مقایسه مدل‌های ظاهر رنگی CIECAM97s و نسخه اصلاح شده آن برای توصیف ظاهر رنگی یک منسوج

مهدی تقی فادی‌کلاهی و سید حسین امیرشاهی
دانشکده مهندسی نساجی دانشگاه صنعتی اصفهان
دانشکده مهندسی نساجی دانشگاه صنعتی امیرکبیر

چکیده - از آن جایی که در رابطه با کارایی نسخه اصلاح شده مدل CIECAM97s به روی مدل‌های قبلاً شناخته‌شده، مدل‌های CIECAM97s و نسخه اصلاح شده آن از توصیف و جایگزینی های ظاهر رنگی منسوجات با رنگ‌ها و کاربردهای مختلف و شرایط مختلفی از مشاهده استفاده شده است و مدل‌های رنگ ظاهری آن‌ها به عنوان خروجی دو مدل مورد بحث قرار گرفته است. نتایج حاصل نشان می‌دهد که مدل اصلاح شده به دلیل استفاده از تعداد کمتر محدوده گونه‌ها و عوامل کاسته شده در برابر مناسب‌تری در محیط‌های فکری برخوردار است. به علاوه استفاده از حالت مکوس در نسخه اصلاح شده به دلیل ساده‌سازی ظاهری انجام شده بهتر است. در پایان، مدل CIECAM97s اصلاح شده، منسوج، تطبیق رنگی و ارزگان کلیدی: مدل‌های ظاهر رنگی CIECAM97s، CIECAM97s، CIECAM97s

A Comparison between CIECAM97s and its Revised Colour Appearance Models for Apearance Attributes of Fabrics

M. Taghavi Ghadikolaee and S. H. Amirshahi
Department of Textile Engineering, Isfahan University of Technology
Department of Textile Engineering, Amirkabir University of Technology

Abstract: The CIECAM97s and its revision, as a colour appearance model, were applied for a series of fabrics with different colours and depths to explain their colour appearance coordinates in similar viewing conditions. The results show that due to some modifications which expand the scale, the modified model has improved capabilities in calculating chroma. Besides, the calculations were simpler for the revised version of CIECAM97s model while the results from the two models were the same.

Keywords: Colour appearance models, CIECAM97s, Textile, Colour

واژگان کلیدی: مدل‌های ظاهر رنگی CIECAM97s، CIECAM97s، CIECAM97s

اسکنده سال ۱۳۸۴ شماره ۴

**دانشیار

* کارشناس ارشد
الفهرست علائم

<table>
<thead>
<tr>
<th>فاکتور تأثیر زمینه</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>عکس عمل غیر رنگی نمونه</td>
<td>A</td>
</tr>
<tr>
<td>عکس عمل غیر رنگی سفید</td>
<td>A_w</td>
</tr>
<tr>
<td>توابع مکمل فرم-سیز-سیز و زرد-آبی</td>
<td>a,b</td>
</tr>
<tr>
<td>خلوص</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>درجه تطبیق</td>
<td>D</td>
</tr>
<tr>
<td>منبع نوری استفاده</td>
<td>D_s</td>
</tr>
<tr>
<td>فاکتور دوری از مرکز</td>
<td>e</td>
</tr>
<tr>
<td>فاکتور درجه تطبیق</td>
<td>F</td>
</tr>
<tr>
<td>توبعکس</td>
<td>F_L</td>
</tr>
<tr>
<td>F_{LL}</td>
<td></td>
</tr>
<tr>
<td>باعث نسبت روشنایی</td>
<td>H</td>
</tr>
<tr>
<td>گام متمرکز</td>
<td>h</td>
</tr>
<tr>
<td>ردیابی گام</td>
<td>J</td>
</tr>
<tr>
<td>روش انتقال</td>
<td>K</td>
</tr>
<tr>
<td>چگالی نهایی</td>
<td>M</td>
</tr>
<tr>
<td>چگالی نهایی انتقال</td>
<td>M_B</td>
</tr>
<tr>
<td>مکروس ماتریس انتقال</td>
<td>M^{-1}</td>
</tr>
<tr>
<td>مکروس ماتریس انتقال جدید</td>
<td>M^{-1}</td>
</tr>
<tr>
<td>فاکتور تأثیر زمینه کروماتیک</td>
<td>N_C</td>
</tr>
<tr>
<td>فاکتور تأثیر زمینه کروماتیک</td>
<td>N_{C_h}</td>
</tr>
<tr>
<td>فاکتور تأثیر زمینه</td>
<td>N_{bb}</td>
</tr>
</tbody>
</table>

1- مقدمه

بحث در خصوص ظاهر رنگی 1 در سالهای اخیر مطرح و توجه به ارائه کمی ظاهر رنگی نمونه‌ها با نظر گرفتن عوامل متعدد به‌شیوه‌ی جز منبع نوری و مشاهده کننده که بدون تردد در رنگ دریافت شده مورد توجه قرار گرفته است.

