کاربرد مدل ریاضی در تخمین ذخیره آب قضاوت
حسن احمدی - عبدالرحیم ذوالانوار

مقدمه
ایران بدلیل وضع جغرافیایی خاص خود جزو مناطق خشک یا نیمه خشک جهان محصول مویشود. توزیع زمانی بارندگی طوری است که بیش از پنجاه درصد از نزولات جوی فقط در سه ماه زمستان به زمین می‌رسد و در فصل تابستان که کیفیت احتیاج بیشتری به آب دارندمقدار بارندگی بجز در حاشیه دریاچه خزر ناچیز و یا صفر است. ایرانیان از زمان‌های قدیم جهت خیابان‌های مزرعه خود شروع به برآورداری از آب‌های زیرزمینی نموده و در ماه‌های افتد به نام قنات حفر کرده‌اند که بکار آنها مقداری از آب‌های زیرزمینی توزیع نیروی ثقل تا سطح زمین پاکین دست، هداپت موشود [1].
چارچوب آب قناتها معمولاً داشته بوده و تقریباً "غير قابل کنترل" است. در فصل زمستان که احتیاج به آب آبیاری نیست، قسمت‌های آب بدون آنکه استفاده قابل توجیهی از آن عمل نمی‌کند با تأخیر و نفوذ در دسترس خارج موشود. مقداری از آن هم بعد از نفوذ در دشت‌ها سریز به آب‌های زیرزمینی می‌پردازد. از آنجا که بافت روابط در مرکز دشت‌ها معمولاً یرادنده است، لذا حاکم‌ای این آب‌ها به‌سیار کند می‌باشد. در نتیجه، مقدار زیادی از آب‌های موجود در روابط در آب‌نفوذ خلشده و آب را اگر قابل استفاده می‌شود. می‌توانیم نتیجه گرفت که احتمالاً قسمت‌های آب قنات‌ها

* کا رشاس هیدرولیک شرکت مهندسی مشاور - شهرستان سپاه
* استادیار دانشکده تهران - دانشگاه صنعتی اصفهان

Downloaded from jcme.iut.ac.ir at 22:00 IRDT on Saturday September 19th 2020
استقلال

در فصل غیر آبیاری به هدر می‌رود.

آخرین قرب به اتفاق قنات‌های ایران در دانه‌های از صنایع دست‌بافتی که در زمان‌های دور فراوان یافت می‌شود، در گردیده‌اند، این مخروط افکنه‌ها در راس دارای رسم‌های فراوانی در این مخروط افکنه‌ها از فاصله بافت مخروطی که ۸/۵ ه تا ۸/۰ نزولات، چون که به اندازه‌های صحرای از کوهستان از طریق مخروط افکنه‌ها بطری دشت‌ها جبران پیدا می‌کند در عرض چند کیلومتر اول به داخل مخروط افکنهٔ فاصله‌های کرد و به‌این‌گونه که در داخل مخروط افکنهٔ داخل، می‌توان به بافت مخروط افکنهٔ این صحرای دشت‌ها، سطح سفره آب زیرزمینی در قسمت‌های بالا در این مخروط افکنه‌ها دارای تابعی نسبتاً به‌طور دقیق‌تر، در دو قسمت‌های بالای دیواره‌های شبیه‌می‌باشد و در مرکز دشت‌ها سطح سفره تقریباً افقی و دیواره‌های داخل سرعت می‌پیوندد.

شماره و دبی متوسط قنات‌های ایران

طبق آمار آخر منتشر شده توسط وزارت نیرو، حداکثر ۴۲ میلیون متر مکعب آب‌هایی در سال ۱۳۵۷/۰ در حدود ۱/۳ این آب در فصل غیر آبیاری جاری است، که اکثراً بدون پاژوهش خارج می‌شود و فقط مقدار کمی از آن از طریق نمود مجدد در مرکز دشت‌ها به ذخایر زیرزمینی می‌پیوندد؛ احتمالاً این بقایاره، این بقایاره معنی‌دار است که در فصل غیر آبیاری دبی قنات‌ها عموماً بیشتر از متوسط دبی‌های سالانه انداره‌گیری شده‌اند.
تغییر دبی قنات‌ها در فصول مختلف سال
در تاریخ مشهور 24 قنات در سال‌های 1363 و 1344 از طرف وزارت نیرو دفنیا" مورد بررسی قرار گرفت. نتایج حاصله از این بررسی به‌صورت زیر است:
۱. رابطه بیشتری بین بارندگی و دبی مشاهده می‌شود (به‌گونه‌ای که بیشتر بین دبی قنات‌ها، متوسط بارندگی ماهانه و متوسط درجه حرارت ماهیانه را نشان می‌دهد). به‌طوریکه در این شکل دیده می‌شود، مقدار بارندگی در زمستان کم بوده ولی در سه ماهه به‌دست بارندگی بسیار شدت به داده و پس از آن بارندگی برای مدت کمی ماه کاملاً متوقف می‌گردد. اندمازگیری دبی قنات‌ها از آغاز بهار سال ۱۳۴۳ شروع شده و در ماه یکم بازداشت آن‌ها کرونایی است. اولین دبی اندمآزگیری شده بزرگترین عدده است که در مدت دوران اندمازگیری بست آمده و همچنین در ماهی است که پیشتر بارندگی را نشان می‌دهد. در طول ماه‌ها خرداد تا شهر ۱۳۴۳ کل بارندگی منطقه مورد بررسی قرار گرفته، در حدود هشت میلیون مترکوبی شده است. در همین مدت دبی كل قنات‌ها به طور فاقده ولی با سرعتی یک‌کلوخت، کاهش می‌یابد. در آبان ماه سال ۱۳۴۳ اولین بارندگی به وقوع پیوسته و آب‌سوز قنات‌ها که در آن زمان حاصل بوده یک‌کلوختی زیاد گردد. این افزایش آب‌سوزی در ماه‌های آذر و دی نیز ادامه می‌یابد. در این مدت مقدار بارندگی که در ماه نیز افزایش می‌یابد. کاهش مقدار کل بارندگی در ماه به‌همین ارقام دبی به‌صورت کاهش میزان افزایش قنات، منعکس شده است.

ماکزیمم دبی قنات در اواخر اسفند ماه و آغاز فوری دنیا مشاهده می‌شود و پس از آن با سرعتی یک‌کلوخت کاهش می‌یابد.
دبي قناتهای اطراف مشهد

شکل ۱- ارتباط میان میانگین بارندگی و درجه حرارت ماهیانه و دبی قناتهای

در استقلال ۶۴
گزارش مدل ریاضی در نخستین...

