Evaluation of Evaporative Cooling for Heat Transfer in the Condenser of Window-Air Conditioners

Ebrahim Hajidavalloo
Mechanical Engineering Department, Shahid Chamran University, Ahwaz, Iran

Abstract: There is a demand for reduced power consumption in the vapor compression refrigeration cycle. Coefficient of performance of window-air conditioners considerably decreases and power consumption increases under very hot conditions. These problems have encouraged studies aimed at improving the performance of window-air-conditioners by enhancing the heat transfer rate in the condenser. In this article, a new design for application of evaporative cooling in the condenser of window-air-conditioners is presented. The results show that the evaporative condenser has a higher efficiency compared to the traditional condenser. The evaporative condenser can reduce the temperature of the condenser by up to 5°C, which significantly decreases the power consumption and improves the performance of the air conditioner.
Window-air conditioners is introduced and experimentally investigated. In this design, two pads equipped with a water injection system are located on both sides of the air-conditioner to cool down the air flow passing over the condenser. The experimental results showed that thermodynamic characteristics of the system considerably improved while power consumption decreased by about 15% and the coefficient of performance increased by about 55%.

Keywords: Window-air conditioner, Evaporative cooling, Coefficient of performance, Water injection, Energy reduction
دماي حباب خشک و دماي حباب تم و وجود دارد که از اين
اختلاف طبيعی می توان برای كاهش دماي هواي عبوری از
کندانسور استفاده کرد. در شرایط آب و هواي گرم و مرطوب و
با گرم و تهیه مرطوب نیز از این روش باهم می توان استفاده
کرد زیرا در این موشه مناطق با وجود بالا بدون رطوبت در
ساعات اوليه صحیح و بناساعت اندازه روی روز، در ساعت
بعداً ظهر كه معمولاً بنشینه استفاده از کول صورت می گیرد
مقدار رطوبت نسبی هواي پایين می آید زيرا در این ساعت دماي
هوای محیط بالا رفته و رطوبت یدي می افزایش كه
معتاقباً سبب کاهش رطوبت نسبی هواي موجود می شود. در
نتيجه این ساعت نسبت اختلاف دماي مناسب بين دماي حباب
خشک و دماي حباب تم به وجود مي آيد و استفاده از سرمایه
تيخيری قالب قبول است.

هر چند استفاده از سرمایه تيخيری برای سپستههای تبرید
با طرفت پان ابه شکل استفاده از برج خشک کن مورد پرسى و
مطالعه قرار گرفته شده و حاصلات مختلف ان زراعی که شده
است [3] ولی در مورد استفاده از سرمایه تيخيری برای
سپستههای کوهک و کولرهاي خانگي تحقیقات چنداني
صورت گرفته است. حاجي دولو [7 و 8] در تحقیقات خود
اثرات استفاده از سرمایه تيخيری در کولرهاي گازی خانگي را
به دوش روش مورد بررسی قرار داد. در روش اول تزيين آب به
صورت مستقیم بر روی کندانسور صورت گرفته و در روش
صورت دوم تزيين آب روی دیوار پوششی به ضخامت
گرفته که در فاصله ی بین فن و کندانسور قرار داده شده بود.
نتایج به دست آمده نشان داد که طرفت عمکردر سپسته در هر
دوم در حدود 10/ به یاد می آید. کسبانی و همکاران [9]
در تحقیقات خود بر روی کولر تا نهک به طرفت 2/5 و
روش سرمایه تيخيری برای سرد کردن هواي عبوری از روی
کندانسور استفاده کردند. برای این کار آنها چهار دیوار پوششي
که آب از بالا بر روی آنها پاشيده مي شود را در اطراف
کندانسور نصب كردند. هواي محیطی ضمن عبور از روی اين
دیوارها سرد شده و سپس کندانسور را خنک مي كند. بر پايه

طرح عملکرد کولر ناب دمای محیط بوده و مقدار آن در
شرایط پیاز گرم شدت آم که حاصل می یابد. به طور تقریبی به ازای
هر یک درجه سانتی‌گراد کاهش دماي کندانسور ضریب عملکرد
کولر بین ۲ تا ۴ درصد بهبود می‌یابد [2]. لذا می‌توان انتظار
داشت که با افزایش دماي هوا در حدود ۱۰ درجه C ضریب عملکرد
کولر در حدود ۴۰ کاهش یابد.

