهای مطلوب در کنترل سیستم‌های پیچیده روابط وایپاک‌های این الگوریتم، این عملکردها، از نظر مقایسه به تغییرات پارامترها، اگستیگاس محیطی و وجود نویز در MBA اندوزگیری کنترلی، کاملاً قابل مقایسه با الگوریتم مبتنی بر مدل

در حضور نویز، این بهره‌های سیستم زاکوبی بهتر و خطاً به صفر نزدیکتر می‌شود. عملکردهای سیستم کنترلی بهتر و خطاهای به صفر نزدیک‌تر می‌شوند. البته این می‌تواند که اگر در انتخاب بهره‌کنترلی بزرگ (که به ضعف جدی برای روابط و وجود نویز اندوزگیری در سیستم‌های واقعی می‌شود) در جای خود به

مراجع: استقلال، سال 24، شماره 2، استاد 1384

صفحه 211
اصلاح ساختار این الگوریتم رهنمون شدایست.

خطای کلی مختصات تعمیم‌پذیری به جز ۰ به سرعت خویش به سمت صفر می‌کند، این در حالی است که در دویم مفصل شاد و وجود خطا مانگ‌گذار هستند، همانطور که در شکل (۱۶) مشاهده می‌شود، وجود دوین طیف‌های مختصات تعمیم‌پذیری مفصلی، به طیف‌های قابل ملاحظه‌ی در تعبیه مثير مجزای محدود می‌شود که با انتخاب به‌همراهی کنترلی بهبودی به‌همراهی مشاهده می‌شود که به عنوان یک الگوریتم ناپایدار به مدل و دانای حجم محاسباتی بسیار محدود به عنوان یک کنترل مناسب استفاده گرفته و بهبود ساختار آن به مصرف رفع نیاز به ضرایب بهره‌کردنی بزرگ در مقالات سیستم‌های مورد بررسی قرار گرفته‌است.

از مقایسه شکل (۱۷) با شکل (۱۱) مشاهده می‌شود که مقادر ۸، ۸، ۸ و ۸ منجر به بیشتر از مقادیری مختصات MBA در بالعکس مقادیر ۴ و ۲ منجر به کمتر از مقادیر MBA مناطق در است. چاپ در نظر داشته که مقدار MBA در اساس مدل دینامیکی عین یک‌گانش کلاسیک مورد نیاز برای پیوستن سیستم طراحی شده است. به عبارت دیگر، این گشتاورها متعلق به سیستمی مکانیک MBA به دست آمده. بدون تریپ، وجود تفاوت آشفتگی بین پرپلی گشتاورها شکل (۱۷) و شکل (۱۱) خود به معنی وجود خطا معمولی‌کننده است. به‌همان طور که در شکل (۱۷) مشاهده می‌شود در این حالت شاهد نوسانی بودن برخی گشتاورها در محدوده کاری می‌باشند که این به فهمه‌ی زم و انتخاب محرکه‌ای مناسب برای بازی به نظر گرفته گشتاورها با فرکانس بالاتر و احتمالاً افزایش قیمت سخت‌افزاری است.

