مقاله کوتاه

تحلیل فروریختگی بوسته‌های تقویت شده از طریق آزمون مدل. بررسی نتایج به کمک نرم‌افزارهای اجزای محدود و استفاده از آن برای بدن فشار زیردریایی

احمد رضا صفراوی، مصطفی غیور و عبدالرحیم کیاری
دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان
پژوهشکده زیرسطحی اصفهان

(دریافت مقاله: ۱۳۸۷/۱۳/۲۷- دریافت نسخه نهایی: ۱۳۸۷/۶/۳)

چکیده - تجربه نشان داده است در عمل به دلیل تأثیر عوامل مختلف، رسیدن به فشار کماتش کلاسیک ناممکن است. این امر، نشان دهنده از اهمیت استفاده از نظریه‌های غیرخطی و در نظر گرفتن عوامل مختلف مؤثر بر کماتش مانند نظر شکل و جوش در تحلیل کماتش است. آنچه که در این تحقیق صورت گرفته، ساخت مواده است که تا حدی کمک نیازی به انحرافات استاندارد باشد، سپس کماتش مدل‌ها تحت فشار و COSMOS، ANSYS، ADINA، MARC و با توجه به نمونه باید به نحوی استفاده از نرم‌افزارهای اجزای محدود وارد کردن اثر نقص شکل‌ها متغیر باید قابل قبول قابل قبول بود. بدانن به نتایج حاصله. بهبود فشار به زیردریایی نمونه نیاز تحلیل شده است.

واژگان کلیدی: کماتش- فروریختگی- نقص شکل- آزمون- روش اجزای محدود

* دانشجوی دکتری
** - استادیار

استقبال، سال ۲۵، شماره ۱، شهریور ۱۳۸۵

۲۲۷
Theoretical and Experimental Collapse Analysis of Ring Stiffened Shells Using Finite Element Software Packages and Application of Results to a Submarine Pressure Hull

A. R. Safari, M. Ghayour, and A. Kabiri
Department of Mechanical Engineering, Isfahan University of Technology
Isfahan Underwater Technology Research Center

Abstract: It is empirically established that, due to a number of factors involved, a classical (linear) analysis of buckling pressure is impossible. Nonlinear theories of buckling are, therefore, required that involve effective factors such as imperfections and welding effects. In this study, models are developed which are as close to allowable standard deviations as possible. In the next stage, their buckling behavior is investigated both experimentally and numerically using finite element packages ADINA, ANSYS, COSMOS, and MARC based on specific capabilities of each. Results show that reasonable estimates of real buckling pressure will become possible when material and geometrical nonlinearities and initial imperfections are introduced into the analytical system. Finally, in the light of the results obtained, a submarine pressure hull is analyzed.

Keywords: Buckling, Collapse, Imperfection, Test, Finite element method.

<table>
<thead>
<tr>
<th>ضریب پوشاون</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasheh مراکز ©قوینه</td>
<td>L</td>
</tr>
<tr>
<td>طول کلی ©متور پوشه</td>
<td>L</td>
</tr>
<tr>
<td>طول پوشه ©مایین ©قوینه</td>
<td>L</td>
</tr>
<tr>
<td>دمان ©دوم ©سطح ©مؤثر ©قوینه ©حدود ©محور ©ختی</td>
<td>Lc</td>
</tr>
<tr>
<td>مامت ©دوم ©سطح ©مؤثر ©قوینه ©حدود</td>
<td>L</td>
</tr>
<tr>
<td>ضخامت ©پوشه</td>
<td>h</td>
</tr>
<tr>
<td>مدروم ©پهنا ©آدین</td>
<td>E</td>
</tr>
<tr>
<td>شعاع متوسط ©پوشه</td>
<td>a</td>
</tr>
<tr>
<td>تعداد ©براندمگههای ©محیطی ©در ©کماس</td>
<td>n</td>
</tr>
</tbody>
</table>
در این تحقیق چند مدل بر حسب استاندارد BS و نا-BS آزمایشات صدا و حرارت امکان طبق فراورده که در طراحی بدن فشار زیر دریایی دنبال می‌شود آسوره شده و سپس آزمون کاملاً شده‌اند [5]، پس از آن سعی شده است به کمک نرم‌افزارهای اجزای محدوده MARC و ANSYS، ADINA قابلیت‌های ویژه‌ای به هر هکدام از آنها دارند تحلیل دقیقی از فروریختگی 1 مدلها به دست آید. نتایج حاصله نشان می‌دهند که حساسیتی که در می‌توان با وارد کردن اثرات غیرخطی شال تغییر شکل‌ها بر الزامات می‌شود، اثرات لازم بر اثرات جوش، علی رغم باعث شدن تغییرات بهدیون کامپیوتر، ببینند. نتایج مناسبی از آن به دست آورده و نتایج هنگامی بی‌پیچیده‌تر مانند بدن فشار زیست‌پاتریا را نیز به شکل مناسبی تحلیل کرد [7].

