Stress Analysis of Flight Vehicles under Flight Conditions

Hassan Haddadpour
Aerospace Engineering Department, Sharif University of Technology

Abstract: A method is presented for the stress analysis of flight vehicles under different flight conditions including gust and control surface deflection (or maneuver) using the governing equations of rigid-body motions and elastic deformations. The Lagrangian approach is used to derive the governing equations of motions. For this purpose, the basic equations of motions are derived in terms of potential energy, kinetic energy and generalized forces, which are, in turn, computed in terms of rigid-body motion variables, elastic mode shapes and $c_{la}(x)$ distribution for aerodynamic forces. By replacing them into the relations obtained, the governing equations for aeroelastic behavior of the vehicle are derived. The system of aeroelastic equations of
گرفت. الیادا [5] روش پیشنهادی برای پایداری آیروالاستیک استاتیکی راکت‌های بدون دوران در صفحه، بدون استفاده از معادلات کامل و تنا ی از استفاده از ضرایب تاثیر سازه مورد بررسی قرار داد. اینکه یکی از عمومی را برای بخشنده اوردن معادلات آیروالاستیک کلیه اجسام پرنده برحسی می‌باشد. از توانایی ارائه کرد. در ادامه این روش برای بخشنده اوردن معادلات حاکم بر رفتارهای دوران دار مورد استفاده قرار گرفت [7]. اثر نیروی محوری بر پایداری استاتیکی و دینامیک ووشک نب‌توسط تعادل از محققان بررسی شد [6-10].

در این مقاله، از معادلات حاکم بر رفتار دینامیک کل سیستم پس از استفاده از روش مدولار برای حساب، برای بررسی رفتار آیروالاستیک جسم پرنده استفاده خواهد شد. همچنین مهندس شاخص برای تعیین سطح شرایط مختلف پروازی علاوه بر مدل کمپیوتری صلب موشک به بررسی رفتار آیروالاستیک آن نیز پرداخته خواهد شد. همچنین تاریخچه زمانی 1 مقدار نش با استفاده از ارتباط نش مودال (ننش در هم مواد ارتباطی) در این شرایط تعیین خواهد شد. در اینجا نیز مقایسه‌ای بین تعادل از نتایج حاصل با نتایج موجود مشاهده، انجام خواهد گرفت.

1 مقدمه
بررسی رفتار آیروالاستیک اجسام پرنده از دو دیدگاه بررسی پایداری و بررسی رفتار آیروالاستیک اجسام می‌گردند. در بررسی اول تأکید بر تاثیر شرایطی است که در آن شرایط جسم پرنده رفتار نایابی‌دار (واگرایی با فلاتر) از خود نشان می‌دهد. درنوع دوم از بررسی با فرض اینگونه شرایط پروازی در محدوده پایدار قرار دارد بارگذاری جسم تحت تاثیر رفتار آیروالاستیک آن قرار داشته و نیاز به محاسبه این اثر به‌خصوص برای طراحی سازه و اطمنان از قرار دادن در حاشیه امن، وجود دارد. تحقیقات انجام شده در این زمینه بیشتر معطوف به بررسی پایداری، با در نظر گرفتن فضاهای مختلف بموده و به صورت مکانیکی می‌باشد. به عنوان نمونه خاصی از اجسام پرنده در این مقاله به موشک‌ها پرداخته شده است. ویژه روی مورد بررسی برای تمام اجسام پرنده صادق است. در مبحث بررسی ترکیب معادلات برای رفتار استاتیک و موربودی و نلسون [1] برای پایداری اجسام پرنده استاتیک دوران دار با استفاده از روش لگاریز معادلات وابسته حاکم بر حرکت و آیروالاستیک راکت را بدست آورده‌اند. معادلات مختل شده حاکم بر دوران موشک‌های دوران دار نیز توسط کریمی ت [2] با استفاده از معادلات لگاریز استخراج شد. آنها از میزان سازه با فرض دست خالی بودن حساسیت SRCP نظر کردند. پلنتوس [3] اثر معیاری در راکت‌های دوران‌دار را در بررسی خود لاحظ کرد و ثابت کرد در بعضی از حالات خاص معیاری سازه‌ای می‌تواند باعث راکت‌های دوران‌دار شود. برای رکت‌های بدون دوران نیز این‌گونه استاتیک و موشک‌های دو مورد بررسی مورد وسیع [4] موجود بررسی قرار گرفت.