مویتان، چنین نتیجه‌گیری کرد که رابطه نزدیکی بین بارندگی و دبی قنات‌های مورد بررسی وجود دارد. اضافه بر این مشاهده می‌تواند نتایجی جوی در این منطقه که دارای رسوایی‌های می‌باشد سریع‌تر نفوذ کرده و به آب‌های زیرزمینی می‌پیوندد. بطوریکه که گفته" هم بدان اشاره شد از آنجاییکه اکثر قربان به اتفاق قنات‌های ایران در حال آتش‌بزیت آب‌رسی و در دامنه مخرب‌اند، اگر در این نتیجه‌گیری می‌تواند احتمالاً برای اکثر قنات‌های ایران صادق باشد.

طول قسمت آبده قنات‌ها در ایران، بطور کلی طول قنات‌ها و طول قسمت آبده آنها با چیزی شبیه زمین و شیب سفره آب‌زیرزمینی رابطه معلام دارد. هرچه شبیه زمین و شبی سفره آب‌زیرزمینی تندری باشد، طول قنات و طول قسمت آبده کمتر و برعکس هر چه شبی زمین کمتر باشد، طول قنات و طول قسمت آبده بیشتر خواهد بود. طبق مطالعات پیش‌روات در سال 1968[۴]، طول قسمت آبده قنات‌های ایران را می‌توان بطور تقریبی بین ۱۰۰ تا ۲۵۰۰ متر تخمین زد(اطلاعات عمومی در مورد قنات‌های ایران در مراجع[۵ تا ۸] داده شده‌اند)

سرعت حركة آب‌های زیرزمینی در دامنه مخرب‌اند، طبق ادای‌گیری‌ها که در چندین نقطه اطراف قنات‌های استان اصفهان و یزد انجام شده [۹ و ۱۰] گرفت نفوذ پذیری (K) بطور متوسط در قسمت خشک قنات‌ها (دقیق‌تر) آبده، طبق در حدود ۴-۱۰۰ (m/س) است. شبی سفره در نقاط اندازه‌گیری شده بطور متوسط ۱/۱۰۰ تا ۱/۵۰۰ بوده است. سرعت آب‌های زیرزمینی در این نقاط طبق قانون دارسکی (Darcy) معادل ۱۲/۱۰ تا ۵/۱۹ متر در یک ساعت است. البته هرچه بطرف مرکز
استقلال

دشتیا نزدیکتر شویم سرعت آب‌های زیرزمینی بعلت افت شیب و ریزدانه شدن پایت زمین کمتر خواهند شد، بطوریکه در مراکز دشتیا آب‌های زیرزمینی تقیبی؟ بدون حرکت بوده و سرعت آنها به مقدار نزدیک می‌شود [11 و 12].

کنترل جریان آب قنات

هدف از کنترل جریان آب قنات ابداع روشن است که با استفاده از آن بتوان جلوی به هدر رفتن آب قناتها را در فصول غیر آبیاری به صورت گرفته که لطامائی به قنات‌ها وارد نشود و در ضمن مقدار قابل ملاحظه‌ای آب که بدون کنترل از نخاک‌های زیرزمینی برداشت می‌شود تحت کنترل قرار گیرد.

به‌سیاری بر این عقیده‌اند که آب جاری قنات‌ها غیر قابل کنترل بوده و جانبه‌پرطریق جلوی جریان آب قنات گرفته شود این آب پس از پیمودن مسافتی به آب‌های شور مرکز کویرها و یا دشت‌های میپوشیند و یا بصورت زه آب در نقاط بست نفوذ کرده و از دسترس خارج می‌شود. این نظریه البته یا زمانی‌است داشت که حداقل تعداد 115,486 میلیون متر مکعب مجاز پمپ‌زدن شود با تخلیه سالانه حدود 224 هزار متر مکعب در ایران مورد بهره‌برداری قرار گرفته بود. امروزه برداشت بیش از اندازه از آب‌های زیرزمینی در سپاریز نقاط کشور بیشهر دشت‌زد، کرمان، مشهد و اطراف اصفهان و... باعث باشی‌اند سطح آب‌های زیرزمینی در مراکز اخیر شده است. در نتیجه مقدار آبی که در اثر کنترل آب قنات از ذخایر زیرزمینی برداشت نشود، با سرعتی که قبل ذکر شد بطوریکه دشتیا جریان پایه و می‌تواند در ایجاد تعادل بیلین آب‌های زیرزمینی کمک نماید.

صاحب نظران جهت صرف‌جوشی در آب قنات‌های از
کاربرد مدل ریاضی در تخمین‌...
شکل ۲ – یک روش برای کنترل آب قنات
کاربرد مدل ریاضی در تخمین ...

بررسی‌های بیشتر می‌توانند امکان پذیر بودن یا نبودن روش پیشنهاد شده را در عمل شان دهد. این احتمال وجود دارد که این روش اگر بتوان بر مشکلات آن فاصله آب روزی بیماری ساده و کم خرج باشد. به لطف آن‌ها باید از مسئله کمک می‌کند تکنیکی و آگاهی در بزرگ مسائل و کاربرد روش اپاره اظهار نظر خوشبینانه را نموده.

طبقی است که امکان فیزیکی ذخیره آب قنات در سفره آبده آن باید قبل از همه بررسی شود چه در صورت امکان پذیر نبودن این عمل در مسالمه منتفی خواهد گردید. در مسالمه بررسی تکنیکی مسئله، ذخیره آب را امکان پذیر نشان دهد و پایین بررسی تکنیکی با آزمایش مدل هیدرولیک تاثیر را می‌گذارند. آن‌گاه مسئله روش‌های اجرائی نصب دریچه و حفاظت قنات را از بالا آمدن سطح سفره آبده مطالعه نمود. تمامی این موارد در حوزه یک مقاله نموگر گردیده و بعلاوه روش‌های اجرائی کار هنوز بدست مطالعه نگردیده‌اند. آن‌چه که بی‌شایان خواهد آمد عمل آمده مسائل تکنیکی مربوط به چگونگی ذخیره آب در سفره آبده قنات می‌باشد.

