امکانات حضوری آسترمیری در خواص مکانیکی و ساختار
میکروسکوپی چندنیا نشکنی با درصدی از مس
عباس نجفی زاده، محمدعلی کلخوار

خلاصه

در این تحقیق به بررسی اثر دوره عملیات حضوری آسترمیری
کردن بر خواص مکانیکی و ساختار میکروسکوپی چندنیا نشکنی با درصد
متغیر از مس (بين 0/5 تا 2 درصد) برداخته شده، حيث نتایج
اين پژوهش ابتدا یا بلوك هاکي از چندنیا نشکنی با درصد
مختلف از مس رو طبیع درخشک گر نه کردن و سپس با استفاده از
آنتانوموديات مالکراخی، کش و شرب ساخته شده، نمونه‌های
ساخته شده در دمای 89 درجه سانتی‌گراد بسته یک ساعت آستانه و
سپس در دمای‌های 285، 325 و 375 درجه سانتی‌گراد بسته زمان‌های
مختلف 15، 30، 45 و 60 دقیقه آسترمیر گردیدند. نتایج حاصله
نشان داد که چند نشکنی با يک درصد مروک در دمای‌های 285 و
325 درجه سانتی‌گراد بسته 45 دقیقه آسترمیر شده مناسب ترين تركیب
خواص مکانیکی را نسبت به سایر آنتانوموديات که در همان شرایط
آسترمیر گردیده‌اند، داراست و اين در حالی است كه در دمای آسترمیر
کردن 375 درجه سانتی‌گراد، آلایژي با دو درصد مروک بسته 30
دقیقه آسترمیر شده از خود مناسب ترین خواص مکانیکی را نشان
می‌دهد.

مقدمه

چندنیا نشکنی آسترمیر شده با خاصیت خواص مکانیکی عالی خود در
دهم اخير یا دیار مورد شوجه قرار گرفته‌اند. اين نوع چندنیا به

* استادیاران دانشگاه موتاد دانشگاه صنعتی اصفهان
داستان استحکام کشی زیاد، مقاومت در بر ارختگی تمامی و خمشی خوب و قابل بلویی به مناسب خواص ماده و در موازی بالاری از برخی از فولادهای آلی‌گیری شده از خود نشان می‌دهند. جهت‌شن خواص همراه با هزینه‌های تولید کمتر، نسبت بطقمه مثابه در روش آلی‌گیری (حدود ۰۳ درصد کاهش نیم‌تاما شده) موجب گردیده که جاذبه زیادی در صنعت برای استفاده از این دسته چدنی بوجود آید [۱-۲]. ازجمله این قطاعات موتو وان به انواع جرخ دندی‌ها با اندازه‌های مختلف، انواع میل لنگ‌ها و میل فلادکه‌ها اشکال و نعمود [۲-۴].

این نوع چدن از انجام فراخوان عملیات حرارتی خاصی موسم به است水库ر کردن روی چدن‌های نشکن بدست می‌آید (شکل ۱).

![شکل ۱ - نمایش فراخوان عملیات استبکر کردن (خط چین) روی شمودار ایزوترم یک چدن نشکن غیر آلبایزی](image-url)
بطور کلی فراهم آستیمر کردن شامل چهار مرحله زیر است:

مرحله ۱ - قرار دادن قطعه ریختگی در دماهای استیمین با توجه به طول‌مدت زمانی معین (در پايان این مرحله لازم است زمینه‌ها باختار

میکروکسیک قطعه کاملاً استخابه شده باشد.

مرحله ۲ - سرد کردن سریع قطعه بکمک یک محیط کننده نظیر

حادام شنک، تا درجه حرارت معینی موسوم به دماهای استیمر

کردن.

مرحله ۳ - نگهداری قطعه بعد از مدت زمانی معین دراین دما.

مرحله ۴ - خروج و سرد کردن قطعه تا درجه حرارت محیط.

با انجام این فرآیند ناکسانی میکروکسیک چندی نشان نمی‌دهد.

فریتی به برنینیتی تبدیل خواهد شد. تحقیقات انجام گرفته نشان داده که خواص نیا در چنین نشان آستیمر شده عمدتاً مشابه از دراز مدت

نظر شرائط ریختگی، ترکیب شیمیایی و دوره از مدت‌ها آستیمر کردن می‌باشد[۷۰][۷۸]. تغییر این عوامل موثر بود خواص مکانیکی

قطعه را در درجه نسبتاً گسترده قرار داده به استحکام کشیده‌از

۱۴۰۵–۱۶۰۵ مکاک سکا و کردن شکست از ۱–۱۶ درصد.