2 معادلات حاکم
پلنتوس [3] معادلات حرکت موشک استاتیک را که در اثر ساختار در راکت‌های دوران‌دار را در بررسی خود لاحظ کرد و ثابت کرد در بعضی از حالات خاص معیاری سازه‌ای می‌تواند باعث راکت‌های دوران‌دار شود. برای رکت‌های بدون دوران نیز این‌گونه استاتیک و موشک‌های دو مورد بررسی مورد وسیع [4] موجود بررسی قرار گرفت.

استقلال، شماره 1، شهریور 1385

218
در معادلات فوق $z_i$ و $q_i$ مختصات تعیین‌افته سیستم دینامیکی بوده و برای شکل زاویه حمله، سرعت پیچ و محور $x-z$ را و پس از تبدیل به محور $y-z$ توسط مشخصات تعیین‌افته منازع با موله ارتعاشی تبدیل می‌شود. بنابراین مقدار نیروی $z_i$ و محور $z$ که برای شکل مدولهای ارتعاشی و ضربین نیروی پدیده در امتداد بدن نتیجه می‌شود، مقدار نیروی برای واحد طول نیز از معادله $I(x) = qy_S c_{b}(x)$ مشاهده می‌شود. سایر ضرایب $z_i$ و $x$ مختصات نیز در جدول (1) آورده شده‌اند.

\[ e_5 = f_i(x)z_i(t) \]

در معادله فوق $f_i(x)z_i(t)$ مقدار ارتعاشی $f_i(x)$ و $z_i(t)$ تابع دما زمانی تحريك این موله است. در حالت نیروها و مختصات تعیین‌افته با توجه به اینکه شکل مدولهای ارتعاشی معلوم است از معادله $f_i(x)z_i(t) = y$ مختصات تعیین‌افته استفاده می‌شود. واضح است این مختصات می‌توانند دارای بی‌نهایت عضو باشند. بنابراین معادله $(x)z_i(t)$ بر حسب زمان معلوم شود. می‌توان جایگاه هر نقطه از مکان را در هر لحظه محاسبه کرد. بنابراین می‌توان به این نکته اشاره کرد که با محاسبه زمان جابجایی می‌توان توزیع تنش خمیش در بدن را با استفاده از معادله زیر بر حسب زمان محاسبه کرد:

\[ s_y = \frac{M_x}{I} + \frac{dE_x}{dx} = \frac{dE_x}{dx} z_i(t) \]

بنابراین چنانچه مشتق دوم مدولهای ارتعاشی و توابع تحريك مربوط معلوم باشد، می‌توان اقدام به محاسبه نشان از هر نقطه از مکان را با استفاده از این نکته انجام داد.

شکل 1- مکان‌ایستگی در نقطه سه بعدی به همراه دستگاه

**مختصات بدنی**

از روابط به دست آمده وسط پلائوس بدون اثر رول (حرکت صفحه‌ای) استفاده شده و اثر نیروی پیشتران $F_1$ و $F_2$ به این معادلات اضافه شده‌است. حرکتی بدن در امتداد محور $z$ (عمود بر بدن) به مبنا مکان‌ایستگی برای مکان دویدن، در نظر گرفته شده است. این تغییر‌شکل تابعی از مکان در دستگاه بدنی و زمان بوده و با فرض نیز برای سازه مکان، به صورت زیر بیان می‌شود:

\[ e_5 = f_i(x)z_i(t) \]

در معادله فوق $f_i(x)z_i(t)$ مقدار ارتعاشی $f_i(x)$ و $z_i(t)$ تابع دما زمانی تحريك این موله است. در حالت نیروها و مختصات تعیین‌افته با توجه به اینکه شکل مدولهای ارتعاشی معلوم است از معادله $f_i(x)z_i(t) = y$ مختصات تعیین‌افته استفاده می‌شود. واضح است این مختصات می‌توانند دارای بی‌نهایت عضو باشند. بنابراین مکان‌ایستگی $(x)z_i(t)$ بر حسب زمان معلوم شود. می‌توان جایگاه هر نقطه از مکان را در هر لحظه محاسبه کرد. بنابراین می‌توان به این نکته اشاره کرد که با محاسبه زمان جابجایی می‌توان توزیع تنش خمیش در بدن را با استفاده از معادله زیر بر حسب زمان محاسبه کرد:

\[ s_y = \frac{M_x}{I} + \frac{dE_x}{dx} = \frac{dE_x}{dx} z_i(t) \]