استانداردهای رنگی یک جسم یا یک تصویر به‌طور شیراطی مشاهده مانند تغییر محتوای، منبع نوری، رنگی و روشنایی می‌باشد. البته اگر منجر به پرور مشکلات جدی در کنترل رنگ می‌شود. از عوامل رنگ نمونه در تمامی این

ابن موردت نیاز به قضاوت‌ها چشته بی‌استفاده از افراد با تجربه‌ی دارد و عواری از خطاهای ناشی از ادراکات و ارزیابی‌های بشری تجویز نشده بود. راه حل گلبه بی‌این مشکل طراحی یک مدلی استفاده برای ارزیابی ظاهر رنگی است که فاصله تخمین ظاهر رنگی نمونه اعم از یک جسم و یا یک تصویر چاب شده‌ای با عرضه شدید در یک صفحه نمایشگر مانند تلویزیون یا مونیتور را در محدوده و مسایعی از شیراط مشاهده شده باشد. این افراد، نتایج تطبیق ظاهر رنگی در فرایند رنگ خاصی صورت می‌دهند. اینکه تحت شرایط مشاهده متفاوت بیش از پیش‌های قبلی کمی

استقلال، سال 2، شماره 2، استناد 1384

228
زیرا برای انجام این کار یک مدل ظاهر رنگی، قابلیت و کاربرد عملی مورد نیاز است و لذا ضروری است که قبل از بیان هر مدلی ابتدا یک رنگ به طور دقیق‌تر مورد بررسی گردد.

به منظور ارائه مدل برای ارائه ظاهر رنگی نمونه‌ها عمدتاً در نظر گرفته و مدل‌های CIEG97s، CIELAB، CIEXYZ تعیین شده است.

برای پیشگیری ظاهر رنگی احساس تحت شرایط CIELAB و رویکرد مدل‌های ظاهری شامل روابط ریاضی برای بین رنگ‌های ظاهری در شرایط شدید مانند روش‌های، روش‌های، خروجی مدل‌های ظاهری شامل روابط ریاضی برای بین رنگ‌های ظاهری، در شرایط شدید مانند روش‌های، روش‌های، خروجی مدل‌های ظاهری شامل روابط ریاضی برای بین رنگ‌های ظاهری، در شرایط شدید مانند روش‌های، روش‌های، خروجی مدل‌های ظاهری شامل روابط ریاضی برای بین رنگ‌های ظاهری، در شرایط شدید مانند روش‌های، روش‌های، خروجی مدل‌های ظاهری شامل روابط ریاضی برای بین رنگ‌های ظاهری، در شرایط شدید مانند روش‌های، روش‌های، خروجی مدل‌های ظاهری شامل روابط ریاضی برای بین رنگ‌های ظاهری، در شرایط شدید مانند R، G، B (از گروه XYZ)

در این مقاله ضمن ارائه توضیحات مختصری در خصوص مدل‌های ظاهری، در درمان عصبیت، نسبت SRT، در اصلاح شده آن به روی مناسبات مورد بررسی و مقایسه قرار گرفت. لازم به ذکر است این در این زمینه هیچ گونه تحقیقاتی مختصره به مناسبات سوپر تبدیل نمی‌گردد.

در این مقاله ضمن ارائه توضیحات مختصری در خصوص

در این مقاله ضمن ارائه توضیحات مختصری در خصوص مدل‌های ظاهری، کاربرد مدل CIEG97s و نسبت SRT، در اصلاح شده آن به روی مناسبات مورد بررسی و مقایسه قرار گرفت. لازم به ذکر است این در این زمینه هیچ گونه تحقیقاتی مختصره به مناسبات سوپر تبدیل نمی‌گردد.