برای افزایش طرفت تبرید و ضریب عملکرد کولر از
است که طرفت انتقال و دفع گرم در کندانسور بالا رود. این
کار از راههای مختلفي قابل انجام است که گروه مهدف و
عملکردهای آنها استفاده از روی سرمایه تیخری است. در
روش سرمایه تیخری می‌توان دمای هواي گرم محیط را
حداکثر به اندازه دماي حباب تم پايان آورد و از اين هواي برای
سرد كردن کندانسور استفاده کرد. برای فراهم آوردن بست
مناسب برای تاسيس آب و هواء بر تهیه انجام فراينده تیخری
اختياج به آب و دیوارهای پوششی است. اين روش برای
منطقه كه داراي آب و هواء گرم و حضور اگرها كاملاً مناسب
است زيرا در اين مناطق هيهييت اختلاف دماي قالب توجهی بين

شکل ۱- ساختارن جند طبیعی و میدان جریان هوای گرم
در اطراف کولرها

137
شکل ۲- نحوه استقرار دیواره‌های یوپشالی در طرفین کولر در طرح دیواره‌های یوپشالی داخلي

نتایج گزارش شده، کاربرد این طرح در دمای هوای محسوب در حدود ۰۴ درجه سانتی‌گراد مشترک که به مقدار ۲۰/۰٪ افزایش در تعیین‌های مربوط به تغییرات ابزار شده و در مشخصات ترمودینامیکی سیستم در منحنی مصرف‌کننده‌ای (P-h) ارائه نشده است و از نظر اوقات اقتصادی روش مورد ارزیابی قرار گرفته شده است. در این مقاله ابتدا دو طرح جدید برای استفاده از روش سرمایش تبخیری در کولرهای خانگی ارائه شده و سپس این طرحها به صورت عملی در روی کولر مورد آزمایش اجرا شده است. با توجه به نتایج آزمایشات تجربی به دست آمده با استفاده از آزمایشات ترمودینامیکی سیستم پرداخته شده و میزان تغییرات ایجاد شده در توان کمپرسور، طوفان

تبریک و ضربه عملاً کولر مشخص شده است.

شکل ۳- موقعیت دیواره‌های یوپشالی طرح دیواره یوپشالی داخلي از تصویر بالا

۱-۲ طرح دیواره‌های یوپشالی داخلي

در این طرح در دیواره‌های یوپشالی در طرفین کولر در مسیر

ورود هوای خنک کننده کانالهای موجود شده و آب بر روی

آنها پاشیده می‌شود. هوای مکرر شده توسط فن از روی این

دیواره‌های بیرون کرده و به فرآیند تبخیر سرد شده و سپس

از روی کانالهای موجود بر روی آن خنک می‌شود. برای

اجرا این طرح از روی روش می‌توان استفاده کرد. در روی

استقرار، سال ۱۳۸۵، شماره ۱، شماره ۱۳۸۵

۱۳۸
دریچه‌های عصر هو در طرفین کنار کوتربسته شده و شکل ۲ نمایش دهنده دیواره‌های پوشالی در طرفین کنار کوتربسته شده.

دریچه‌های عصر هو در طرفین کنار کوتربسته شده و شکل ۲ نمایش دهنده دیواره‌های پوشالی در طرفین کنار کوتربسته شده.

دریچه‌های عصر هو در طرفین کنار کوتربسته شده و شکل ۲ نمایش دهنده دیواره‌های پوشالی در طرفین کنار کوتربسته شده.

دریچه‌های عصر هو در طرفین کنار کوتربسته شده و شکل ۲ نمایش دهنده دیواره‌های پوشالی در طرفین کنار کوتربسته شده.