از دیدگاه کاربردی این نشان از استیمر شده را به دو دسته

تقسیم می‌کنند:

دسته استحکام‌های نشکنی که در دماهای پایین آستیمر شده‌اند

(۲۵۰–۳۳۰ درجه سانتی‌گراد) اینگونه که در دماهای در ادامه

استحکام، سختی و مقاومت به سایی با لایه موپی‌شدن.

اين ساختار میکروکسیک به بینیت‌پاکینی موسوم است.

دسته‌سوم: حسیه‌‌نیک‌های که در دماهای بالا آستیمر نشان داده‌اند (۳۳۰–۴۵۰ درجه سانتی‌گراد) گرچه استحکام به سختی یافته این دسته

پایین شد و چهار اولی است، لیکن این دسته موتواند دارای

ترکیب مناسبی از استحکام بالا وقابلیت اطمینانی امتیاز بیشتری

زیاد یاشند. این ساختار میکروکسیک به بینیت بالانتینی
استحلاه بیننی‌تی در چندنها نشکن آستنی‌تی شده

مناجم می‌گوید:
مرحله اول: هنگامی که قطعه در دمای آستنی‌تی قرار گرفت، جواندهای فاز فریت در روی مرزهای فازی و یا مزدناها تشکیل می‌گرفتند، سپس این جواندها در درون گاز آستنی‌تی شروع به رشد می‌کردند، بدین‌ژورا ویلا، بودن درصد سیلیسه‌‌م‌ در ترکیب شیمیایی چدن، تشکیل می‌شود که که معمولاً همراه با فریت‌است یا مانع مواجع خواهد گردید. لذا رشد سوزن‌های فریتی با بسیار زدن کربن‌های اضافی به درون آستنی‌تی‌ها ممکن تا شمار خواهد گردید. در این شرایط درصد کربن در آستنی‌تی‌های هم‌جو فریت‌مرتب‌ استفاده می‌شود و حتی تا زمان به درصد نیز می‌رسد [۹ و ۱۵]. پس از ترتیب دراین مرحله، استحلاه بیننی‌تی‌ها می‌توان به‌صورت واکنش زیر نوشته شود:

\[\gamma (آستنی‌تی‌پرکردن) + (فریت)_{hc} \rightarrow \gamma (آستنی‌تی) \]

افزایش درصد کربن در آستنی‌تی، دمای تبدیل آن را به ما تغییر داده و حتی به زیر ۲۵۰ درجه سانتی‌گراد نیز می‌رساند [۹] در این موقع اگر قطعه از حمام نمک خارج و سرد شود ساختار میکروسکوپی آن حاوی صفحه‌های زیاد به اضافه آستنی‌تی‌پرکردن خواهد بود. بنابراین ساختار از لحاظ داشتن ترکیب مناسبی از این دو خواص واگذار می‌شود بسیار مطلوب است. مرحله دوم: اکریلوئیده همچنان در دمای آستنی‌تی کردن نگهداری شود.
بتدیری استنمیت پرکبرین طی واکنش زیر به فریت و کا ریبد تجزیه خواهد شد:

\[
\text{Carbide} + \text{Frit} \rightarrow \text{II} + \alpha + \text{hc}
\]

احتمال چین و اکتشاف معجوب کاهش انعطاف پذیری قطعه بدون تغییر عده در استحکام کشی خواهد گردید.

بنابر این واکنش است مطلوب

اثر عناصر آلبالیائی

یکی از دلائل اضافه نمودن عناصر آلبالیائی به چندنای تشکیل آسمرش شده افزایش خودپذیری درآمیخته، الیب انتخاب اینگونه عناصر با دقت انجام ممکن است. زیرا لازم است انتخاب آلبالیائی اثرات مخرب روی کیفیت نقطه اثرات ریختگی و همچنین مشخصات مکانیکی حالت آسمرش شده آنها ناشده باشد. تحقیقات انجام شده نشان می‌دهد که عناصر تفکر Cu و Ni و Mo و Mn که عناصری تغییر Cu و Ni و Mo و Mn که عناصری تغییر

تا میزان این اهداف میتوانند واقع گردند [11و 12].