مسأله تغذیه سفره آبده قنات امولاً یک مسئله سه بعدی است در مسالمه شیب آبیده آبده سفر یا بسیار کم باشد مسئله را در حالت دو بعدی در نظر گرفت. اما در اغلب موارد شیب آبیده آبده قابل ملاحظه است و لذا مراجعه به حالت سه بعدی اجتناب ناشی است.[۱۲]. در قسمت‌های بعدی ابتدای دو بعدی مسئله در حالت پایدار (Steady) در نظر گرفته می‌شود. این حالت مربوط به رزم ساده غیر جریان از مراجای قنات است. سپس حالت دو بعدی ویا پایدار (Unsteady) مورد بررسی قرار می‌گیرد. این حالت مربوط به رزم جریان در فصل غیرآبی پایانی
تعمیین پروفیل سطح سفره آب زیرزمینی در مجاورت مجريه قنات

(حالت باز)

تعمیین پروفیل سطح سفره آب زیرزمینی در مجاورت مجريه قنات با فرض کننده امکان پذیر است. بدين ترتيب كه صحهای قائم را در نظر می‌گیریم و فرض مكينیم که اين صحه عمود بر امتداد مجريه قنات است. همچنین فرض مكينیم كه حركت كليه ذرات آب واقع در هر امتداد عمود بر اين صحه كاملاً مشابه حركت ذره آب واقع روی اين صحه و خاتم مي‌باشد. با اين فرض حركت آب در صحه فوق مشرف حركت آب در تمام صحهای قائم موازي با اين صحه خواهد بود. يديهي است مولفه‌هاي سرعت ذرات آب روی اين صحه واقع شده و مقدار اين مولفه‌ها تابعی از موقعيت ذرات روی صحه خواهد بود.

با فرض یکنواخت بودن خاک (Homogeneous) و یکسان (Isotropic) بودن هدايت هيدروليکي آن در جهات مختلف (معادلات اساسي جريان آب مانند آب در خاک بصورت زيرو بياين ميشوند:

\[v_x = \frac{\partial \phi}{\partial x}, \quad v_y = \frac{\partial \phi}{\partial y} \] (1)

\[v_x = \frac{\partial \psi}{\partial y}, \quad v_y = \frac{\partial \psi}{\partial x} \] (2)
کاربرد مدل ریاضی در تخمین ...

\[\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \] \hspace{1cm} (3)

\[\nabla^2 \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0 \] \hspace{1cm} (4)

\[\phi = -kh = k \left(y - \frac{p}{\gamma} \right) \] \hspace{1cm} (5)

در این معادلات: \(\psi \) و \(\phi \) محدوده‌های مختصات در سطح جریان؛ \(x \) و \(y \) مولفه‌های سرعت هر ذره در جهات \(x \) و \(y \) هیبرولیکی خاک، \(p \) فشار آب در هر نقطه معین، \(k \) و \(\gamma \) مختصات (Velocity Potential: ارتفاع معادل فشار، \(\phi \) پتانسیل سرعت) و بالاچه \(\psi \) تابع جریان (Stream Function: میانه، معادلات و بالاچه) نیز محدوده که توابع \(\psi \) و \(\phi \) در محدوده جریان هارمونیک (Harmonic) هستند.

از نتایج که در تعیین پروفیل سطح سفره آب زیرزمینی در مجاورت جرای قنات، از نتایج مختلف استفاده (Complex) می‌گردد لذا یادآوری پاره‌ای تعاریف در این زمینه و (Domain) شرایط است. متغیر مختلف \(z = x + iy \) از سطح اعداد مختصات نیز به صورت زیر تعیین می‌گردد: (Complex Potential)

\[\omega = \phi + i\psi \] \hspace{1cm} (6)

میزان ناشان داد که تابع مختصات می‌توان در سطح جریان تحلیل است

\[\text{Reduced Complex Potential} \] \hspace{1cm} (7)

نیز با صورت زیر در نظر گرفته می‌شود:

\[\omega_x = \frac{\omega}{k} = \phi + i\psi_x = \frac{\phi}{k} + i\frac{\omega}{k}, \quad \frac{\omega}{k} = -h \] \hspace{1cm} (6)
استقلال

بیدیهی است تابع \(\zeta \) نیز در محدوده جریان تحلیلی \(Z = \text{Zhukovskii} \) می باشد و بالاخره تابع تحلیلی زکوفسکی \(\zeta \) به‌صورت زیر تعیین می‌شود:

\[
\omega_j = z - i \omega_x = v_j + iv_j
\]

\[
= (x + \psi) + i(y - \phi)
\]

شکل ۲ را در نظر می‌گیریم. این شکل نشان دهنده جریان در صفحه‌ای عمود بر مجاری قنات می‌باشد (قطعی I-1 در شکل ۴). فرض می‌کنیم که طبقه‌ای قابل نفوذ باشد در صافت بی‌سیمی زیر مجاری قنات قرار دارد.

برای تعیین معادله سطح سفره آب زیرزمینی استفاده از روش واردات دوم هودوگراف سرعت (Hodograph Method) می‌باشد.

شکل ۳ نشان می‌دهد چگونه سطح سفره آب زیرزمینی تعیین می‌شود.
کاربرد مدل ریاضی در تخمین...

مناسب است. فشار آپ در طول سطح سفره آپ زیرزمینی برای فشار اندرس است و همچنین سرعت \(z \) در طول این منحنی برای صفر است. با توجه به شکل 4 داریم:

\[
\begin{align*}
 u_j &= 0 \quad \text{(در نقطه (1))} \\
 u_j &= 0.5 \left(b + q_r \right) \quad \text{(در نقطه (2))} \\
 u_j &= -0.5 \left(b + q_r \right) \quad \text{(در نقطه (3))} \\
 u_j &= \infty \quad \text{(در نقطه (4))}
\end{align*}
\]

در این روابط 0 5 و qx تخلیه ساده شده شروع سفره است. بعنی \(q = \sum q \) مقدار نفوذ آپ ببه مجاور

واحد طول آن می‌باشد. (واحد زمان / واحد طول / واحد حجم). محدوده تابع زیگوفسکی در سیستم مختصات x است. می‌توان نیم

صحح زیرین مطابق شکل 5 خواهد بود. حال هوگراف سرعت را

در مرزهای محدود جنبان تعیین می‌کنیم. در انتخاب سطح

سفره آپ زیرزمینی واقع در سمت چپ مجري قنات از نقطه (3)

تا نقطه (4) زاویه منحنی با محور x از صفر شروع و به حداقل

مقدار خود در نقطه (4) میرسد. لذا می‌توان گفت که هوگراف

سرعت در این شاخه بصورت قوس دایره (4) به شعاع \(\frac{k}{2} \) و

به مرکز مختصات (0, \(\frac{k}{2} \)) است. (شکل 6). هوگراف سرعت

برای شاخه مدل سلط سفره آپ بمعنی بصورت قوس (3) است. که انتخاب قوس (4) می‌باشد. بعلاوه فرض منحنی که

هوگراف سرعت برای کف مجري قنات بصورت قوس (4) است و مرکز آن طوری قرار دارد که این قوس به قوس (3)

عمود است. بعداً خواهیم دید که این فرض با تقریب کافی، صحح می‌باشد. محدوده هوگراف سرعت برای قسمت‌های

دبیر، بصورت سطح هاشرف خروجی در شکل عناصر داده می‌شود.