2- ساخت مدل

در شکل (1) هدسه و ابعاد مدل ساخته شده نشان داده شده است. تغییرات با جنس آلیاژ A 6061 هستند. همچنین پوسته استوانه از آلیاژ آلومینیم آلی شده گره و به دست آمده است. طبق نتایج حاصل از آزمون‌های کش نمونه‌هایی که متقابل استاندارد ASME ساخته شده‌اند، رفتار این آلیاژ را می‌توان به صورت استوالابسته کامل 3 درنظر گرفت. خواص 2-249

استقال، سال 25، شماره 1، شهریور 1385
جدول 1- در روش تحلیل مدل در

<table>
<thead>
<tr>
<th>شماره مود</th>
<th>روش دوم (Mpa)</th>
<th>روش اول (Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/658</td>
<td>0/658</td>
</tr>
<tr>
<td>2</td>
<td>0/620</td>
<td>0/620</td>
</tr>
<tr>
<td>3</td>
<td>0/524</td>
<td>0/524</td>
</tr>
<tr>
<td>4</td>
<td>0/502</td>
<td>0/502</td>
</tr>
<tr>
<td>5</td>
<td>0/512</td>
<td>0/512</td>
</tr>
<tr>
<td>6</td>
<td>0/537</td>
<td>0/537</td>
</tr>
<tr>
<td>7</td>
<td>0/599</td>
<td>0/599</td>
</tr>
</tbody>
</table>

مقدار واریانس مدل در نرمافزار ADINA است که تقریب‌ها به کمک کمک‌کننده مدل می‌شوند. در روش دوم تقریب‌ها با استفاده از مدل‌های مختلف محوری مدل شده‌اند. در این روش به دلیل اندهشت تکثیر با پوسته به صورت ولایت‌اند تابعی حاصله با تابعی روابط نظری و در قابلیتی مقایسه است. در این جدول دو سطح اول مدل‌های صنعتی استفاده‌اند. در نتایج هرکدام از روش‌ها دست‌آوردهای دیده می‌شود: اینجی اول در سطح اول مربوط به مود کمکاش کلی پوسته و 2 است و این دوم در سطح هفتم مربوط به مود کمکاش موضعی پوسته و 7 است.

در جدول (2) نتایج حاصل از روش دوم تحلیل در نرمافزار COSMOS با توجه حاصل از تظییه مقایسه‌شده است. شماره‌های داخل پرانتز شماره مود کمکاش نان منشأ است که مدل پیمای کمکی مورد موضعی آن است. از تحلیل کمکاش کلاسیک مدل در نرمافزار ADINA فشار کمکاش 64/76 مقدار دارد. در نرمافزار 76/84 مقدار خود را دست‌آمده است که می‌تواند به دست آمده برای کمکی موضعی پوسته به سطح هفتم از روش اول جدول (1) است. این مود کمکاش در شکل (2) نشان داده شده.