دریچه‌های عصر هو در طرفین کنار کوتربسته شده و شکل ۲ نمایش دهنده دیواره‌های پوشالی در طرفین کنار کوتربسته شده.

دریچه‌های عصر هو در طرفین کنار کوتربسته شده و شکل ۲ نمایش دهنده دیواره‌های پوشالی در طرفین کنار کوتربسته شده.

دریچه‌های عصر هو در طرفین کنار کوتربسته شده و شکل ۲ نمایش دهنده دیواره‌های پوشالی در طرفین کنار کوتربسته شده.

دریچه‌های عصر هو در طرفین کنار کوتربسته شده و شکل ۲ نمایش دهنده دیواره‌های پوشالی در طرفین کنار کوتربسته شده.

دریچه‌های عصر هو در طرفین کنار کوتربسته شده و شکل ۲ نمایش دهنده دیواره‌های پوشالی در طرفین کنار کوتربسته شده.
در حالت معمولی به کار انجام شده و بعد از حدود 20 دقیقه
و تکه که شرایط سیستم به حالت پایدار رسیده بود
مختلف ترمودینامیکی آن را به دست آورد. سپس اجرای سیستم
کنترل تغییری که از قبلاً آماده شده بود بر روی کنترل شده و
کنترل در حالت جدید دوباره به کار انجام شده و بعد از
حدود 20 دقیقه مجدد بر روی آزمایش تغییری در شرایط محیطی
یکسان انجام شده و نتایج در نتایج آنها مستند به شرایط
محیطی نخواهد داشت.

۳- نتایج آزمایش‌های تجربی برای طرح دیواره‌های پوشالی داخلی

آزمایش‌های مختلف بر روی کنار صورت گرفت تا از
صحبت نتایج به دست آمده اطمینان حاصل شود. جدول (۲)
نتایج تجربی یکی از آزمایش‌های انجام شده بر روی طرح دیواره
پوشالی داخلی را نشان می‌دهد. (آزمایش A)

۴- بررسی نتایج آزمایش

منحنی فشار-انالیزی (P-h) برای آزمایش A در شکل (۶)
رسماً شده است.

بررسی منحنی P-h نشان می‌دهد که دمای تغییر سیکل
در حدود ۱۰ درجه C در گاه‌های یافته و در دمای تغییر در حدود

۵- مدل قرار گرفتن دماسنجها و فشارسنجها در سیستم تیرید

اندازه‌گیری شرایط میرسد نصب شد در شکل (۵) نشان داده شده
است. علاوه بر اندازه‌گیری خواص میرسد، دماهای ورودی و
خروجی هوا به اپارتوور و کنترل است رد اندازه‌گیری شده است.
برای اندازه‌گیری دما از ترموکوپل نوع T استفاده شد که به
سیستم داده‌گیری رایانه‌ای وصل شده. مدل کارت داده‌گیری
ساخت شرکت AT-MIO-64E-3 مورد استفاده از نوع
National Instrument مربوط به همین شرکت استفاده شد.
برای تامین آب
مورد نیاز پاشین بر روی لوله‌ها اختیار به مدار سیستم آب است
که شامل پمپ تریلیاب، مخزن، شیر نظیم، لوله‌های تریلیاب آب
و لوله‌های رابط است. برای انتخاب مقدار مصرف آب، مخزن آب
میزان شدت و تغییرات سطح آن در زمان مشخص توسط کنترل
ثبت شده و نخ تغییر که در حقیقت به پاسینگ با نرخ
مصرف آب است محااسبه می‌شود. و معمولاً در، ۴/۹
لوله تریلیاب آب به قطع داخلی ۸ میلیمتر بوده که سوساراهی به
قطر 4/۱ میلیمتر روی آن انجام شد. دیواره پوشالی با عرض ۲،۶
در حدود ۳ سانتیمتر که چارچوب آن از ورق فلزی شکل داده
است برای نگهداری پوشالی ساخته شد. اندازه‌گیری برای نجوم
طرح‌های شد که بتواند در طرفین کنار نصب شود.