استلال، سال 24، شماره 2، اسفند 1384

239
تایبین همزمان: ظاهر رنگی دو نمونه با ظاهر رنگی یکسان به روي زمینه‌های با رنگ‌های مختلف متفاوت درک می‌شود.[5]

کد[7]: اختلاف رنگی بین دو نمونه هنگامی که روی زمینه‌ای با رنگ مشابه خود مورد مشاهده قرار می‌گیرند افزایش می‌یابد.[5]

عیب‌های بروز - برک: فام تولید شده در محدوده بینایی فتوپیک با تغییرات روش‌نامه‌ای تغییر می‌کند.[5]

اثر آلی: فام تولید شده هنگامی که طول موج حاصل و روشنایی ثابت است با کاهش خلوص تغییر می‌کند.[5]

اثر هلمهولتز - کوهل راس: در محیط‌های درک شده از یک نمونه در محدوده بینایی فتوپیک هنگامی که روشنایی ثابت نگه داشته می‌شود با افزایش خلوص نمونه رنگ‌گی تغییر می‌کند.[5]

اثر هفته: گنای رنگ درک شده با افزایش روش‌نامه افزایش می‌یابد.[5]

اثر استیونس: تایبین با افزایش تطبیق در روش‌نامه افزایش

شکل ۱- تقسیم بندی محیط اطراف یک نمونه

(Background) محیط اطراف (Surround) محیط اطراف یک نمونه

(Proximal Field) (Stimulus) (Proximal Field) (Stimulus) (Proximal Field) (Stimulus)
ماتریس انتقالی مربوط بهی به اختلاف از معادله (1) تبدیل می‌شود:

\[
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix} = M_B \begin{bmatrix}
X/Y \\
Y/Y \\
Z/Y
\end{bmatrix}
\]

(1)

\[
M_B = \begin{bmatrix}
0.8951 & 0.2664 & -0.1614 \\
-0.7502 & 1.7135 & 0.0367 \\
0.0389 & -0.0685 & 1.0296
\end{bmatrix}
\]

است. تبدیل انتقالی رنگ، تبدیل اصلاح شده از نوع ون کریس است که در این آن از یک معادله غیرخطی تماشای سلسله مخروط حساس در طول موج‌های کوتاه‌تر که در معادله (2) نشان داده شده استفاده شده است. متغیر \(D \) به مفهوم بیان درجه تطبیق به کار گرفته شده است. برای تطبیق کامل یا عدم توجه به عنوان برای (1) و برای عدم تطبیق برای (0) در نظر گرفته می‌شود، هنگامی تطبیق بین صفر و یک را می‌پذیرد که در جریان متغیر از تطبیق - عدم تطبیق کامل صورت پذیرفته.

\[
R_e = \left[D \frac{R_{rw}}{R_w} + 1 - D \right] R
\]

(2)

\[
G_e = \left[D \frac{G_{rw}}{G_w} + 1 - D \right] G
\]

(3)

\[
B_e = \left[D \frac{B_{rw}}{B_w} + 1 - D \right] B
\]

(4)

\[
p = \left(\frac{B}{B_w} \right)^{0.0834}
\]

(5)

یک انتقال اولیه تطبیق رنگ برای گذر از شرایط مشاهده می‌تواند به استفاده از معادلات و معرفی نشان داده شده. این راه حل به محاسبه دیگر است. این راه حل به محاسبه دیگر است. این راه حل به محاسبه دیگر است. این راه حل به محاسبه دیگر است.
جدول ۱ - مقادیر ثابت و فاکتورهای مختلف بر اساس شرایط مشاهده [۷ و ۸]

<table>
<thead>
<tr>
<th>F</th>
<th>FLL</th>
<th>Nc</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۰/۸۹</td>
</tr>
<tr>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۰/۵۹</td>
</tr>
<tr>
<td>۰/۹۰</td>
<td>۰/۹۰</td>
<td>۰/۹۰</td>
<td>۰/۵۴</td>
</tr>
<tr>
<td>۰/۹۰</td>
<td>۰/۹۰</td>
<td>۰/۹۰</td>
<td>۰/۴۱</td>
</tr>
</tbody>
</table>

برای محاسبه ارتباطات ظاهری ابتدا توانع مکمل قرمز - سبز و زرد - آبی به دست می‌آید و در مرحله بعدی زاویه‌ی فاصله در محاسبه می‌شود [۸].