تحت بارگذاری مقدار محوری است و لیزومودهای کمکاش آن تقارن محوری تنها در نیاز به تغییرات و افزایش نرمافزار برای تحلیل قرار دادن مدل‌های N-56 مود کمکاش است که بهداشت به ایجاد مدل مقدار محوری مقدار کمکاش تعاریف و نامفاداران را برعی

در این تحقیق استفاده شده‌اند. برای مثالهای N-57 مود کمکاش برای افزایش آن کار سیب ساده‌تر صورت می‌پذیرد. در این نرمافزار از مدل گرگار نازک استفاده می‌شود بنابراین نهایاً اثرات غافلگیری و حماسه وارد می‌شود و این میزان به‌ین الگوی مورد استفاده در نرمافزار است. برای مثال، در جدول (1) نتایج حاصل از روش تحلیل مقایسه شده‌اند. در این روش اول تجربی کمک جدول 76/84 مدل می‌شود. این مشاهده نمود به خصوص در این نرمافزار برای مسایلی که در تهیه استاندارد نیاز به میزان کردن سازه نیست.

استقلال، سال 25، شماره 1، شهروز 1385
سکانت در تحلیل کمانش خنی در نرمافزار ADINA است. با استفاده از روش سکانت در ADINA مقدار بار کمانش مگاپاسکال به دست می‌آید که در مقایسه با مقدار کلاسیک، 10-4 نشان می‌دهد تغییر شکل‌های بزرگ اثر چندانی در کاهش بار کمانش مدل‌ها نداشته‌اند.

جدول ۲- نتایج کمانش کلاسیک مدل و نظری (Mpa)

| کمانش کلاسیک | روش تحلیل | نظری
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۴ (v) ۵/۳ (v) (BS)</td>
<td>۷۴/۶۶ (v) ۵/۴ (v)</td>
<td></td>
</tr>
</tbody>
</table>

۴-۱- اثر غیرخطی‌های هندسی

محله دوم از تحلیل در نظر گرفتن اثر تغییر شکل‌های بزرگ در کمانش مدل است. برای این منظور اگرچه می‌توان از تحلیل مرحله به مرحله ۱ انجام گیرند، با استفاده از نرم افزار MARC در تحلیل کمانش خنی می‌توان گریزی‌های را برای منظور کمک گریزی‌های بزرگ فعال کرد. با این کار در تحلیل از نمونه‌کردن گریزی‌های لایه‌ای و ناپاتونی تنش دوم پایولا- کرده و استفاده می‌شود. هنگام در تحلیل کمانش تا حد زیادی اثر تغییر شکل‌های بزرگ منظور می‌شود و می‌توان توسط آن متقابل تناوب بلند‌مدت حاصل از تحلیل کمانش کلاسیک چه در غیاب فعال کردن این گریزی به دست می‌آید میزان حساسیت زاگرنتی به غیرخطی‌های هندسی را مشخص کرد. تحلیل‌های نشان می‌دهند این روش مشابه استفاده از روش

استقلال، ماد. ۲۵، شماره ۱، شهریور ۱۳۸۵

۲۳۱
در نظر گرفتن غیرخطیتی هندسی و ماده‌ای و منظور کردن
اثر نقص شکل است، برای انتخاب گزینه‌های انحرافات می‌توان از
شباین و یا پست مدل روي دستگاه تراش و اندازه‌گیری به
کمک ساعت اندازه‌گیری استفاده کرد. در این تحقیق از
روش دوم استفاده کرده‌ایم. مطابق استاندارد
برای BS مدل‌هایی که به این نحو اندازه‌گیری شده‌اند، تصمیم
اندازه‌گیری‌های شعاعی به ازای شعاع متوسط و خطای در منطق
کردن محور استوانه‌ای محور دستگاه است. در این روش، در
هر نقطه تعبیه داره متوسطی که از 24 نقطه محیطی
می‌گذرد و تعیین انحرافات نقاط نسبت به آن مستقل
از سایر مقاطع است[7].