از بین عناصر فوق لازم است به داشتن منگنز و مولیبدن را با مخاطر ایجاد پدیده‌هایی در هنگام انجام، در چند محدود نمود. نشان داده شده که، اکثر مقدار مفید این عناصر در ترکیب شیمیایی چبدن به ترتیب عبارتند از ۲/۰% و ۲۵/۰% [13]،

عناصری نظیر Cu و Ni را میتوان تا حدود ۲ دراین چبدنها مورد استفاده قرار داد. تحقیقات انجام گرفته در این زمینه نشان داده که اثرات Cu و Ni در این محدوده تغییراتی با یکدیگر دارند [11]. با توجه به این نتایج و همچنین با عناصر به قیمتی بالای نیکل نسبت به مس، توجه این پروهش صرفه "مطوفی به بررسی اثرات عناصر مس روی خواص مکانیکی این نوع چدن‌ها گردیده"
استقلال

3. روش آزمایش روش قالب گیری

دونوع قالب در هر ذوب مورد استفاده قرار گرفت. یکی: قالب‌های ماسه‌ای برای تهیه تعداد کافی 7-بلوک بستر اندازه استاندارد (شکل 2). دیگری: قالب‌فلزی، به‌منظور تهیه نمونه کواستومتراز از هر ذوب. قالب‌های موقعیت دو دست و با استفاده از ماسه سیلیسی و چرب سیلیکات سبیم برش 7-بلوک، تهیه شدند و سپس سطح آن‌ها با توسط رنگ گرانت پوشش داده شدند.

شکل 2- ابعاد 7-بلوک مورد استفاده مطابق با استاندارد ASTM A536-80

آماده سازی مذاب

کلیه ذوب‌ها در یک گوره زمینی و با استفاده از موارد زیر تهیه شده‌اند:

- شمش‌ورل متن می‌تواند از ترکیب شیمیایی صفحه بعد
آخر دوره عملیات حرارتی...

<table>
<thead>
<tr>
<th>کربن (C)</th>
<th>3/8 - 4/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیلیس (Si)</td>
<td>1/5</td>
</tr>
<tr>
<td>منگنز (Mn)</td>
<td>0/01 - 0/08</td>
</tr>
<tr>
<td>گوگرد (S)</td>
<td>0/01 - 0/08</td>
</tr>
<tr>
<td>فسفر (P)</td>
<td>0/01 - 0/04</td>
</tr>
</tbody>
</table>

فرود سیلیس 75 درصد

فو سیلیکومنیزیم با حدود 5/5 درصد منیزیم

- مس خالص

مراحل آماده‌سازی هر ذوب به ترتیب زیر بود:

1. 40 کیلوگرم شمش سول بداخل بوته ریخته و ذوب گردید.
2. حدود بست دقيقه قبل از پایان ذوب، 180 گرم فروسیلیس 75 درصد به همراه مقدار مناسب (با احتمال اتلانت مس) بداخل بوته اعتیفه شد.
3. پس از تمام ذوب، عمل سرباره گیری و کنترل دما انجام گرفت.
4. عمل کرمی کردند یکمک روش غوطه‌وری (Plunging) انجام گرفت.
5. درست قبل از ریختن ذوب بداخل قالب قابلیت مقدار 180 میلیمتر فروسیلیس 75 درصد بعنوان جوانا به این اعتیفه شد.
6. پس از کشتن روی آلا ساعت 70، بلوک‌ها از قالب خارج گردیدند.

نمونه‌های ثابت شده از 27 - بلوک‌های هر ذوب در هر ذوب یکی از 27 - بلوک‌ها جهت بررسی خواص مکانیکی در حالت ریختگی نگهداری شد و بقیه در دمای 895 درجه سانتی‌گراد بسته یک ساعت آنلی گردیدند. سپس با استفاده از آزمایش‌های

7-8 - بلوک‌ها نمونه‌های کش به ابعاد استاندارد (شکل 4) و نمونه‌های

نمونه‌های با شیردار جهت انجام آزمایش‌ها تهیه شدند.
عملیات حرارتی آستنی‌سازی نمونه‌های غربه و کشنده شده از ۷۷۰ به عضویت گرده‌آمیختگی شده‌اند.

در دوازده جعبه ساتانتیسیون، حاوی برای هر نمونه، شامل مجموعه‌ی ۵۲ نمونه کشنده و ۲۳ نمونه شدنده و عملیات حرارتی آستنی‌سازی کردن را آنها به ترتیب زیر انجام گرفت.