\[
h = \tan^{-1}\left(\frac{b}{a}\right)
\]

سبس قام‌متریک \(H \) و فاکتورهای عدم تقارن (برای دوی در مکرو) از اطلاعات جدول (۲) با استفاده از مقادیر مشخص فاصله و رنگی درون‌پایه به دست می‌آید و [۷ و ۱] نهایتاً ویژگی‌های ظاهری از طریق معادلات (۷) تا (۱۱) محاسبه می‌شود [۷] .

\[
J(\text{Lightness}) = 100\left(\frac{A}{A_w}\right)^{0.2}
\]

\[
Q(\text{Brightness}) = (1.24/c) \left(\frac{J}{100}\right) \left(\frac{A_w + 3}{0.67}\right)^{0.9}
\]

\[
s(\text{saturation}) = \frac{50(a^2 + b^2)^{0.5}}{100c(10/13)N_c N_{eb}}
\]

\[
C(\text{Chroma}) = 2.445^{0.69} \left(\frac{J}{100}\right)^{0.67} \left(1.64-0.29n\right)^{10}
\]

\[
M(\text{Colourfulness}) = CF^0.15
\]

\[
R' = 100\left(2R'_a - 2\right) / 41 - R'_a \right)^{0.73}
\]

\[
G' = 100\left(2G'_a - 2\right) / (41 - G'_a)^{0.73}
\]

\[
B' = 100\left(2B'_a - 2\right) / (41 - B'_a)^{0.73}
\]

\[
Y_c = 0.43231 R'_c Y + 0.51836 G'_c Y + 0.04929 B'_c Y
\]

\[
Y' = 0.43231 YR + 0.51836 YG + 0.04929 (Y/Y_c)^{1/3} BYC
\]

\[
\begin{bmatrix} X^* \\ Y^* \\ Z^* \end{bmatrix} = M_{CI}^{-1} \begin{bmatrix} Y_c(Y/Y_c)^{1/3} R \\ Y_c(Y/Y_c)^{1/3} G \\ Y_c(Y/Y_c)^{1/3} B(Y/Y_c)^{(1-1)/3} \end{bmatrix}
\]

می‌شود. مراحل مدل در جهت اکسپرس بسیار محاسبه رنگ‌های مربوط به یا کار گرفتن آن‌ها برای دوباره تولید شده در صورت زیر است:

اطلاعات مختصات فام مطالب با مقادیر ارائه شده در جدول (۳) به عنوان: اطلاعات نیز با شروع کننده‌اند [۱۰] و \(N_{eb} \) و \(N_{aw} \) و \(F_{LL} \) و \(Z \). نام بار، اطلاعات مشخص محدوده و ظرفیتی در بار و استفاده از مدل مزبور به دست می‌آید. بارها می‌تواند محیط اطراف \(N_c \) و \(F_{LL} \) و \(c \) و \(F \) را برای استفاده از جداول (۵) تا (۳) تعیین می‌شود. مدل با استفاده از داده‌های ورودی و معادلات مربوط به این داده‌ها و مورد نظر را محاسبه کرده و نهایتاً \(X \) و \(Y \) و \(Z \) مورد محاسبه قرار می‌گیرند که توسط معادلات (۲) تا (۱۷) نشان داده شده‌اند [۱۰].
جدول 2- مقایسه مشخصات فامهای [7, 8]

<table>
<thead>
<tr>
<th>(H) فام</th>
<th>فاکتور عدم ثقل (e)</th>
<th>زاویه فام (h)</th>
<th>فام</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0/8</td>
<td>2/02/14</td>
<td>327/53</td>
</tr>
<tr>
<td>200</td>
<td>0/7</td>
<td>9/00</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>1/0</td>
<td>14/25</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1/2</td>
<td>37/56</td>
<td></td>
</tr>
</tbody>
</table>

در نظر گرفتن یک متغیر پیوسته جبران کننده می‌باشد.
- تطبیق ناحیه بیان و ساده سازی مدل
 داده‌های ورودی و شرایط کار برای مدل بازنگری شده
 مطابق نسبت اصلی است. مدل بازنگری شده بر اساس مدل
 معادلاتی مشابه مدل اصلی با مراحل محاسباتی کمتر و ساده‌تر
 که با عملیات برخی از ضرایب و نمادها همکاری می‌کند است. نهایتاً
 با استفاده از معادل‌ها [19] و درک‌های مورد نظر را
 محاسبه می‌کند [15].