بدل (Transformation)
استفاده

\[\omega = \frac{k_i}{v_x - iv_y} + 1 = 1 + i \frac{dz}{d\omega_x} \] (8)

شکل ۴ - جریان در صفحه عمود بر مجزای فضایی

شکل ۵ - محدوده تابع زوکفسکی
شکل ٦ - هودوگراف سرعت

سطح هودوگراف سرعت، با بکار بردن این تبدیل، به شکل‌یک صفحه راست منتهی یک قسمت دایره‌ای در صفحه‌ی تبدیل می‌گردد (شکل ٦). در حقیقت نتایج بصورت زیر تعریف شده است:

\[z = f \left(1 - \frac{1}{\omega} \right) d \frac{\omega}{\omega} \] (٩)

با در نظر گرفتن مقدار \(\omega \) یعنی:

\[\omega = -1R \left(\frac{2 \omega}{b+q} \right) \frac{r}{r} + \sqrt{\left(\frac{2 \omega}{b+q} \right)^2 - 1 } \] (١٠)
و قرار دادن آن در رابطه (1) و رعایت شرط $0 = j$ که خواهیم داشت:

$$Z = \omega j - A \left[\omega_j^2 + \omega_j \sqrt{\frac{b+\frac{q}{2}}{b+q_r}} \right] - \omega_j^2$$

$$+ \left(\frac{b+q_r}{2} \right)^2 \arcsin \left(\frac{2\omega_j}{b+q_r} \right)$$

(11)

در این رابطه $A = \frac{1}{(b+q_r)R}$ یک عدد ثابت مثبت است که مقدار آن از مشخصات نقطه (2) یعنی $(b+q_r)$ بستگی دارد. با محاسبه مقدار A و با در نظر گرفتن خواهیم داشت که $h_o = \frac{10^5}{\pi} q_r$ عمق آب مجارا (h_o) خواهیم داشت:

$$z = \omega_j - \frac{1}{q} q_r \left[i \left(\frac{2\omega_j}{b+q_r} \right) + \frac{2\omega_j}{b+q_r} \right] \sqrt{1 - \left(\frac{2\omega_j}{b+q_r} \right)^2}$$

$$+ \arcsin \left(\frac{2\omega_j}{b+q_r} \right)$$

(12)

رابطه (2) پیانیل مختلط ساده شده ω_j را تعیین می‌کند. در بررسی فوق برای هودوگراف سرعت در کف مجارای قطع قوس دایره (4) (1) در نظر گرفته شد. حال بیانیم به ازای چه شکلی از پروفیل کف مجارا این فرض صحیح است. در طول...
کاربرد مدل ریاضی در تخمین

کف مجاو در رابطه

c_{p} + b + q_{r} < 0.5 (b + q_{r})_{r}

برقرار

است. اگر در رابطه (12) قسمت‌های حقیقی و مجازی از هم جدا

گردند خواهیم داشت:

\[x = x + \psi_{r} - \frac{q_{r}}{\pi} \left[2 \frac{x + \psi_{r}}{b + q_{r}} \sqrt{1 - \left(\frac{2x + 2\psi_{r}}{b + q_{r}} \right)^2} \right] \]

\[+ \arcsin \left(\frac{2x + 2\psi_{r}}{b + q_{r}} \right) \]

(13)

\[y = -\frac{q_{r}}{\pi} \left(2x + 2\psi_{r} \right) \]

شکل 7 - نگاشت سرعت در

صفحه 7
شکل 8 - تغییرات عبارت دوم معادله ۱۴ بر حسب y/h_0.

با حذف جمله $2\frac{x+2\psi r}{b+q_r}$ از این دو معادله می‌توان منحنی‌ای
کاربرد مدل ریاضی در تخمین ...

پروفیل کف مجاور مورد بررسی شده به محور y مشترک این مواد و معادله قسمت واقع در شی را در سمت محرور به‌صورت زیر خواهد بود:

$$
 x = \frac{b}{2} \sqrt{\frac{-y}{h_o}} - q_x \left[\sqrt{\frac{-y}{h_o}} \left(-\frac{1}{2} + \frac{1}{\pi} \sqrt{1 + \frac{y}{h_o}} \right) + \frac{1}{\pi} \arcsin \left(\frac{-y}{h_o} \right) \right], \quad h_o < y < 0
$$

(14)

تغییرات طول سمت راست رابطه فوق بر حسب مقادیر مختلف y, در شکل A رسم گرده است. مشاهده می‌شود که این جمله اصولاً ناچیز بوده و می‌توان از آن صرف نظر نمود. در نتیجه معادله پروفیل کف مجرای قنات در سمت راست محور y به صورت $y = \frac{4 h_o x^2}{b^2} - y - \frac{h_o x}{b}$ در نمایید که یک سیمی است. با توجه به شکل بیشتر A, این فرض کم و بیش ماده است.

می‌توان معادله سطح سفره A را در نهایت راست محور y با استفاده از رابطه $X = X + 0.5 q_x \left(X \right)$ و قرار دادن آن در معادله (14) به‌صورت زیر خواهد بود:

$$
 y = -h_o - \frac{q_x}{\pi} \left[\sqrt{\frac{2x + q_x}{b + q_x}} - 1 \right] \left[\sqrt{\frac{2x + q_x}{b + q_x}} - 1 \right] + \frac{2x + q_x}{b + q_x} \cosh \left(\frac{2x + q_x}{b + q_x} \right)
$$

(15)

$0.5 b \leq X \leq \infty$
برای رسم منحنی پروفیل سطح سفره آب متغیرهای بی‌بند ξ و η به صورت زیر تعیین گرده و چسب محور Y نا عوض می‌کنیم:

$$\eta = \frac{y}{h_o}$$

$$\xi = \frac{2x + q_r}{b + q_r}$$

و

$$q_r = \pi h_o$$

[شکل 9]

شکل 9: روش رسم منحنی پروفیل سطح سفره آب

معادله (15) به صورت زیر خواهد بود:

$$\eta = \xi^2 - \xi \sqrt{\xi^2 - 1} + \text{arc Cosh} \xi$$

(16)

منحنی تغییرات η بر حسب ξ در شکل 9 نشان داده شده است.