۱ - جعبه‌های سانتانتیسیون در داخل کوره عمیقات حرارتی قرار داده شدند.
۲ - کوره روند گردید تا دمای آن به ۸۵۰ درجه سانتی‌گراد رسید.
۳ - آنگاه به دسته‌های تقسیم شدند.

۴ - همیشه در زمان‌های مختلف یک مجموعه شامل ۳۲ نمونه کشنده و ۳۲ نمونه شدنده، ضربه‌ای از حمام نمک خارج و در هوا سرد شد.

نمونه‌های ازدوزده‌ای از عملیات حرارتی آستنی‌سازی کردن در دماهای
درجه حرارت

درجه حرارة
استقلال

آزمایشات انجام گرفته

آزمایشات که روا نمونه‌های هر ذوب انجام گرفت، بیشتر بودند. آزمایش کشت، ضریب، تغییرات سطحی پروژه، سم پنل (پلاستیکی) و سایر ساختار میکروسکوپی بکم میکروسکوپ دوار و آنالیز هر ذوب پروژه تا یک میلی‌متر. آنلایز هر ذوب پروژه گواه‌سنجی.

۴- نتایج حاصل از آزمایشات و بررسی آنها

۴- ترکیب شیمیایی نمونه‌ها

۴- ۲: خواص مکانیکی نمونه‌های آزمایش‌شده

بمنظور ارزیابی بی‌سوس مکانیکی نمونه‌ها، آزمایشات کشت و ضریب در رابطه با نتیجه‌گیری‌ها و ساختار جدید و ساختار جدید ساختمان و پیش‌بینی آن‌ها می‌باشد. نتایج حاصل آن‌ها در جدول ۱ نشان‌داده شده است.

بررسی خواص مکانیکی در دمای آزمایش‌‌کردن ۲۸۵ درجه سانتی‌گراد

میانگین نتایج آزمایشات مکانیکی انجام گرفته در این دو درجه حرارت در نمونه‌های شمشیر ۵ و قسمتی از جدول ۲ تا ۵ ایجاد شده است. باتوجه به این اطلاعات نتایج زیر را می‌توان استخراج نمود. ۱- بطورکلی نتایج زمان آزمایش کردن ۲۸۵ درجه سانتی‌گراد کمک می‌کند که افزایش ناامنی‌ها و سگ‌افزار افزایش کند. ۲- با اثنا آزمایش ۵/۰ درصد می‌کند که کمک کردن ۷۵ درصد زیاد شده و آنگاه تردد با "ثبت‌پذیری" ثابت می‌شوند. چنین رفتاری حاکی از آن است که در این دمای به‌عنوان یکی از مهم‌ترین کارکرد آزمایش‌های کنکست سرعت و اکتش (۱۱) عمل می‌شود، در آزمایش ۵/۰
جدول ۱ - ترکیب شیمیایی آلیاژهای ریخته شده

<table>
<thead>
<tr>
<th>%Cu</th>
<th>%Ni</th>
<th>%Mg</th>
<th>%P</th>
<th>%S</th>
<th>%Mn</th>
<th>%Si</th>
<th>%C</th>
<th>شماره ذوب درصداسمی در آلیاژCu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/122</td>
<td>0/056</td>
<td>0/019</td>
<td>3/27</td>
<td>0/015</td>
<td>2/46</td>
<td>0/052</td>
<td>0/014</td>
<td>2/55</td>
</tr>
<tr>
<td>0/43</td>
<td>0/019</td>
<td>0/018</td>
<td>3/03</td>
<td>0/014</td>
<td>2/43</td>
<td>0/054</td>
<td>0/017</td>
<td>3/03</td>
</tr>
<tr>
<td>0/89</td>
<td>0/021</td>
<td>0/014</td>
<td>2/48</td>
<td>0/013</td>
<td>3/42</td>
<td>0/052</td>
<td>0/017</td>
<td>2/55</td>
</tr>
</tbody>
</table>
جدول شماره 2 - نتایج حاصله از آزمایشات کشش، مکانیکی و خرسندی نمونه‌های آلیاژی با 5/0 درصد سی سی