\[J = 100 \left(A/A_w \right)^2 \]
\[Q = (1.24/c) \left(J/100 \right)^{0.67} \left(A_w + 3 \right)^{0.9} \]
\[s = \left[50(a^2 + b^2) \right]^{0.5} \left(10/13 \right) N_a N_{eb} \]
\[\left[R_a + G_a + (21/20)B_a \right] \]
\[C = 0.74870.973 \left(J/100 \right)^{0.9458} \left(1.64-0.29^n \right)^{0.41} \]
\[M = CR_{15} \]

در دقت توزیع مدل بازنگری شده بی‌توجه به تعدادی که در
 روابط و معادلات انجام داده است با معادلات به سادگی و از
 مسیری بسیار کوتاه محسوب می‌شود و محاسبه Y و X
 نموده مورد نظر را محاسبه می‌کند [15].

آزمایشات اولیه بر روی این مدل مبتنی این است که مدل در
 محصول و سببي از اطلاعات و کاربردهای عملی کارایی
 دارد [8].

جدول 3- مقایسه فرمول‌ها و فاکتورهای مختلف بر اساس شرایط مشاهده [9]

<table>
<thead>
<tr>
<th>شرایط مشاهده</th>
<th>محیط متوسط</th>
<th>محیط نیمه نازک</th>
<th>محیط تاریک</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>N_c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1/0</td>
<td>0/29</td>
<td>0/53</td>
</tr>
<tr>
<td>1/0</td>
<td>0/95</td>
<td>0/59</td>
<td></td>
</tr>
<tr>
<td>0/9</td>
<td>0/80</td>
<td>0/525</td>
<td></td>
</tr>
</tbody>
</table>

نتیجه‌گیری‌های کمیته فنی CIE
 منجر به پافت مدل
 اصلی شد و برای افزایش این مدل یک
 موفقیت محصول می‌شود هنوز در کاربردهای عملی به طور
 محصول حساس بود نکنده است که یکی از مهم‌ترین لااقل
 عدم استفاده از این مدل می‌تواند بیشتری آن باشد [15].

بر لایه‌ای فوق کمیته‌های فنی سعی کردند امکانات
 بازنگری در مدل CIECU97s را به وجود ارائه کنند.
 مرجع به انجام بازنگری‌های شد که نهایتاً به صورت یک
 جمع‌بندی و در قالب جهتی بازنگری حاضر در مسیر سال
 2001 میلادی توزیع گردیده‌اند راشه شد. مبنای بازنگری‌های
 انجام شده توجه به نکات زیر بوده است [15].

الف - خطی کردن نسبی تطبیق رنگی به منظور ساده‌سازی
 مدل مناسب و مکوس
ب - قرار دادن مقیاس روش‌نوازی برای نمونه سایه کامل
ج - برقراری یک میقاس خلوص و سیبک برای رنگ‌های با
 کرومای کم (خنثی).

استقلال، ج1، شماره 2، اسفند 1384
2- اساس تجربی

در تحقیق فعلی به منظور مقایسه مدل اصلی و مدل بازنگری شده، ظاهر زنگی و استخراج ویژگی ها در مدل بازنگری شده از نمونه‌های آرکیپولیک بافت گریکه‌ها و الکتریکی و کاتیونیک 41 و 28 از رنگ‌های Basic Yellow 46 و C.I. Basic Red 46 بهره بردند. استفاده شده در این مطالعه ویژگی‌های مختلف از موارد رنگ‌های مذکور مورد استفاده قرار گرفت. انعکاس نمونه‌های زنگ شده با استفاده از اسکنر قطعات صفحه شرکت دیتاکور با دیافراگم 18 میلی متر اندازه‌گیری شده است و محکم‌های سه‌گانه کلیه نمونه بافت زنگ منابع دیگری A و D نیز مورد استفاده قرار گرفتند و مدل‌های K و M به ویژه در مدل‌های گوگل و رابطه با مدل‌های استفاده‌کننده مدل‌های کاربردی با یک برتری محسوس‌پذیرایی شده است.