مجانب به این منحنی دارای معادله‌ای به صورت:

$$\eta = 0.5 + \ln 2 + \ln \xi$$

(17)

می‌باشد که برای مقادیر بزرگ ξ می‌توان با تقریب از آن استفاده

استقلال
کاربرد مدل ریاضی در تخمین

درباره فوک مقیاس q_r مجبور است ولی میزان از شرایط
یک نقطه روی سطح سفره h_t را تعیین نمود. فرض میکیم عرض
سفره آب زیرزمینی (محدوده اثر قنات) برابر L (شکل 9) و ارتفاع
سطح سفره از سطح آب در مجا مراجا برای h باشد. در این صورت نقطه
مختصات x و y صحور h_0 روي سطح سفره قرار خواهد گرفت. این
نقطه در سیستم مختصات x و y بصورت h_0 و L به

$$
L + q_r \frac{x}{b + q_r} = \frac{h}{h_0}
$$

بیان می‌گردد. همچنین این نقطه به کافی از محور بدور است
لذا میتوان معادله مجانب (17) را بکار برد. از این شرط نتیجه
زیر بدست می‌آید:

$$
\frac{L}{h} + \frac{q_r}{h} = \frac{\pi}{z} e \left(\frac{q_r}{h} \right)
$$

(18)

با استفاده معادله کلی زیر را [13] برای جریان داخلی
مجرای قنات در نظر می‌گیرد:

$$
\frac{h}{L} = f(q)
$$

(19)

البته رابطه پیشنهادی ایشان جمله h را با تغییر مختصات بیان
می‌کنند. جالب است که یکی از روابط تجاری موجود برای جریان
به زیکِتراها با مقطع استوانه‌ای را به‌عنوان مثال با رابطه (17)
مقايسه نمود.

رابطه هوگو (Hooghoudt) [15] را برای این منظور در نظر
می‌گیریم. این رابطه بصورت مجزا بعد پیشنهاد گردیده است.
\[h = q_r L \cdot F_H / 2 \pi r_o \]

\[p_H = \frac{(L - D \sqrt{2})^2}{8DL} + \frac{1}{\pi} \ln \frac{D}{r_0 \sqrt{2}} + f(D, L) \]

\[\log \xi \]

\[\eta \]
در این رابطه، D فاصله محور گوله تا لایه می‌باشد. فاصله سطح سفره آب زبرزمنی تا محور لوله و h شعاع لوله است. مقدار نسبی $\left(\frac{L}{r_0} \right)$ کوچک و قابل مسخر است [15]. میزان r_0 را مکانی $2b$ در نظر گرفته و میزان b داشته که برای برای بیندازد و در نظر گرفته شده است، لذا برای مقایسه میزان در رابطه (21) بجای D مقدار $\frac{L}{r_0}$ و برای $\frac{b}{2}$ مقدار $\frac{L}{4}$ را قرار داده. نتیجه نهایی بر حسب متغیرهای معاونه (18) صورت زیر خواهد بود:

$$
\left(\frac{q_r}{h} \right) \left(\frac{L}{r_0} \right) \left[\ln \frac{L}{h} - \ln \frac{b}{h} - 0.383 \right] = \pi^2 \left(\frac{b}{h} \right)
$$

(22)

تحمیل پروفیل سطح سفره آب زبرزمنی در مجاورت مرجای قنات

(حالت بسته):

فرض مکنیم در حالت بسته پروفیل سفره آب زبرزمنی وضعیتی باشد که در این حالت دان مرجای قنات سطح فروکش شده آپ زبرزمنی بالا می‌آید. در این حالت با یک مسئله غیر بایدا (کنار) مواجه هستیم. فرض مکنی در این حالت نیز پتانسیل سرم‌سخت $\phi(t)$ می‌باشد. در این حالت نیز پتانسیل طبیعی $\phi(t)$ می‌باشد و با $z(t)$ زمان تغییر می‌کند. اگر p فشار در روی سفره آب زبرزمنی باشد میزان p_a که این فشار توسط فشار اتمسفر می‌باشد p_a می‌باشد (شکل 11) :

$$
p = p_a - p_b$$
لذا با توجه به رابطه کلی بین ϕ, ψ و p در هر نقطه یعنی

$$\frac{\partial^2 \phi}{\partial t^2} - k \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -k \frac{\partial \phi}{\partial t}$$

اين معادله اولين شرط مناظر با سطح سفره A_B زبرزميني است. با مشتق گيри از اين معادله داريم :

$$\frac{d\phi}{dt} = \frac{\partial \phi}{\partial t} + \frac{\partial \phi}{\partial x} \frac{dx}{dt} + \frac{\partial \phi}{\partial y} \frac{dy}{dt} = -k \frac{dy}{dt}$$

جملات $\frac{dy}{dt}$ و $\frac{dx}{dt}$ تفاوت مقادير واقعي سرعت جريان را در دو جهت شمال و جنوب مشهد. ارتباط آنها با سرعت نفوذ بournemouth از A_B است :

$$\frac{dx}{dt} = \frac{vx}{p} = \frac{1}{p} \frac{\partial \phi}{\partial x}$$

$$\frac{dy}{dt} = \frac{vy}{p} = \frac{1}{p} \frac{\partial \phi}{\partial y}$$

در اين رابطه p پورازيت خاک (نهت حجم A_B قابل عبور) از جملات $\frac{d\phi}{dt}$ و $\frac{\partial \phi}{\partial x}$ مساوی با دارای دادن اين مقادير در معادله (24) و ضرورت از جملات $\frac{\partial \phi}{\partial t}$ و $\frac{\partial \phi}{\partial y}$ خواهيم داشت:

$$\frac{\partial \phi}{\partial t} + \frac{k}{p} \frac{\partial \phi}{\partial y} = 0$$

فرض ميكنيم تغيير سطح سفره (ψ) نسبت به ابعاد x
کاربرد مدل ریاضی در تخمین ...

ناچیز است لذا میتوان دو شرط بسته آمد را به محور x استفاده نمود.

\[\phi \bigg|_{y=0} + ky = 0 \]

\[\frac{\partial \phi}{\partial t} + \frac{k}{p} \frac{\partial \phi}{\partial y} \bigg|_{y=0} = 0 \]

این طریق ساده نمودن از روش آنالیز امواج سطحی آبی اقتباس گردیده است. معادلات فوق نوسانات سفره را تعیین می‌کند. به شرطی که یک‌تایی سرعت \(\phi \) معلوم باشد. فرض می‌کنیم در لحظه \(t = 0 \) معادله سفره آب به محور \(x \) است (معادله 15)

\(y = f(x) \)

بطرور تغییرات سرعت هارمونیک \(\phi \) در نیمه پایین

\[\phi \bigg|_{y=0} = -k \cdot f(x) \quad , \quad -\infty < x < +\infty \]

\[t = 0 \]

برقرار باشد.