<table>
<thead>
<tr>
<th>شرایط ضربه‌ی</th>
<th>دستگاه</th>
<th>مقدار درصد</th>
<th>مقدار استحکام کششی (Mpa)</th>
<th>زمان آتش‌بار کردن (°C)</th>
<th>دما اسیمی در آلباز</th>
<th>بحالت ریختگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/0</td>
<td>4/5</td>
<td>446</td>
<td>6</td>
<td>420</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>6/5</td>
<td>6/7</td>
<td>295</td>
<td>2/4</td>
<td>1077</td>
<td>30</td>
<td>285</td>
</tr>
<tr>
<td>7</td>
<td>255</td>
<td>2/4</td>
<td>1141</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/5</td>
<td>285</td>
<td>2/9</td>
<td>1246</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>285</td>
<td>2/8</td>
<td>1302</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/5</td>
<td>5/8</td>
<td>443</td>
<td>2/4</td>
<td>1112</td>
<td>15</td>
<td>335</td>
</tr>
<tr>
<td>8</td>
<td>357</td>
<td>2/6</td>
<td>1138</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>371</td>
<td>2/9</td>
<td>1130</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>344</td>
<td>2/1</td>
<td>1210</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>282</td>
<td>2/5</td>
<td>797</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>299</td>
<td>5</td>
<td>960</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>295</td>
<td>2/2</td>
<td>950</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>308</td>
<td>2/3</td>
<td>891</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول شماره ۳: نتایج حاصل از آزمایشات کشی، سختی و ضریب‌های سختی آلیاژ‌های با درصد مس

<table>
<thead>
<tr>
<th>درصد</th>
<th>سختی بریل (MPa)</th>
<th>استحکام کشی (MPa)</th>
<th>زمان آشامد کردن (درجه سانتی‌گراد)</th>
<th>درصد اسمی Cu در آلیاژ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵/۳</td>
<td>۲۵۵</td>
<td>۴۲۷</td>
<td>۱۱۰۰</td>
<td>۱۵</td>
</tr>
<tr>
<td>۷</td>
<td>۳۸۸</td>
<td>۲/۲</td>
<td>۱۲۸۹</td>
<td>۵۰</td>
</tr>
<tr>
<td>۷/۷</td>
<td>۳۹۳</td>
<td>۳/۷</td>
<td>۱۳۴۴</td>
<td>۲۸۵</td>
</tr>
<tr>
<td>۶</td>
<td>۳۹۲</td>
<td>۲/۷</td>
<td>۱۴۰۰</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>۷/۵</td>
<td>۳۳۵</td>
<td>۴/۵</td>
<td>۱۱۴۰</td>
<td>۱۵</td>
</tr>
<tr>
<td>۶</td>
<td>۳۸۸</td>
<td>۳/۵</td>
<td>۱۱۱۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۳۷۸</td>
<td>۵/۵</td>
<td>۱۱۴۰</td>
<td>۷۵</td>
</tr>
<tr>
<td>۹/۵</td>
<td>۳۱۰</td>
<td>۴/۶</td>
<td>۱۰۵۹</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>۹</td>
<td>۲۸۹</td>
<td>۴</td>
<td>۹۰۷</td>
<td>۱۵</td>
</tr>
<tr>
<td>۹/۸</td>
<td>۳۱۳</td>
<td>۱/۱</td>
<td>۱۰۵۲</td>
<td>۵۰</td>
</tr>
<tr>
<td>۸/۳</td>
<td>۳۲۵</td>
<td>۳/۴</td>
<td>۹۸۶</td>
<td>۷۵</td>
</tr>
<tr>
<td>۸</td>
<td>۳۲۱</td>
<td>۱/۶</td>
<td>۱۰۱۱</td>
<td>۱۵۰</td>
</tr>
</tbody>
</table>
| اثرهای
| گرندی | استحکام
| کشیده | (Mpa) | زمان
| کردن (درجه C) | دمای
| بریلی
| (L) | گرمات
| 1/5 | 1/2 | 1237 | 15 | 885 | | |
|---|---|---|---|---|---|---|
| 7/5 | 320 | 1/2 | 1215 | 30 | — | — |
| 6/9 | 298 | 1/2 | 1212 | 35 | — | — |
| 6/8 | 306 | 1/1 | 1153 | 150 | — | — |
| 6/8 | 297 | 1 | — | — | — | — |
| 12/5 | 265 | 2 | 1081 | 15 | 335 | — |
| 12/6 | 260 | 3/7 | 1009 | 30 | — | — |
| 11/2 | 227 | 2/8 | 1127 | 75 | — | — |
| 8/5 | 255 | 3/4 | 944 | 150 | — | — |
| 12/2 | 255 | 4/2 | 975 | 15 | 575 | — |
| 12/8 | 244 | 4/5 | 999 | 30 | — | — |
| 12/8 | 260 | 3/6 | 982 | 75 | — | — |
| 10/2 | 288 | 3/4 | 930 | 150 | — | — |