3- نتایج و بحث

3-1- مقایسه نتایج مدل ظاهر زنگی بازنگری شده و نسخه CIECAM97s

برای انجام این بررسی از نمونه رنگ‌زی شده با فرم قرمز که با استفاده از 7/ رنگ‌هایه هبه شده بر روی مدل بازنگری شده، داده‌های محاسباتی مورد استفاده قرار گرفت‌های سه‌گانه کلیه نمونه بافت زنگ منابع دیگری A و D نیز مورد استفاده قرار گرفتند و مدل‌های K و M به ویژه در مدل‌های گوگل و رابطه با مدل‌های استفاده‌کننده مدل‌های کاربردی با یک برتری محسوس‌پذیرایی شده است.

\[
\begin{align*}
X &= M^* + G \\
Y &= M^* - B \\
Z &= 4 M^* \\
M^* &= 0.3 X + 1.1 Y \\
C &= 0.65 Z \\
H &= \sqrt{M^* M^* + \beta (C^* C^*)} \\
L^* &= \frac{116 (Y + 16)^{1/3} - 13}{K} \\
\end{align*}
\]
جدول 4: مقایسه مقدار محاسبه شده توسط دو مدل CIECAM97s اصلی و پاژنگری شده

<table>
<thead>
<tr>
<th>مدل</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>XW</th>
<th>YW</th>
<th>ZW</th>
<th>L_A</th>
<th>F</th>
<th>D</th>
<th>V_b</th>
<th>c</th>
<th>N_e</th>
<th>F_LL</th>
<th>K</th>
<th>F_L</th>
<th>N</th>
<th>N_{bb}</th>
<th>N_{cb}</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>اصلی</td>
<td>30.37</td>
<td>16.77</td>
<td>12.67</td>
<td>90.05</td>
<td>100.00</td>
<td>108.88</td>
<td>318.31</td>
<td>1</td>
<td>0.99</td>
<td>50/00</td>
<td>0/79</td>
<td>1/00</td>
<td>1/00</td>
<td>0/0006</td>
<td>1/17</td>
<td>0/20</td>
<td>1/00</td>
<td>1/00</td>
<td>1/45</td>
</tr>
<tr>
<td>پاژنگری شده</td>
<td>30.37</td>
<td>16.77</td>
<td>12.67</td>
<td>90.05</td>
<td>100.00</td>
<td>108.88</td>
<td>318.31</td>
<td>1</td>
<td>0.99</td>
<td>50/00</td>
<td>0/79</td>
<td>1/00</td>
<td>1/00</td>
<td>0/0006</td>
<td>1/17</td>
<td>0/20</td>
<td>1/00</td>
<td>1/00</td>
<td>1/45</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>R_W</td>
<td>G_W</td>
<td>B_W</td>
<td></td>
</tr>
<tr>
<td>R_a</td>
<td>29/00</td>
<td>4/47</td>
<td>13/33</td>
<td>94/04</td>
<td>104/17</td>
<td>108/80</td>
<td></td>
</tr>
</tbody>
</table>

نتایج آن در حدود (5) نشان داده شده‌اند. با توجه به تعریف غنای رنگی انظار می‌رود باید که غلظت این ویژگی کاهش یابد که ممتا انظار در تمامی مواد و در هر دو مدل با کاهش غلظت، غنای رنگی کاهش یافته است (در محدوده غلظت مواد رنگی که در آن پرورش به کار گرفته شده‌اند). از طرفی همان گونه که اشاره شد می‌تواند به

 Persian
جدول ۵- مقایسه مفاوتی های CIECAM97s و Chroma به دست آمده از مدل‌های CIEcolourfulness و بازگری شده برای