جدول 3- مقایسه نتایج فروریختگی متقاون محوری مدل

<table>
<thead>
<tr>
<th>نوع تحلیل</th>
<th>مدل متقاون محوری</th>
<th>مدل سعیدی</th>
<th>BS متقاون محوری مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/17</td>
<td>0.5</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>1/21</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>1/14</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

این مقاومت‌ها می‌توان با نتیجه حاصل از استاندارد
کرد. این آزمایش فشار کم‌کانسی بیشتر بیشتر کلیدی
نشان می‌دهد در این مدل اثر عمدت بر دریایی بر یک کمان ناشی از
غیرخطیتی به ماده و وارد شدن به ناحیه پلاستیک است. در
استاندارد BS برای برآوردهای فشار کم‌کانسی پوسه استانداردی از
نتایج تجربی استفاده می‌شود[8]. در این استاندارد نمودار حد
پایینی تجربی این می‌توان از معادله زیر به دست آورد:

\[
\begin{align*}
P_c / P_y &= 1 - P_y / 2P_m \quad &P_m / P_y \geq 1 \\
P_m / 2P_y \quad &P_m / P_y \leq 1
\end{align*}
\]

فشار کم‌کانسی، فشار تصلیم پوسته در
فشار فروریختگی پوسه‌اند.

جهت محیطی و P_c نمودار مقادیر متوسط در شکل مربوطه حدود 17\% بالاتر واقع
می‌شود. در جدول (3) که تایپیزه‌شده این مقادیر تصمیم
شده است نباینید مقدار مربوط به BS مقدار متوسط است.

4-3- اثر نقص شکل‌ها

مرحله نهایی در تحلیل تحلیل فروریختگی غیرخطی با

استقلال: سال 25، شماره 1، شهريور 1385

222
شکل 5 - نمودار بار-تغییرشکل حاصل از تحلیل مدل در ADINA

جدول ۴ - مقایسه نتایج تحلیل‌های عددی خیز و تناوب حاصل از تست

<table>
<thead>
<tr>
<th>شماره مدل</th>
<th>فروریختکی خیز و تست</th>
<th>آزمون</th>
<th>نقص شکل (Mpa)</th>
<th>(Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۹۸ (وضعی)</td>
<td>۰/۹۸ (وضعی)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۰/۹۸ (وضعی)</td>
<td>۰/۹۸ (وضعی)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

به دست آمده است که به مجموع در حدود ۱۳٪ خطا دارد، با توجه به اینکه چنین مقادیر خطرناک بی نتیجه نیست چنین مقدار خودش یک مرحله منطقی است. می‌توان مطمئن بود با در نظر گرفتن نشان‌های ناشی از جوشش و توان به بروز دقیقتری از بار کاملاً واقعی دست پیدا می‌کند. در شکل (۳) تصویر مدل فروریختگی پس از آزمون نشان داده شده است.

- تحلیل کامپس بدن فشار زیردربایی

۵- تحلیل کامپس بدن فشار زیردربایی

در شکل (۷) مقطع طولی از بدن فشار یک زیردربایی نمونه نشان داده شده است. مطالعات اوایل بر روی کامپس کلاسیک COSMOS پوسته ای توسط نرم‌افزار ADINA نشان داده است نرم‌افزار ADINA به اطمینان کننده تجاری را دارد و پوسته پوسته به صورت سیستم کلاسیک (N=۷) اعمال و بر روی آن تحلیل فروریختگی استوایی سیستم صورت می‌گیرد در شکل (۵) محققان بر-تغییرشکل چنین تحلیلی نشان داده شده است.

در جدول (۴) برای دو مدل مورد استفاده نتایج حاصل از تحلیل‌های خیز و آزمون مقایسه شده‌اند. اعداد داخل پرانتز شماره مدل کامپسیک می‌باشد. در تحلیل به کمک ANSYS مدل‌های به همان شکلی که در انداده گیریها به دست آمده و به همراه نقص شکل‌های مربوط به سه‌های سازی و تحلیل شده‌اند. مطابق این جدول تا این مرحله از تحلیل بهترین نتایج از نرم‌افزار ADINA است.
بهره‌ترين موضع از نظر كامپايش، ديوارها ها هستند.

tحلیل‌های دقیقی را بر روی این بخش متمرکز خواهیم کرد.