بلات ریختگی
جدول شماره ۵- نتایج حاصل از آزمایشات کشی، سختی و ضریب رضو نموندهای آلیاژی با٣ درصد

<table>
<thead>
<tr>
<th>انرژی ضریب (L)</th>
<th>درصد دمای بین (٪)</th>
<th>استحکام کشی (Mpa)</th>
<th>زمان استمرار کردن (s)</th>
<th>بحالت ریختگی</th>
<th>بدست‌آمده‌ی درصد اسامی آلیاژی</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/4</td>
<td>2/3</td>
<td>1202</td>
<td>1140</td>
<td>75</td>
<td>785</td>
</tr>
<tr>
<td>9/2</td>
<td>2/3</td>
<td>1160</td>
<td>75</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>7/5</td>
<td>2/3</td>
<td>1156</td>
<td>75</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>8/6</td>
<td>1/4</td>
<td>1140</td>
<td>75</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>7/2</td>
<td>3/4</td>
<td>1250</td>
<td>15</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>8/2</td>
<td>3/2</td>
<td>1290</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/2</td>
<td>4/2</td>
<td>1202</td>
<td>75</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>8/4</td>
<td>3/3</td>
<td>1208</td>
<td>75</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>9/2</td>
<td>4/4</td>
<td>1101</td>
<td>75</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>9/2</td>
<td>5/4</td>
<td>1082</td>
<td>75</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>8/8</td>
<td>5/5</td>
<td>1082</td>
<td>75</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>9/2</td>
<td>6/4</td>
<td>1017</td>
<td>75</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>
شکل ۵ - نمودار تغییرات استحکام کشی و کرنش نمونه‌های کم در دمای ۲۸۵ درجه سانتی‌گراد بعد زمان‌های مختلف آسترمودال شده‌اند.
افزایش درجه حرارت موجب می‌شود تغییرات سختی و انرژی برخی شکل‌های نمونه‌ها در دما 285 درجه سانتی‌گراد به‌جز ویژه‌ی زمان‌های مختلف آزمایش شده‌اند.
استقلال

درصد سی، مقدار این عنصر به اندازه‌ای نیست که بتواند اثر عمده‌ای در این رابطه از خود نشان دهد. لیکن از ۱% به بالا اثرات آن کاملاً معنوس است.

۲- بطورکلی مشاهده می‌شود که افزایش درصد سی در زمان‌های آستنپل نشان دهنده بیش از ۷۵ دقیقه موجب کاهش استحکام کش می‌گردد.

۴- زمان آستنپل کردن از ۱۵ تا ۱۵۰ دقیقه اثر چندانی روی تغییر میزان سختی هیچیک از آلیاژها ندارد.

۵- مقادیر استحکام ضربه‌ای کلیه آلیاژها نسبتاً یکسان است (بين ۰.۹ تا ۱.۳ زول) و این مقدار برای هر یک از آلیاژها با تغییر زمان آستنپل تنگی غیرقابل مقایسه نتایج فوق به تحقیقات سایرین [۱۰ و ۱۱] همخوانی آنها را تایید می‌نماید.

بررسی کلیه نتایج فوق مشخص می‌نماید که آلیاژی با ترکیب یک درصد سی به دست ۷۵ دقیقه در این دما آستنپل کرده می‌تواند مناسب‌ترین ترکیب خواص مکانیکی را نسبت به سایرین دارا باشد. در این شرایط مشخصات مکانیکی این آلیاژ عبارت استاز:

- استحکام کشی (MPa) ۱۲۵۰
- درصد خشکش شکست ۶
- خشکش HB ۲۹۵

پروسه خواص مکانیکی در دمای آستنپل کردن ۳۳ درجه سانتی‌گراد نمودار شماره ۶ و قسمتی از جدول ۲ یعنی کنار می‌گیرد.

نتایج حاصل از آزمایشات مکانیکی روی آلیاژها مورد مطالعه و می‌باشد. بررسی این اطلاعات نیز نشان می‌دهد که آلیاژ کردن در زمان ۷۵ دقیقه به مقدار می‌کند خود می‌رسد.