بنابراین چنانچه مشتق دوم مدولهای ارتعاشی و توابع

219

استقلال، سال 25، شماره 1، شهریور 1385
جدول ۱. انگرال‌های مورد نیاز

| $L_a = \int_a^b x^2 \, dx$ | $M_a = \int_a^b x^3 \, dx$ |
| $L_1 = \int_a^b (x) \, dx$ | $M_1 = \int_a^b (x^2) \, dx$ |
| $L_1 = \int_a^b (x) \, dx$ | $M_1 = \int_a^b (x^2) \, dx$ |
| $L_2 = \int_a^b (x) \, dx$ | $M_2 = \int_a^b (x^3) \, dx$ |
| $L_2 = \int_a^b (x) \, dx$ | $M_2 = \int_a^b (x^3) \, dx$ |
| $L_3 = \int_a^b (x) \, dx$ | $M_3 = \int_a^b (x^4) \, dx$ |
| $L_3 = \int_a^b (x) \, dx$ | $M_3 = \int_a^b (x^4) \, dx$ |

### ۳-۱ اثر تندباد

در این حالت فرض می‌شود تندبادی تابعی به‌وجود می‌آید که توجه به تغییر تابعی است که به‌وجود می‌آید در نظر گرفته شده که در جدول ۱ حاصل ضریب نیروی بر از حساب زاویه حمله ان C_{th} می‌شود. بنابراین برای توزیع نیروی در دنده می‌توان نوشت:

$$w(x) = q_v S C_{th} \, dx \cdot x_c$$


### ۳-۲ اثر حركة نوسانی بالک

حرکت بالک در این حالت به‌صورت کاملاً نوسانی و با فرکانس ω در نظر گرفته می‌شود. سایر فرضیات در این قسمت نیز برابر با بالک قسمت قبل است. بنابراین توزیع بر این حالت را می‌توان به‌صورت زیر نوشت می‌شود:

$$w(x) = q_v S C_{th} \, dx \cdot x_c \sin(\omega t)$$

### ۳-۳ اثر تغییر پلایی زاویه بالک

در این حالت فرض می‌شود بالک ناگهان زاویه تابعی نسبت به بدنگیرد. بنابراین منبع بارهای خارجی، نه‌باین توزیع وارد شده به بدن استقلال. سال ۲۵، شماره ۱، شهریور ۱۳۸۵

۲۲۰
جدول ۲- مقادیر مربوط به راکت نمونه

<table>
<thead>
<tr>
<th>مقدار</th>
<th>محل اعمال</th>
<th>توضیح</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_La</td>
<td>متمرکز</td>
<td></td>
</tr>
<tr>
<td>$0/6$</td>
<td>$0/4$</td>
<td>سختی فن پیچشی</td>
</tr>
<tr>
<td>$0/78x10^{-1}$</td>
<td>$0/4$</td>
<td>نسبت مرجع (S)</td>
</tr>
<tr>
<td>$3/14x10^{-1}$</td>
<td>$3/333x10^{-1}$</td>
<td>نسبت مرجع (EL)</td>
</tr>
</tbody>
</table>

برای نیروهای تعیین‌شده نیز می‌توان نوشت:

$$ q_s = S_c C_La \sin(\theta)$$

با مبنای بودن بردار سمت راست معادلات (۳) می‌توان اقدام به حل دستگاه معادلات وابسته آیروالاستیک با استفاده از روش‌های حل مختلف کرد. در این مقاله حل معادلات در حیوزه زمان با استفاده از روش‌های انتگرال‌گری عددی انجام گرفته است.

نتایج

پلانوس نشن داد که بررسی رفتار آیروالاستیک موشک
در نتیجه، رفتار جواب نیز و اگرایی را نشان می‌دهد. همچنین در شکل (6) پاسخ سیستم به ورودی یکه با سرعت خالص 1000 متر/ثانیه برای سه متغیر در شکل (3) بدون اثر میزان سازه‌ای و در شکل (4) با میزان محدود 2/3 نشان داده شده است. فشار دینامیک مربوط به پاسخ زمانی به ورودی تندباد مربوط به این حالت نیز برای سه متغیر در شکل (5) نشان داده شده است. در این حالت سرعت میزان 1000 متر/ثانیه فرض شده که اندکی از سرعت با گرایانه آن در این ارتفاع بیشتر است که