میتوان نشان داد که تابع زیر اگر مشترک مسئله است:

\[\phi = \frac{k}{\pi} \int_{-\infty}^{\infty} \frac{(y - \frac{k}{p} t) f(s)}{(y - \frac{k}{p} t)^2 + (x-s)^2} ds \]

زیرا اگر این تابع دوبار نسبت به \(x \) و \(t \) مشتق گرفته شود، معادله لابلیس را اقتناها می‌کند (برای \(y \) خصوصی، همچنین با مشتق گیری معادله، نیز اقتناها می‌گردد. با لاحق، به یک معادله داده \(y = 0 \)

85
استقلال

\[\theta = \arctan \frac{x-s}{kt/p} \]

یا در حال حاضر \(x \)

\[\phi \bigg| y = 0 = -k \int_{-\pi/2}^{\pi/2} f(x + \frac{k}{p} t \cdot \tan \theta) \, d\theta \]

برای \(\phi \bigg| y = 0 \) نتیجه می‌دهد \(t = 0 \)

\[\phi \bigg| y = 0 = -k f(x) \] است

با قرار دادن \(\phi \) در معادله (۲۹) در معادله (۲۹) موشی معادله

سطح آب زیرزمینی را در هر لحظه \(t \) بدست آورد:

\[y = \frac{k t}{\pi p} \int_{-\infty}^{\infty} \frac{f(s)}{(\frac{k t}{p})^2 + (x-s)^2} \, ds \]

\[y = \frac{k t}{\pi p} \int_{-\infty}^{\infty} \frac{f(s)}{(\frac{k t}{p})^2 + (x-s)^2} \, ds \]

شکل ۱۱- تغییرات فشار سفره آب زیرزمینی در لحظه \(t = 0 \)

برای تعیین تغییرات سطح سفره آب زیرزمینی با زمان، بعد از بسته شدن مجرى قنات به مدت لحظه \(t = 0 \) معادله

پروفویل سطح سفره آب زیرزمینی در حالت پایدار (معادله ۴) را در نظر می‌گیریم.

برای سمت راست محور \(\xi \) با ضریب \(y = \frac{2x+q}{b+qd} \) به صورت:

\[y = \frac{2x+q}{b+qd} \]
کاربرد مدل ریاضی در تخمین...

تعیین گردهمایی این (\(\infty, +\infty\))، \(0 < x < 0.5b\) فاصله 0.5b از شرایط تعیین شده برای مدل‌های این گردهمایی پایداری +1، با استفاده از معادله (23) جایگزین گردد خواهیم داشت:

\[
\phi = \frac{k}{\pi} \int_{0.5b}^{\infty} \frac{(y-kp)}{\left((y-kp)^2 + (x-s)^2\right)^{1/2}} \left\{ h_0 + \frac{q_r}{\pi} \left[\sqrt{\left(\frac{2s+q_r}{b+q_r}\right)^2 - 1} \right. \right.
\]

\[
\left. \left. \left(\sqrt{\left(\frac{2s+q_r}{b+q_r}\right)^2 - \left(\frac{2s+q_r}{b+q_r}\right)} + \text{arcosh} \left(\frac{2s+q_r}{b+q_r}\right) \right]\right] \right\} ds
\]

این معادله بر حسب متغیرهای \(\xi\) و \(t\) به‌صورت زیر در می‌آید:

\[
\phi = \frac{\tau kh_0}{\pi} \int_{+1}^{\infty} \frac{s^2 - s^2}{\tau^2 + (\xi - s)^2} ds
\]

\[
\tau = \frac{2}{(b+q_r)} \left(y - \frac{k}{p} t \right)
\]

محاسبه انتگرال (23) با استفاده از روش‌های عدید بسیارندام پذیر است. این گردهمایی برای اکثر مقدار تفاوت جمله از مکان 0.5b پایداری از معادله مجانب استفاده نمود، در این‌صورت محاسبه نهایی انتگرال (23) هر چند پیچیده و مفصل...
استقلال

ولی امکان پذیر است، جواب نهایی بصورت زیر خواهد بود:

\[
\phi = \frac{k \text{ho}}{\pi} \left\{ (0.5 + \ln 2) \left(\frac{\pi}{2} + \arctan \frac{\xi - 1}{\tau} \right) + \left(1 + \frac{\tau^2 \xi}{\tau^2 + \xi^2} \right) \right\} \nonumber
\]

\[
\left(\ln \sqrt{\frac{\tau^2 + \xi^2}{\tau^2 + \xi^2}}(\arcsin \frac{\tau}{\sqrt{\tau^2 + \xi^2}}) \right) \nonumber
\]

\[
+ 1 < \xi < + \infty
\]

رابطه فوق پیانسیل سرعت را در نیمه راست محور y در حالت غیر پایدار نشان می‌دهد. برای محاسبه تغییرات سطح فروکش طبقه آب‌ده در مجاورت مجرای قنات از رابطه (۲۱) استفاده می‌کنیم این رابطه بر حسب متغیرهای η و τ نوشته می‌شود:

\[
\tau = \frac{2k t}{p (b + q_r)}
\]

با استفاده از معادله مجانب (۱۷) برای نیمه راست محور y بصورت زیر است:

\[
\eta = \frac{\tau}{\pi} \int_{+1}^{\infty} \frac{s^2 - s \sqrt{s^2 - 1} + \arcsin s}{\tau^2 + (\xi - s)^2} \, ds
\]

\[
\approx \frac{\tau}{\pi} \int_{+1}^{\infty} \frac{0.5 + \ln 2s}{\tau^2 + (\xi - s)^2} \, ds
\]

بعد از انتگرال گیری:
\[
\eta = \frac{0.5 + \ln 2}{\pi} \left(\frac{\pi}{2} + \arctan \left(\frac{\xi - 1}{\tau} \right) \right) + \frac{1}{\pi} \left(1 + \frac{\tau \xi}{\tau^2 + \xi^2} \right) \\
(\arcsin \left(\frac{\tau}{\sqrt{\tau^2 + \xi^2}} \right) \frac{\ln \sqrt{\tau^2 + \xi^2}}{\sqrt{\tau^2 + \xi^2}} \right) \quad \text{(38)}
\]

در معادله (38):

\[
\tau = \frac{2kt}{p(b+q_r)} \quad \text{(36)}
\]

\[
\xi = \frac{2x+q_r}{b+q_r} \quad \text{(39)}
\]

\[
\eta = \frac{y}{h_o} = \frac{\pi y}{q_r} \quad \text{(40)}
\]

با در نظر گرفتن مقدار عضوی پورازیته \(p \) در حدود 10% هیدرولیکی \(k \) در حدود \(10^{-4} \) (\(m/d \)) و مقدار معمولی عرض مجاری قنات، می‌توان گفت که مقدار \(\tau \) در رده 1 می‌باشد به‌طور کلی که \(\tau \) به‌حساب روز سنجیده شود. منحنی تغییرات \(\eta \) بر حسب \(\log \xi \) در ۳ های مختلف در اعکال ۱۲ و ۳۱ نشان داده شده است.