۲- کرنش شکست آلیاژی با ۱% از نیز آهنگ مشابهی با تغییرات
ادامه شکل ۶ - نمودار تغییرات سختی و انرژی فربندی
نمونه‌ها ثابت در دما ۲۲۵ درجه سانتی‌گراد
ببعد زمان‌های مختلف آستمی‌کردند.
استحکام کششی از خود نشان می‌دهد. اما کرشکت سایر آلیاژها تقریباً منقل از زمان آستنلیم کردن می‌پیوست.

۳- سختی کلیه آلیاژ‌ها در این دما تا زمان ۷۵ دقیقه اندازه‌گیری یافت. و سپس کاهش می‌یابد.

۴- تغییرات زیادی در استحکام خشک‌ای هر آلیاژ نسبت به تغییر زمان آستنلیم کردن دیده نمی‌شود.

با بررسی کلیه نتایج حاصله در این دما مشخص می‌شود که آلیاژ با ۴۱ درصد بهبود آستنلیم شده دارای مناسب ترین ترکیب خواص مکانیکی نسبت به سایرین می‌باشد. دراین شرایط مشخصات آلیاژ فوق بقطر زیر است:

- استحکام کششی (Mpa) 1150
- درصد کرشکت ۵
- سختی HB ۳۰۰

بررسی خواص مکانیکی در دمای آستنلیم کردن ۷۵ درجه سانتی‌گراد می‌تواند نتایج آزمایش‌های مکانیکی انجام گرفته در این دما حرارت در نمودار شماره ۷ و بخشی از جداول ۴ و ۵ آراش شده.

بررسی این اطلاعات مربوط کلی زیر را اشاره می‌زند:

۱- مقادیر استحکام کششی و کرشکت شکست‌های آلیاژ‌ها زمان آستنلیم کردن ۳۰ دقیقه افزایش یافته و سپس بهدریج کاهش می‌یابد.

۲- از زمان آستنلیم کردن ۳۰ دقیقه به بعد، ملاحظه میگردد که بطور کلی افزایش درصد من درآلیاژ‌ها موجب بهبود استحکام کششی آن می‌گردد.

۳- سختی آلیاژها تقریباً از همان تغییرات استحکام کششی، لیکن
شکل 7 - نمودار تغییرات استحکام کشی و کشش شکست نمونه‌ها که در دمای ۲۵۰ درجه سانتی‌گراد بعد‌زمان‌های مختلف استحکام‌برداری.
ادامه شکل ۷ - نمودار تغییرات سختی و انتهای فربهای نرم‌هایی که در دمای ۳۲۵ درجه سانتی‌گراد بعداً زمانهای مختلف آستریم شدند.
استقلال

با ترخی کتر پیروی می‌نمایند.

۴ - افزایش زمان استمرار کردن روی استحکام ضربه‌ای آلیاژهای مختلف کرده‌اند.

استحکام‌های این آلیاژ با افزایش زمان استمرار کردن کاهش می‌یابد.

بررسی کلیه نتایج بدست‌آمده در این دما، مشخص می‌شود که آلیاژ با ۳ تا درصد مسکه بدست‌آمده قدرت محاسبه شده، دارای مناسب ترین ترکیب خواص مکانیکی نسبت به سایر آن‌ها می‌باشد.

در این حالت آلیاژ فوق دارای خواص مکانیکی زیر است.

- استحکام کششی (MPa) ۱۰۸۰
- درصد کرنش گشت ۵/۵
- سختی HB ۲۴۰

۳ - بررسی ساختار میکروسکوپی

ساختار میکروسکوپی کلیه نمونه‌هاچ حالت رخختگی و چه پس از استمرار شدن مورد طلا به قرار گرفته.

در حالت رخختگی در همه ذوب‌های نیکات زیر نشان بود:

۱ - درصد کرنش گشت در این دما برابر ۹۵ درصد بوده و تعداد آن‌ها در هر میلی‌متر مربع مقطع بین ۱۰۰ تا ۱۵۰ عدد نواحی می‌نماید.

۲ - درصد فاز فریت با افزایش مقدار مر زمان آلیاژ کاهش می‌افت.

بطوریکه از ۱۱ درصد پیوسته با دمای مقدار فریت حتی از ۵ درصد کمتر شده.

۳ - کاربرد و معاویگ‌گی در نمونه‌ها مشاهده نمی‌شود.