پاسخ زمانی به ورودی تندباد با میزان سازه‌ای در سرعت 1000 m/s

نقاط 3- مقادیر $q_{div}$ برای راکت نمود

<table>
<thead>
<tr>
<th>$q_{div}$</th>
<th>راکت</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/49x10^6</td>
<td>مرجع [7] (روش مهندسی)</td>
</tr>
<tr>
<td>1/07x10^6</td>
<td>روش ارایه شده</td>
</tr>
<tr>
<td>1/08x10^6</td>
<td>مرجع [7]</td>
</tr>
</tbody>
</table>

شکل 3- پاسخ سیستم به تندباد بدون میزان سازه‌ای در سرعت 1000 m/s

شکل 4- پاسخ سیستم به تندباد با میزان سازه‌ای در سرعت 1000 m/s

نوع نوشته: مقاله

شماره صفحه: 222

استقلال، سال 25، شماره 1، شهریور 1385
شکل 5- پاسخ سیستم به تندباد در سرعت 1400 m/s

شکل 6- پاسخ سیستم به ورودی پله برای سطح کنترلی در سرعت 1000 m/s

شکل 7- پاسخ سیستم به ورودی پله برای سطح کنترلی در سرعت 1000 m/s با فرکانس پنج هرتز

و کنترل نیز به معادلات اضافه شود که زمینه تحقیقات آتی است. در اینجا برای بررسی پاسخ کیفی، اثر پیک سویه نوسانات سطح کنترلی بر دینامیک موشک استثنایی در گرفته شده است. در شکل (8) پاسخ به ورودی سینوسی برای زاویه بالک با فرکانس سیزده هرتز که نزدیک به فرکانس طبیعی ارتعاشات صلب (دینامیک پرواز) موشک است ارائه شده و ناپایداری دینامیک سیستم دراین حالت رویت شده است. در شکل (9) اثر نیروی پیشران 10 کیلونیوتن بر رفتار دینامیک موشک نشان داده شده است. در این حالت نیروی پیش نیز با فرض ضرب پسای 1/3 محاسبه شده است. شابان ذکر است که در این حالت سرعت طولی موشک
شکل 8- پیش سیستم به ورودی نوسانی برای سطح کنترلی در سرعت 1000 m/s با فرکانس مدده هفز

شکل 9- پیش سیستم به تنگی با وجود تیروپیپشان

شکل 10- پیش سیستم به تنگی با وجود تیروپیپشان

متغیر بوده و برای محاسبه آن معادله حرکت طولی موسک به معادلات حاکم بر سیستم اضافه گردیده و دستگاه معادلات جدید در حوزه زمان حل گردیده است. در شکل 10 اثر نیروی پیشان 10 کیلوئونیتی بر رفتار دینامیک موسک نشان داده شده است. همانطور که مشاهده می‌شود از رسیدن سرعت طولی موسک به مقدار خاصی تاپابنداری استاتیک شروع می‌شود. این نتیجه نابود کننده استفاده از فرض سرعت ثابت برای بررسی اثر نیروی محوری بر تاپابنداری آپراستیک موسک است. با استفاده از این نتیجه فشار استاتیک تاپابنداری بر حسب تیروپیپشان در

شکل (11) نمودار است که بیانگر کاهش محدوده پایداری با افزایش تیروپیپشان است. در ادامه برای تمامی حالات مورد بررسی تحلیل تنش انجام گرفته است. از معادله (2) نتیجه می‌شود با نگرش استفاده از یک مود ارتعاشی، توزیع تنش در موسک تابع مشتق دوم این مود است و بیشترین مقدار آن برای موسک مورد مطالعه در فاصله 2/8 متری از انتهای موسک قرار دارد. مقدار برای این نشان داده شده است که نیروهای فشار ناباید به کلیه حالات پروراپ در جدول (4) اورده شده است.
مقدار پایه دینامیک سیستم که شامل دو بخش صلب و استیک است می‌تواند داده‌ای باشد که جسم پرنهای وارد نمایش است می‌تواند داده نشان داده شد که نیروی محوری به کاهش محدوده پایداری آیروالاستیک می‌شود.

قدردانی
تحقیق حاصل با حمایت دانشگاه صنعتی شریف انجام گرفته است. همچنین نویسنده مرتب تحقیق و قدردانی خود را از معاونت تحقیقات و مدیریت سازه صنایع شهید باقری ابراز می‌کند.

1. time history  
2. thrust  
3. drag

مراجع

5. Elyada, D. “Closed Form Approach to Rocket Vehicles Aeroelastic Divergence,” J. Spacecraft,