<table>
<thead>
<tr>
<th>CIEcolourfulness(M)</th>
<th>Chroma(C)</th>
<th>محکوم‌های سه‌گانه</th>
<th>قام</th>
</tr>
</thead>
<tbody>
<tr>
<td>پازلنگری شده اصلی</td>
<td>10/19</td>
<td>14/0/30</td>
<td>8/45</td>
</tr>
<tr>
<td>پازلنگری شده اصلی</td>
<td>14/2/69</td>
<td>14/1/69</td>
<td>14/27</td>
</tr>
<tr>
<td>پازلنگری شده اصلی</td>
<td>139/23</td>
<td>139/23</td>
<td>30/37</td>
</tr>
<tr>
<td>پازلنگری شده اصلی</td>
<td>118/05</td>
<td>19/9/9</td>
<td>37/11</td>
</tr>
<tr>
<td>پازلنگری شده اصلی</td>
<td>90/38</td>
<td>31/43</td>
<td>29/43</td>
</tr>
<tr>
<td>پازلنگری شده اصلی</td>
<td>79/89</td>
<td>2/7/1</td>
<td>1/0</td>
</tr>
<tr>
<td>پازلنگری شده اصلی</td>
<td>42/14</td>
<td>9/0/2</td>
<td>0/5</td>
</tr>
<tr>
<td>پازلنگری شده اصلی</td>
<td>48/80</td>
<td>48/80</td>
<td>1/8</td>
</tr>
<tr>
<td>پازلنگری شده اصلی</td>
<td>92/53</td>
<td>90/51</td>
<td>1/4</td>
</tr>
<tr>
<td>پازلنگری شده اصلی</td>
<td>79/89</td>
<td>79/89</td>
<td>1/4</td>
</tr>
<tr>
<td>پازلنگری شده اصلی</td>
<td>62/04</td>
<td>62/04</td>
<td>1/0</td>
</tr>
</tbody>
</table>

به دلیل اصلاحات انجام شده اختلاف بین مقدارهای مذکور بیشتر و سیر نزولی سرعت بیشتری یافته است. با توجه به مقادیر جدول (۷) مشاهده می‌شود سیر نزولی در مدل پازلنگری شده حدوداً ۱/۷ برابر سرعت شده است و اختلاف بین مقدارهای ظاهری خلوص و غنای رنگی اتفاق می‌افتد و اختلاف مقادیر ان و وزنگیا بین بیشترین غلط است. مورد بررسی و کمترین غلط مورد بررسی چه میزان است؟ اختلاف بین خلوص برای بیشترین غلط و خلوص برای کمترین غلط در جدول (۷) نشان داده شده است. نتایج مندرج در جدول (۷) نشان می‌دهد که در مدل پازلنگری شده

استقبال سال ۲۴، شماره ۲، اسفند ۱۳۸۴

826
جدول ۷- مقایسه ویژگی‌های ظاهری که در قسمت معکوس مدل مورد استفاده قرار گرفته است.

<table>
<thead>
<tr>
<th>colourfulness (M)</th>
<th>Chroma (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>فام</td>
<td></td>
</tr>
<tr>
<td>مدل اصلی</td>
<td>مدل بازگری شده</td>
</tr>
<tr>
<td>قرمز</td>
<td></td>
</tr>
<tr>
<td>زرد</td>
<td></td>
</tr>
<tr>
<td>آبی</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th>C</th>
<th>s</th>
<th>Q</th>
<th>J</th>
<th>H</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>129/23</td>
<td>131/21</td>
<td>31/30</td>
<td>141/40</td>
<td>391/28</td>
<td>87/80</td>
<td>88/33</td>
</tr>
<tr>
<td>80/67</td>
<td>87/68</td>
<td>81/35</td>
<td>78/38</td>
<td>67/77</td>
<td>68/80</td>
<td>78/50</td>
</tr>
<tr>
<td>81/28</td>
<td>89/98</td>
<td>81/92</td>
<td>22/16</td>
<td>24/25</td>
<td>31/31</td>
<td>32/50</td>
</tr>
</tbody>
</table>