۶- نحوه انجام آزمایش‌ها

برای انجام آزمایش‌ها ابتدا کنترل در انسان مخصوص آزمایش

استقبال. سال ۲۵، شماره ۱، شهروند ۱۳۸۵

۱۴۰
جدول ۲: داده‌های آزمایشی مربوط به طرح دیواره پوششی داخلی (آزمایش A)

<table>
<thead>
<tr>
<th>طرح دیواره پوششی</th>
<th>طرح عادی</th>
<th>واحد</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۶/۰</td>
<td>۴۰/۰</td>
<td>°C</td>
<td>۱</td>
</tr>
<tr>
<td>۲۵/۵</td>
<td>۲۵/۵</td>
<td>°C</td>
<td>۲</td>
</tr>
<tr>
<td>۸۹/۵</td>
<td>۱۱۰/۵</td>
<td>°C</td>
<td>۳</td>
</tr>
<tr>
<td>۴۶/۰</td>
<td>۵۵/۰</td>
<td>°C</td>
<td>۴</td>
</tr>
<tr>
<td>۱۲۵/۰</td>
<td>۱۵/۰</td>
<td>°C</td>
<td>۵</td>
</tr>
<tr>
<td>۱۹/۸</td>
<td>۱۹/۸</td>
<td>°C</td>
<td>۶</td>
</tr>
<tr>
<td>۳۵/۰</td>
<td>۳۵/۰</td>
<td>°C</td>
<td>۷</td>
</tr>
<tr>
<td>۹۵/۰</td>
<td>۵۵/۰</td>
<td>°C</td>
<td>۸</td>
</tr>
<tr>
<td>۳۴/۵</td>
<td>۳۴/۵</td>
<td>°C</td>
<td>۹</td>
</tr>
<tr>
<td>۱۸/۰</td>
<td>۱۸/۰</td>
<td>°C</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۰/۵</td>
<td>۱۲/۵</td>
<td>A</td>
<td>۱۱</td>
</tr>
<tr>
<td>۳۲۰</td>
<td>۳۲۰</td>
<td>V</td>
<td>۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>۱۳</td>
</tr>
<tr>
<td></td>
<td>۱۲۶</td>
<td>cm³/min</td>
<td>۱۴</td>
</tr>
<tr>
<td></td>
<td>۳۶۲۰</td>
<td>cm³/min</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۶- مقایسه منحنی فشار-انالتی برای حالت معمولی و طرح دیواره پوششی داخلی (آزمایش A)
قسمت 7- مختصات فشار-آنتالپی برای حالت معمولی و طرح دیواره پوشالی داخلی (آزمایش B)

\[P = \frac{\alpha}{h} \]

\[208kpa, 10°C \]

\[496kpa, 0°C \]

\[387kpa, 7°C \]

\[1450kpa, 41°C \]

\[2324kpa, 58°C \]

\[408kpa, -6°C \]

\[\frac{\alpha}{h} \]

\[16' \]

\[44j9 \]

\[12X \]

\[5m \]

\[8H \]

\[6O \]

\[O \]

\[160 \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]

\[3Z4 \]

\[6O \]

\[O \]

\[16' \]
جدول 3- داده‌های آزمایش مربوط به طرح دیواره پوشالی داخلی (آزمایش B)