اين شكل نشان می‌دهد که چگونه با پذیرش آب افزایش زمان بالا می‌آید. نکته جالب در این منحنی‌ها چگونگی پیش‌رفت موج ایجاد شده روی سطح سفره آب با گذشت زمان می‌باشد.

امکان ذخیره آب در طبقه آب‌های با پذیرش شدن دریچه مجري قنات در واحد طول مجري با سطح بين پروفیل سطح سفره در هر لحظه معین و سطح سفره در زمان سفر با احتمال پورازیته‌
کاربرد مدل ریاضی در تخمین...

شکل 13 - تغییرات η بر حسب $\log \xi$

شکل 14 - ذخیره آب در واحد طول

y x

t $t=0$
مشخص می‌گردد ؛ سطح هاوار خورده در شکل ۱۴) این سطح با
انتگرال زیر محاسبه می‌شود:

\[
\Delta S_t = 2p \int_{0.5b}^{\infty} (y_t - y_0) \, dx
\]

و یا بر حسب متغیرهای \(\xi, \eta \) و \(\tau\):

\[
\delta S_t = \int \left\{ \left(0.5 + \ln 2 \right) \left(\arctan \frac{\xi - 1}{\tau} - \frac{\pi}{2} \right) - \tau \ln \xi \right. \\
+ \left. \left[1 + \frac{\tau \xi}{\tau^2 + \xi^2} \right] \left(\arcsin \frac{\tau}{\sqrt{\tau^2 + \xi^2}} \right) \left(\ln \sqrt{\tau^2 + \xi^2} \right) \right\} \, d\xi
\]

در معادله (۴۲) کمیت بدون بعد \(\delta S_t\) بصورت زیر تعیین می‌شود:

\[
\delta S_t = \frac{4\pi^2}{pq_\tau (b + q_\tau)} \Delta S_t
\]

از معادله (۴۳) محاسبه می‌گردد و نتایج از زمان بدون
بعد \(\delta S_t\) می‌باشد. نشان دادن دادکه انتگرال (۴۲) برای
است با :

\[
\delta S_t = 2 \pi^2 \tau
\]

برای کنترل نتایج کافی است مقدار \(\delta S_t\) یعنی ذخیره آب-
کاربرد مدل رياضي در تخمین...

زمان $t = \tau$ نام را با استفاده از معادلات (23) و (44) به دست آورده. نهایتی با استفاده از (66) بطور زیر خواهد بود:

$$\Delta s_L = q_{\tau} \cdot K \cdot t$$

بدین است این مقدار برابر با نتیجه آب در واحد طول مجاری لحظه $t = \tau$ می‌باشد.

هيدرولوژي قنات در رژيم های بایديدار و تایپادار (حالت سه‌بعدی):

بررسی سلسله هيدرولوژی قنات در حالت سه بعدی و در جریان بایديدار توسعه یافته با پایداری مورد محیط است [13] و از تکرار آن در اینجا خود داری می‌گردد. آنچه که به پایین بررسی می‌توان اظهار کرد استفاده از نتایج روش هودوگراف سرعت است. بطور پیتر می‌توان مدل سطح سفره آبده قنات را (معادله 7) بجای معادلات فرضی و تقریبی (روابط 8 و 13) مورد استفاده قرار داد.

بررسی سه بعدی جریان در حالت تایپادار (به پایدار

مجرای قنات) قاعدتاً با یک پروتکل تقریبی و مشابه به حالت
استقلال

پایدار و با استفاده از نتایج حاصله از تجزیه و تحلیل دو بعده جریان ناپایدار (بحث عملی) صورت گرفت. خطوط کلی این بررسی مشخص گردیده داده و بعد از تکمیل مطالعات در آینده، در صورت لزوم ارائه خواهد گردید.

روش دیگری برای بررسی مستله جریان ناپایدار در قنات بچشم می‌خورد که دو قانال اصلی از جالبی دارد. این روش بر

سیستم استفاده از چندین تأییدی جدیدی تأکید می‌کند با گرفتن مشابه با

جواب‌خواهی است که در تجزیه و تحلیل مطالعاتی که گزارش می‌کند به یک

می‌تواند. از نظر نظر مقایسه می‌توان مستله به برنامه فنی

و مصرف سطح فروش سفره آبی را مشابه با برنامه در چاه نفت

و بالا فنی نشان نفت و گاز در چاه اول فرض نمود. بدهی است

در این تشکیل راه‌های مختلف را می‌توان فقط با تبدیل

و تغییرات زیادی، همانند نمود. به حال این روش آنالیز

نزی جالب است و با این هم‌بایی آنالیز قبلی چلو رود. مراجع

در این زمینه بیشتر زیاد است از جمله مراجع [۲۵، ۲۶، ۲۷] را می‌توان دوم برد که مستله ایجاد و ازدید فشار صدهای

نفت را بررسی می‌کند و می‌تواند مورد استفاده قرار گیرد. روش

بررسی مذكور در دست مطالعه است و در صورت حصول نتایج

مفید، ارائه خواهد گردید.

سومین روش تجزیه و تحلیل بر سیستم روابط مبنا در

بحث تغذیه منصوبی سفره‌های آب زیرزمینی می‌باشد، اگر چه

مطالعات انجام شده نتایج داده است که احتمالاً این روش‌های

تقریبی به نتایج مفیدی منجر نخواهد گردید. می‌توان در این

زمینه به مراجع [۲۴، ۲۵ و ۲۶] اشاره نمود.

بالاخره می‌توان به روش‌های تقریبی در بررسی تغذیه

1. Pressure Build - up
کاربرد مدل ریاضی در تخمین ...

آبخوان قنات اثره تمود. این روش معمولاً استفاده می‌شود.
- روش قطعات (Method of Segments)
- روش ترسیمی (Graphical Method)
- روش عددی تفاضل‌های محدود (Method of Finite Differences)
- روش تشابه الکترو‌هویدرودینامیکی (Method of Electrohydrodynamic Analogies) EHDA

از بین روش‌های فوق روش تفاضل‌های محدود و بیوژه روش تشابه الکترو‌هویدرودینامیکی (EHDA) مناسب‌تر بر نظر می‌رسد.