در جدول ۶- مقایسه مقدار Chroma و Colourfulness برای کمترین و بیشترین غلظت به کار رفته، همچنین نشان می‌دهد مقدار Chroma در کمترین و بیشترین غلظت بسیار بینمی‌شود. نیاز به اینکه کمترین و بیشترین فاصله ها بین این دو مقدار می‌باشد. در نتیجه، در تمام سطوح بازگری شده، مقدار Chroma بسیار بینمی‌شود. همچنین نشان می‌دهد نیاز به اینکه کمترین و بیشترین فاصله ها بین این دو مقدار می‌باشد. در نتیجه، در تمام سطوح بازگری شده، مقدار Chroma بسیار بینمی‌شود. همچنین نشان می‌دهد نیاز به اینکه کمترین و بیشترین فاصله ها بین این دو مقدار می‌باشد. در نتیجه، در تمام سطوح بازگری شده، مقدار Chroma بسیار بینمی‌شود. همچنین نشان می‌دهد نیاز به اینکه کمترین و بیشترین فاصله ها بین این دو مقدار می‌باشد. در نتیجه، در تمام سطوح بازگری شده، مقدار Chroma بسیار بینمی‌شود. همچنین نشان می‌دهد نیاز به اینکه کمترین و بیشترین فاصله ها بین این دو مقدار می‌باشد. در نتیجه، در تمام سطوح بازگری شده، مقدار Chroma بسیار بینمی‌شود. همچنین نشان می‌دهد نیاز به اینکه کمترین و بیشترین فاصله ها بین این دو مقدار می‌باشد. در نتیجه، در تمام سطوح بازگری شده، مقدار Chroma بسیار بینمی‌شود. همچنین نشان می‌دهد نیاز به اینکه کمترین و بیشترین فاصله ها بین این دو مقدار می‌باشد. در نتیجه، در تمام سطوح بازگری شده، مقدار Chroma بسیار بینمی‌شود. همچنین نشان می‌دهد نیاز به اینکه کمترین و بیشترین فاصله ها بین این دو مقدار می‌باشد. در نتیجه، در تمام سطوح بازگری شده، مقدار Chroma بسیار بینمی‌شود. همچنین نشان می‌دهد نیاز به اینکه کمترین و بیشترین فاصله ها بین این دو مقدار می‌باشد. در نتیجه، در تمام سطوح بازگری شده، MCD ۱۳۸۴
جدول 8- مقایسه مقادیر خروجی مکوس مدل‌های CIECAM97s اصلي و بازنگری شده برای
فامه‌های مورد بررسی با غلظت 1/4

<table>
<thead>
<tr>
<th>مرکه‌های سه‌گانه اصلی</th>
<th>خروجی مکوس مدل اصلی</th>
<th>CIECAM97s</th>
<th>Qafm</th>
<th>قرمز</th>
<th>زرد</th>
<th>آبی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Z Y X</td>
<td>Z Y X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/87 30/37 16/67</td>
<td>12/86 30/37 16/66</td>
<td>12/86 30/37 16/66</td>
<td>30/37 16/67</td>
<td>30/37 16/67</td>
<td>30/37 16/67</td>
</tr>
<tr>
<td></td>
<td>8/87 43/12 47/59</td>
<td>8/83 43/12 47/59</td>
<td>8/83 43/12 47/59</td>
<td>43/12 47/59</td>
<td>43/12 47/59</td>
<td>43/12 47/59</td>
</tr>
</tbody>
</table>

بازنگری شده به عنوان یک جمع بنده از بازنگری‌های انجام شده توسط فیل بی‌تای آرائه شده است.
نتایج ناشی از به کارگیری دو مدل ظاهر رنگی ذکر شده بر روی یک سری منسوخ اکریلیکی با فامه‌ای قرمز و زرد و آبی نشان می‌دهد که مدل CIECAM97s بهترین دقت مدل در حال حاضر می‌باشد و به‌طور کلی مدل CIECAM97s بهترین دقت مدل در حال حاضر می‌باشد و به‌طور کلی مدل CIECAM97s بهترین دقت مدل در حال حاضر می‌باشد.

4- تنهای گیری

علی رغم اینکه ارائه مدل ظاهر رنگی CIECAM97s مراه مسری گسترده و روز مدل‌هایی است که در ظرف چند سال گذشته آرائه شده بودند ولی این مدل نیز به رغم مزایای ظاهروی کرما را مرتفع کرده است. این مدل مهندس مدل اصلی قابلیت به کارگیری در جهت مکوس را داراست که از مهترین ویژگی‌های مدل‌های ظاهر رنگی محسوب می‌شود. چرا که این قابلیت را به توجه شده می‌دهد تا بافت از ویژگی‌های ظاهری مورد نظر که ساخته یا شرايط کاربردی مقدار اولیه‌ای مور نیاز را شناسایی و رنگ مربوطه را با همان ویژگی‌های ظاهری مورد نظر تولید کند.

واژه‌نامه

1. colour appearance
2. colour appearance model
3. colour adaption
4. discounting the illuminant
5. appearance attribute
6. brightness
7. lightness
8. chroma
9. colourfulness
10. saturation
11. hue
12. reproduction
13. related colour
14. unrelated colour
15. background
16. surround
17. proximal field
18. simultaneous contrast
19. crispening
20. colour constancy
21. memory colour

استقلال، سال 26، شماره 2، اسفند 1384

238