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>واحد</th>
<th>ر啶ف</th>
</tr>
</thead>
<tbody>
<tr>
<td>دما هوا یا بخار محیط</td>
<td>°C</td>
<td>1</td>
</tr>
<tr>
<td>دما هوا یا بخار محیط</td>
<td>°C</td>
<td>2</td>
</tr>
<tr>
<td>دما مبرد خروجی از کمپرسور</td>
<td>°C</td>
<td>3</td>
</tr>
<tr>
<td>دما مبرد خروجی از کنترل‌سوز</td>
<td>°C</td>
<td>4</td>
</tr>
<tr>
<td>دما مبرد خروجی از لوله موبین</td>
<td>°C</td>
<td>5</td>
</tr>
<tr>
<td>دما مبرد خروجی از اپراتور</td>
<td>°C</td>
<td>6</td>
</tr>
<tr>
<td>دما هوا خروجی از کنترل‌سوز</td>
<td>°C</td>
<td>7</td>
</tr>
<tr>
<td>دما هوا خروجی از اپراتور</td>
<td>°C</td>
<td>8</td>
</tr>
<tr>
<td>دما هوا خروجی از اپراتور</td>
<td>°C</td>
<td>9</td>
</tr>
<tr>
<td>گریزی مصرفی کول آمپر</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>فشار خروجی کمپرسور</td>
<td>kpa</td>
<td>11</td>
</tr>
<tr>
<td>فشار خروجی از کنترل‌سوز</td>
<td>kpa</td>
<td>12</td>
</tr>
<tr>
<td>فشار خروجی از اپراتور</td>
<td>kpa</td>
<td>13</td>
</tr>
<tr>
<td>هاپس نخست</td>
<td>cm³/min</td>
<td>14</td>
</tr>
<tr>
<td>دیاب تبخیر آب</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>دیاب آب در جریان در هر ساعت</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

میزان دیاب آب تبخیر شده نیز در حدود 7/5 لیتر بر ساعت است. دیاب آب چرخشی در حدود 217 لیتر بر ساعت است. دما هوا خروجی از کنترل‌سوز در حدود 18°C درجه سانتی‌گراد کاهش یافته و از 57°C به 39°C رسیده است. سنتریت در جریان نخست و از 17°C به 15°C رسیده است. به همین‌سان نیز کاهش دما کنترل‌سوز تأثیر منفی بر روی عملکرد سردرکن‌سازی سبک نداشت است.

5- نتایج آزمایش تجربی برای طرح دیواره‌های پوشالی خارجی

جدول 2 نتایج آزمایش تجربی آزمایش B برای طرح دیواره‌های پوشالی خارجی را نشان می‌دهد.

143

استقلال، سال 1385، شماره 12، شهریور 1385
جدول ۲- داده‌های آزمایش مربوط به طرح دیوایر بوشالی خارچی (آزمایش C)

<table>
<thead>
<tr>
<th>حالت کنداسور</th>
<th>دیوایر بوشالی عادي</th>
<th>دیوایر بوشالی خارچی</th>
<th>دیوایر بوشالی کثیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲۸/۰</td>
<td>۲۸/۵</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۲۸/۵</td>
<td>۲۸/۵</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۲۸/۰</td>
<td>۲۸/۰</td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>۱۸/۸</td>
<td>۱۹/۵</td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>۶/۰۰</td>
<td>۷/۰۰</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۳۲/۵</td>
<td>۲۴/۵</td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>۱۲/۵</td>
<td>۱۵/۰</td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td>۱۰/۶</td>
<td>۱۰/۶</td>
<td></td>
</tr>
<tr>
<td>۹</td>
<td>۱۰۷</td>
<td>cm/min</td>
<td></td>
</tr>
<tr>
<td>۱۰</td>
<td>-</td>
<td>cm/min</td>
<td></td>
</tr>
<tr>
<td>۱۱</td>
<td>۳۶۲۰</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>۱۲</td>
<td>۲۵</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

مقایسه نتایج این آزمایش با طرح دیوایر بوشالی داخلی نشان می‌دهد که مقدار کاهش مصرف جریان الکتریکی در این طرح کمتر شده است که علت آن را می‌توان به شرح ذیل تفسیر کرد. در طرح دیوایر بوشالی داخلی دیوایرهای با دیوایرهای داخل کولر که در اینجا استفاده شده‌اند، هوا از داخل کولر که در اینجا استفاده شده‌اند، هوا از داخل کولر می‌گیرد و کنداسور بهتر خود می‌شود. اما در طرح دیوایر بوشالی خارچی جن دیوایر بوشالی روى قاب خارجی نصب شده است و بین دیوایر خارجی و دیوایرهای داخلی فاصله وجود دارد لذا حالت آبی‌بدی کامل وجود نداشت. و مقداری از هوا می‌بکشد شده توسط فن از روی دیوایر بوشالی مطبل و خوب شدن. در نتیجه هوا به مقداری که در طرح دیوایر داخلی سرد می‌شود، شکستن می‌شود. باید رفع این مشکل می‌تواند نتایج ایستیکی برای دربندی استفاده کرد تا میزان نفوذ و نشت هوای از کاهش داد.