در حالت آستمکر شده بررسی ساختار میکروسکوپی نمونه‌ها تا کننده این نکته بود که ساختار اصلی نمونه‌ها که در دما ۲۸۵ درجه سانتی‌گراد آستمکر شده‌اند از بینیت پایینی و نمونه‌هایی
اسکلت ۸- ساختار میکروسکوپی آلیاژی با دید سیمپاتل ریختگی محلول ظاهر
کردن شده و برگ شما در ۱۰۰ برابر است.

اسکلت ۹- ساختار میکروسکوپی آلیاژی پایه‌ای درصد مسدراد مایه
آستمپین هدست ساختار خاود است نشیب باقیمانده (فاز روشن) و بینیت بالاشی (فاز
شیره‌شکل) می‌باشد. محلول ظاهرکننده: بافت‌ایل ۲%
برگ نما شمی: ۴۰۰ برابر
شکل ۵- ساختار الیگتروسکوپیک الیاژی یاپیک در میکروسکوپ دردبانی ۲۷۵ درجه درجه جامدات و افزایش (الف) دقت ۱۵ دقیقه (ب) دقت ۲۵ دقیقه آستمپر شده است.
نحوه حل فاکسکته: تا پنجه ۲٪
یوزگی نما شناختی: ۴۰۰ برخ
5 - نتیجه‌گیری

1 - بطورکلی خواص مکانیکی کلیه آلیاژهای مورد بررسی بستگی به دمای و زمان آستنیزاسیون دارد و عموماً در هر دمای آستنیزاسیون مکانیکی انعطاف‌پذیری در زمان معینی از آستنیزاسیون حاصل می‌شود.

2 - از بین آلیاژهای، جدن نشکنی با ۱% مس که در دمای ۲۸۵ و یا ۳۲۵ درجه سانتی‌گراد بند ۷۵ دقیقه آستنیزاسیون شده‌باشند، مناسب ترین ترکیب‌هایی مکانیکی را نسبت به سایر آلیاژ‌ها در همان شرایط از خود نشان می‌دهد.

3 - در دمای آستنیزاسیون ۲۷۵ درجه سانتی‌گراد، آلیاژ‌ی با ۲% مس که بند ۳۵ دقیقه آستنیزاسیون شده باشد، از خود مناسبترین ترکیب‌های مکانیکی را نسبت به سایر آلیاژ‌ها در همان شرایط، نشان می‌دهد.

4 - با مقایسه کلیه نتایج حاصله از آزمایشات مکانیکی ملاحظه می‌گردد که بطور کلی افزایش درصد مس در آلیاژهای این‌اترات، متفاوتی از خود نسبت به دما و زمان آستنیزاسیون نشان می‌دهد.

- در دمای‌های آستنیزاسیون ۲۸۵ و ۳۳۵ درجه سانتی‌گراد، هنگامیکه زمان آستنیزاسیون کردن از مز ۷۵ دقیقه تجاوز نماید، افزایش

...
استقلال

من در آلیازها عمدتاً موجب کاهش استحکام کششی و سختی می‌گردد، و این اختلاف با زیاد شدن زمان آستمپر شدن بیشتر می‌شود.

در دمای آستمپر کردن 275 درجه سانتی‌گراد، هنگامیکه زمان آستمپر شدن از 3 دقیقه نجاوز نماید، افزایش محسوس در آلیازها موجب افزایش استحکام کششی و سختی می‌گردد.

5 - نتایج حاصل از آزمایش‌های جدید مشخص می‌شود که برای کلیه آلیازها، استحکام ضربه‌ای با افزایش دمای آستمپر کردن بشرط ثابت نمی‌گردد. زمان آستمپر شدن، فرآیند مویاید، اما بطور کلی استحکام ضربه‌ای کلیه آلیازها، در آن مداوم می‌باشد، نیست. پاسخ

است و مقدار آن بین 16–18 زوال شویان می‌گردد.

6 - باتوجه به نتایج حاصل از این پژوهش، بنظر می‌رسد که در چندنای تنش‌گذاری، که حاوی یک درصد مس بوده و در دمای 268 و 335 درجه سانتی‌گراد آستمپر شده‌اند، واکنش شماره (3) کند گسته و در نتیجه کاربردی‌تری تغییری تشکیل شده در این مرحله ریزتر و گردنده‌اند. حاصل این پژوهش، ا%

6. Tiziani, A. et al "Austempered Ductile Irons with Different Compositions and Evaluation Mechanical