روش تشابه الکترو‌هویدرودینامیکی در جریان ناپایدار براً اساس استوار است که در طول هر مدت زمان t، می‌توان چرخان را با پایدار فرض نمود. تغییرات سطح سفره آبده برای هر فاصله زمانی از میزان جابجایی سطح منتقل از خطوط تجربی جریان (Isopiestic Lines) و خطوط تجربی فشار ثابت (Streamlines) تعیین می‌گردد. این روش نیاز به یک مدل دارد. مطالعات مربوط به این روش نیز هم اکنون ادامه دارد. بعلت اجتناب از طولانی‌شدن مبحث، از ذکر جزئیات و ساختار مدل الکترو‌هویدرودینامیکی لازم خودداری می‌گردد.

مدل هیدرولوگی

حرکت سطح سفره آب زیرزمینی در اثر تغذیه مشخص
(Unsteady Flow) ناشی از ایجاد مجزای قنات، یک حرکت ناپایدار
(Boundary Conditions) است که تقریباً همراه با شرایط حدی
به‌جای می‌باشد. فرایندهای این آی‌الی که در قسمت‌های پیش‌
عمل آمده با توان راه حل تحلیلی به حالت دو بعدی می‌رسد
بدست آورد. این آنجاییکه معمولاً مشخصات سفره از قبیل
پورازیته و ضریب آبگذاری ممکن است در محدوده جریان متغیر
باشد لذا لازم است که راه حل عددی برای حالت کلی مسئله

استخلال

و با فرض جریان سه بعدی در نظر گرفته شود، بیضی است در حالت سه بعدی میتوان صفحه را در اتمام طول جریان قات
را هم در نظر گرفت. یک مدل هیدروالکی نیز مورد نیاز است
تا به‌ویژه قبل از کاربرد راه حل عادی در چند حالات آزمایشی
جوایزی خاطر را کنترل نمود. بیضی است مدل صفحه‌های
موازی (Hele-shaw) مناسب برای این منظور نمی‌باشد و
احتمالاً مدل‌های غلاف (Translucent Models) مناسبتر خواهد
بود. میتوان از دو صفحه غلاف استفاده نمود که فضای فیلم‌های
آنها با ماده قابل نفوذ پر گردیده است. اگر در ذات شیشه‌ای
ویا پلاستیکی بعنوان ماده قابل نفوذ و آب با روغن‌های
سیک بعنوان مایع استفاده گردد نور میتواند تا حدودی از
ماده عبور کند. در صورتی که صفحه یکنوا نازک تر به کناره
شده و نور از چپ ویا اشعه زده از آن تیره و
قسمت‌های غیر اشاع سفید بنظر خواهد آمد. می‌توان از دو قسمت
و در نتیجه سطح سفره آب مشخص است و میتوان از آن عکس‌برداری
نمود. بسترن نتایج از نظر تطبیقی از مدل در حال بستون
بدست می‌آید و که میتوان با اتخاذ ترکیبات خاصی فر در مقطع
موازی با مجزا قنات و عبور به آن را مطالعه نمود. و با
وجود این در مدل جزء که می‌توان حکایت در دو مقطع باشند
توصیه می‌گردد. سیستم مجزای قنات، بیکاری و نیمه‌خانه را
میتوان به لوله‌های مشابه ایجاد نمود. بهتر است تعداد بیشتری
میله در محدوده سفره آب زیرزمینی قرار داد و اگر تمام این
میلهها مجهز به دوچرخه‌های مدل باشد این انعطاف مدل بیشتر
خواهد بود و میتوان اثرات هر یک را جداکننده محاسبه نمود.
زاویه بیش سفره در مدل مقطع طولی مجزای قنات با انحراف
کل مدل قابل تغییر است. زاویه بیش خود مجزا نشینش
ثبت می‌شود و تغییر آن تأثیر قابل ملاحظه‌ای در موضوع مورد
کاربرد مدل ریاضی در تخمین ... بهت نخواهد داشت.

پیشنهاد برای مطالعات آینده در صورتی که بررسی‌های انجام شده مفید تشخیص داده شود باید مطالعات زیر بترتیب صورت گیرد:
۱- بررسی مسئله در حالت سه بعدی با روش‌های عدی
۲- بررسی مسئله از روش‌های دیگر (متفاوت در متن مقاله)
همزمان با مطالعات مرحله ۱.
۳- آزمایشات مدل هیدرولیک با مدل الکترونیک‌رودینامیکی.
۴- بررسی روش‌های اجرایی نصب دریچه.
۵- اجرای روش پیشنهاد شده برای یک قنات و آزمایش سیستم برای مدت زمانی کافی با اندازه‌گیری‌های لازم.
۶- شناسایی وضعیت قنات‌های مختلف و تنظیم برنامه‌های اجرایی در سطح کشور.

پیش‌بینی است انجام مطالعات دور مرحله منوط به اخذ نتیجه مثبت از مراحل قبلی خواهد بود.
عنبیه؛ شهدای پیروزی، محمد حسن بروجردی و علی
اکبرانظمی، آب و درازی باستان، وزارت
آب و برق.

۲ - خلاصه آمار آپایی از ایرانیان (بتفکیک حوزه آمریکا)، وزارت نیرو، استاندارد ماه ۱۳۵۹.

۳ - سیر مطالعات آپایی از ایرانیان در ایران، سمپوزیوم صنعت
آب (ایران - هلند)، وزارت نیرو، خرداد ماه ۱۳۵۳.

۴ - خرمش بازو، نگاهی به برنامه بهره‌برداری از منابع آب
ایران در گذشته، نشریه دانشگاه فنی شماره ۴۱، مهرماه
۱۳۵۹.

۵ - خرمش بازو، نقش قنات در آبادانی کویرها، نشریه دانشگاه
فنی، شماره ۴۴، خرداد ماه ۱۳۶۱.

۶ - منوچهر وحیدی، قنوات ایران، سازمان برنامه‌ریزی
روستاگی، شهریور ماه ۱۳۴۳.

۷ - سید منصور سیدجوادی، قنات «کاریز» تاریخچه، ساختمان
و چگونگی کنترل در جهان، انجمن فرهنگی ایتالیا ایران،
شهریور ۱۳۶۱.

۸ - عبدالرحیم ذوالفقاری، مطالعه در سفره آپایی قنات‌ها، گزارش
منتشر نیست.

16. Luthin, J. N., and Taylor, G. S., "Computer Solution for Drainage of Sloping Land", Transactions of the