در این آزمایش دیوایرهای بوشالی ساخته شده بر روی قاب خارچی کولر نصب شد. از آنجا که با نصب قاب خارجی بر روی کولر اکثراً نصب داماسیجها و فشار سنجش به روي لوله‌ای کنداسور و ابزاری وجود نداشت لذا مشخصات مورد در سیستم تربیت در این آزمایش اندازه‌گیری نگردید و به اندام‌گیری سایر پارامترها افتخار شد.

پوشالی خارچی

بررسی نتایج آزمایش برای طرح دیوایرهای بوشالی خارچی

پوشالی خارچی می‌دانست که میزان آمپر مصرفی از ۱۲ آمپر به حدود ۱۰/۹ آمپر رسیده است که در حدود ۱۱٪ کاهش را نشان می‌دهد. دیوایر هوای خروجی از کنداسور در حدود ۱۰ °C ۱ کاهش نشان می‌دهد و دیوایر هوای خروجی از ابزار در حدود ۲۰ °C ۲ کاهش یافته است. سایر پارامترها تقریباً نابود و با تغییرات قابل ملاحظه‌ای نداشتند است.
جدول 5- مشخصات ترمودینامیکی سیکل برای آزمایش در طرح معولی

<table>
<thead>
<tr>
<th>T_1 (°C)</th>
<th>T_2 (°C)</th>
<th>T_3 (°C)</th>
<th>T_4 (°C)</th>
<th>P_1 (kpa)</th>
<th>P_2 (kpa)</th>
<th>P_3 (kpa)</th>
<th>P_4 (kpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1 (kJ/kg)</td>
<td>h_2 (kJ/kg)</td>
<td>h_3 (kJ/kg)</td>
<td>h_4 (kJ/kg)</td>
<td>v_1 (m3/kg)</td>
<td>v_2 (m3/kg)</td>
<td>v_3 (m3/kg)</td>
<td>v_4 (m3/kg)</td>
</tr>
<tr>
<td>s_1 (kJ/kg °K)</td>
<td>s_2 (kJ/kg °K)</td>
<td>s_3 (kJ/kg °K)</td>
<td>s_4 (kJ/kg °K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 6- مشخصات ترمودینامیکی سیکل برای آزمایش در طرح دوباره پوشاکی داخلی

<table>
<thead>
<tr>
<th>T_1 (°C)</th>
<th>T_2 (°C)</th>
<th>T_3 (°C)</th>
<th>T_4 (°C)</th>
<th>P_1 (kpa)</th>
<th>P_2 (kpa)</th>
<th>P_3 (kpa)</th>
<th>P_4 (kpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1 (kJ/kg)</td>
<td>h_2 (kJ/kg)</td>
<td>h_3 (kJ/kg)</td>
<td>h_4 (kJ/kg)</td>
<td>v_1 (m3/kg)</td>
<td>v_2 (m3/kg)</td>
<td>v_3 (m3/kg)</td>
<td>v_4 (m3/kg)</td>
</tr>
<tr>
<td>s_1 (kJ/kg °K)</td>
<td>s_2 (kJ/kg °K)</td>
<td>s_3 (kJ/kg °K)</td>
<td>s_4 (kJ/kg °K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

محاسبات مربوط به مشخصات عملکرد سیکل

با توجه به نتایج به دست آمده در آزمایش‌های تجربی مربوط به طرح دوباره پوشاکی داخلی می‌توان مشخصات ترمودینامیکی سیکل از جمله طرفیت تریب، اثر تریب و ضریب عملکرد را محاسبه کرد و میزان تبادلانر روش سرمایش تبخیری را مشخص کرد. این محاسبات برای طرح دوباره پوشاکی داخلی انجام می‌شود. جدول (5) زیرا در این طرح دما و فشار می‌توان قسمت‌های مختلف سیکل اینجا ظهور به سطح اپتی آنها می‌توان مشخصات ترمودینامیکی مربوط 22 را در قسمت‌های مختلف به طور دقیقی محاسبه کرد. برای طرح دوباره پوشاکی خارجی می‌توان از مقادیر مقدار مصرفی و دمای‌های کنداسور و اواپرتور میزان کاهش توان مصرفی را مشخص کرد.