در شکل (7) مدل بدون دیواره نشان داده شده است.

فشارهای کامپايش و فروریختگی نیز توسط بهره‌برداری کامپايش
کلاسیک که بدون دیواره استفاده می‌شود. بررسی ماده مورد استفاده در
دبایره، الاستولتیستیک کامل در نظر گرفته شده است. در بررسی
کامپايش دیواره نیز مطابق روشی که برای مدل‌های آزمون شده
ارائه شد عمل خواهیم کرد. مراحل زیر در نرم‌افزار ADINA
انجام شده‌اند:

الف) تحلیل کامپايش کلاسیک: فشار کامپايش حاصل از این
تحلیل 7/8 و شکل مورد آن مطابق شکل (8) بوده است.

ب) تحلیل کامپايش به روش سکانت: این تحلیل منجر به
فشار کامپايش 7/8 به کار نشان می‌دهد تغییر شکلی از
این رفتار مورد انتظار بود.

شکل 10- هشدارهای به نقص شکل های مختلف

شکل 9- نمودارهای بار-تغییر شکل بار انحرافهای مختلف

شکل 8- مود کامپايش کلاسیک دیواره

شکل 7- ابعاد دیواره

جهت تحلیل فرد تحقیق را بر روی این بخش متمرکز خواهیم کرد.

در شکل (7) مدل بدون دیواره نشان داده شده است.

فشارهای کامپايش و فروریختگی نیز توسط بهره‌برداری کامپايش
کلاسیک که بدون دیواره استفاده می‌شود. بررسی ماده مورد استفاده در
دبایره، الاستولتیستیک کامل در نظر گرفته شده است. در بررسی
کامپايش دیواره نیز مطابق روشی که برای مدل‌های آزمون شده
ارائه شد عمل خواهیم کرد. مراحل زیر در نرم‌افزار ADINA
انجام شده‌اند:

الف) تحلیل کامپايش کلاسیک: فشار کامپايش حاصل از این
تحلیل 7/8 و شکل مورد آن مطابق شکل (8) بوده است.

ب) تحلیل کامپايش به روش سکانت: این تحلیل منجر به
فشار کامپايش 7/8 به کار نشان می‌دهد تغییر شکلی از
این رفتار مورد انتظار بود.

Downloaded from jmc.iut.ac.ir at 12:41 IRST on Monday October 26th 2020
1. instability
2. overall buckling
3. imperfection
4. collapse
5. large displacement
6. plastic deformation
7. elastic perfectly plastic
8. inter stiffener buckling
9. geometrical nonlinearities
10. incremental
11. material nonlinearities
12. pressure hull
13. bulkheads

9. geometrical nonlinearities
10. incremental
11. material nonlinearities
12. pressure hull
13. bulkheads

\[p_{\text{er, lower}} = 0.283 \times 10^3 \frac{a^2}{\rho} \]

\(\text{in} \) شکل (10) نیز مشخص است که به این احرازات بیش از 8 ضخامت گیر خاتم‌شده است. بنابراین کاملاً مشابه رفتار کلاهک کاملاً مشابه رفتار کلاهک گامه‌ای فوق می‌توان با روش تخمک‌بندی انجام شد.

\[\text{کدام‌انواع تغییر شکلی‌های یافته در روش کلاهک گامه‌ای فوق می‌توان با روش تخمک‌بندی انجام شد.} \]

\[\text{کاملاً مشابه رفتار کلاهک کاملاً مشابه رفتار کلاهک گامه‌ای فوق می‌توان با روش تخمک‌بندی انجام شد.} \]

\[\text{کدام‌انواع تغییر شکلی‌های یافته در روش کلاهک گامه‌ای فوق می‌توان با روش تخمک‌بندی انجام شد.} \]

References