مشخصات ترمودینامیکی مربوط به نقاط مختلف سیکل بر اساس داده‌های جدول (5) به دست می‌آید که برای طرح معولی در جدول (6) استفاده شده است. در این جداول زیرنویس (1) مربوط به خروجی مبرد از اواپرتور، زیرنویس (2) مربوط به خروجی مبرد از کنداسور، و زیرنویس (3) مربوط به خروجی مبرد از

کمندان خورشیدی برای انتخاب محاسبات ابتدا مشخصات ترمودینامیکی مربوط به نقاط چهارگانه سیکل با استفاده از داده‌های تجربی به دست آمده و جداول ترمودینامیکی تفیقی می‌شوند. سپس با استفاده از روابط ترمودینامیکی مقدار مربوط به توان کمپرسور، دبیر، ضریب تریب، اثر تریب و ضریب عملکرد مشخص می‌شود. برای این کار با استفاده از آمپر و ولتاژ به دست آمده ابتدا توان

استقراء، سال 1385، شماره 1، شهریور 1385

145
جدول 7- نتایج محاسبات مربوط به طرح دیواره پوششی داخلی

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>واحد</th>
<th>طرح عمومی</th>
<th>طرح دیواره داخلی</th>
<th>در صد تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>We</td>
<td>Watt</td>
<td>2422</td>
<td>2053</td>
<td>-15/12</td>
</tr>
<tr>
<td>M</td>
<td>gr/sec</td>
<td>78/54</td>
<td>52/65</td>
<td>+12/15</td>
</tr>
<tr>
<td>Qc</td>
<td>Watt</td>
<td>1967</td>
<td>1934</td>
<td>+12/15</td>
</tr>
<tr>
<td>qc</td>
<td>kj/kg</td>
<td>162</td>
<td>169</td>
<td>+19/19</td>
</tr>
<tr>
<td>β</td>
<td></td>
<td>2275</td>
<td>2075</td>
<td>+55/55</td>
</tr>
</tbody>
</table>

لوله مویین است. بعد از مشخص شدن شرایط ترمودینامیکی مورد بر طبق متفاوت متغیر ها و نتیجه گیری از طرف دیواره پوششی داخلی نشان می‌دهد که مقدار آن تا حدود 55 به‌همراه یافته است. نتایج سایر آزمایشات انجام شده در دمای محتوی بین 150 تا 250 درجه سانتی‌گراد همگی نشان از کاهش مصرف انرژی الکتریکی و افزایش طرفین تبدیل سیگال دارد.

نتایج به دست آمده برای سرمایش تبخیری با استفاده از دیواره‌های پوششی خارجی نشان می‌دهد که میزان کاهش مصرف بر در این روش تا حدود 10/12 کاهش نسبت به طرح دیواره‌های پوششی داخلی کمتر است. لیبل سایر روش‌ها و نوع گرمایش عدم امکان آب‌نیاب کامل در سیستم هوای مکیده شده است. در صورت انجام پاره‌ای از تغییرات در ساختمان داخلی کولر می‌توان اثرات این طرح را نیز با مقدار قابل ملاحظه‌ای افزایش داد که امید است در تحقیقات بعدی به آن پرداخته شود.

نشک و قدردانی

نویسنده مراقب تشویق خود را از معاونت پژوهشی دانشگاه شهید جهان آرزو برای همایش مالی از انجام این پروژه اعماق می‌دارد.

مراجع

استقبال، سال 25، شماره 1، شهريور 1385

146
