کاربرد مدل ریاضی در تخمین ذخیره آب قسمت‌های

حسن احمدی* - عبدالرحیم ذوالانوار**

مقدمه

ایران بدلیل وضع جغرافیایی خاص خود جزو مناطق خشک یا نیمه خشک جهان محسوب می‌شود. توزیع زمانی بارندگی طوری است که بیش از پنجاه درصد از نیاز‌های چسبندگی فقط در ماه‌های زمستان به زمین می‌رسد و در فصل تابستان که کیفیت احتیاج بهم‌گره‌داری بیشتری به آب دارد نمی‌باشد. بارندگی بجز در حاشیه دریاچه‌های خزر و ترکمنستان معمولاً از دریاچه‌های ناحیه و یا صف‌رسانی است. ایران‌نیا از زمان‌های قدیم جهت آبیاری مزارع خود شروع به پرورش‌داری از آب‌های زیرزمینی نموده و کاهش‌های اقتصادی به‌طور نام‌نام قنات حفر کرده‌اند که بكمک آنها مقداری از آب‌های زیرزمینی توسه‌توسه به‌طور تقریبی تا سطح زمین پایین دست، هدایت می‌شود [1].

چگونه آب قنات‌ها معمولاً داشته‌اند و این‌چنینی "نگاری" از آبیاری نیست.

کنترل است. در حال زمانی که احتیاج به آب آبیاری نیست، قسمت‌های‌آب بدون آنکه استفاده قابل توجهی از آن بعمل آید با تبخیر و نفوذ از دسترس خارج می‌شوند. مقداری از آن‌ها بعد از نفوذ در دشت‌ها دو مرتبه به آب‌های زیرزمینی می‌پردازد. از آنجا که بافت رسوبی‌های مصرف‌در دشت‌ها معمولاً ریزدانه است، لذا حفر‌کردن این آب‌ها بسیار سنگین می‌باشد. در نتیجه مقدار زیادی از نکته‌ای موجود در رسوبات از آب‌های نفیسی حل شده و آب را غیر قابل استفاده می‌شده. نتایج‌در نهایت گرفت که اعتمال "قسمت آب قنات‌ها

* کا رشیدو سه‌رولیک شرکت‌مهندسی مشاور - شهر سه‌رول
** استاد دانشکده عماران - دانشگاه صنعتی اصفهان

Downloaded from jome.iut.ac.ir at 4:54 IRDT on Sunday June 2nd 2019
در فصل غیر ابزاری به هدر میرود.

اکثر قربب به اتفاق قنات‌های ایران در دامنه مخروط افکنه‌هایی که در حاشیه دشت‌های ایران بطور فراوان یافت می‌شود حفر گردیده‌اند. این مخروط افکنه‌ها در راس دارای روابط دانه‌ای درشت بوده به طرف دشت از قطر دانه‌ها کاسته می‌شود، طبیعتاً سرعت نفوذ و سرعت حرکت آب‌های زیرزمینی در این مخروط افکنه‌ها از رأس مخروط افکنه به طرف دشت داشته‌اند. کم‌می‌شود بطوری که ۳۰/۳ تا ۳۹/۳ نژولات جوی که بصورت جریان‌های سطحی از کوهستان از طریق مخروط افکنه‌ها به طرف دشت‌های چربان پیدا می‌گردد در عرض چند کیلومتر اول به داخل مخروط افکنه نفوذ کرده و به‌این‌ها آبخوان داخل مخروط افکنه اضافه می‌شود.

با توجه به یافته مخروط افکنه‌های حاشیه دشت‌ها، سطح غرفه آب زیرزمینی در قسمتهای بالادست این مخروط افکنه‌ها دارای نسبتاً نسبتاً کم و در جزئیات این سطح سفره تقیب‌بیان افته و دارای حادث سرعت می‌باشند.

شمار دقیق و دیبی متوسط قنات‌های ایران

طبق آمار منتشر شده توسط وزارت نیرو، تعداد قنات‌های دایر در ایران بالغ بر ۱۵۵۰۰ رشته می‌باشد که در سال ۱۳۶۷ ۶۶۳۶۰۰ حدود ۸۰۰ میلیون متر مکعب آب‌های داشته‌اند [۲۳ و ۳۰]. در حدود ۱/۳ این آب در فصل غیر ابزاری جاری است که اکثر بدور از بزرده از دسترس خارج می‌شود و فقط مقدار کمی از آن از طریق نفوذ مجدد در مرکز دشت‌ها به ذخایر زیرزمینی می‌پیوندد احتمالاً این بقیه هم بعلت خورشید غیر قابل استغفادات شواهد بود، البته لازم به یادآوری است که در فصل غیر ابزاری دیبی قنات‌ها عموماً بیشتر از میان دونده می‌باشد که از دو دیبی سالانه اندوزه‌گیری شده
کاربرد مدل ریاضی در تخمین ... است.

تغییر دبی قنات‌ها در فصول مختلف سال
در ناحیه مشهد ۴۴ قنات در سال‌های ۱۳۴۳ و ۱۳۴۴ از طرف وزارت نیرو و ترقی مورد بررسی قرار گرفته است. نتایج حاصله از این بررسی به‌صورت زیر است:
رای به سیار نزدیکی بین بارنگی و دبی مشاهده می‌شود (شکل ۱). در این دبی قنات‌ها، متوسط بارنگی ماهانه و متوسط درجه حرارت ماهیانه را نشان می‌دهد. به‌طوریکه در این شکل دیده می‌شود، مقدار بارنگی در زمستان کم بوده ولی در سه ماهه بیشتر بارنگی بسیار شدید شده و پس از آن بارنگی برای مدت یک ماه کاملاً متوقف می‌گردد. اندوزه‌گیری دبی قنات‌ها از اول به سال ۱۳۴۳ شروع شده و هر ماه یک برداشت انجام می‌گرفته است. اولین دبی اندوزه‌گیری شده بزرگترین عدده است که در مدت دو سال اندوزه‌گیری بست آمده و هیچین در ماهی است که بیشترین بارنگی را نشان می‌دهد. در طول ماه‌های اخیر داده‌های ۱۳۴۴ کل بارنگی منطقه مورد بررسی قرار داده‌های ماه‌های اخیر، شده است. در هر ماه مدت دبی کل قنات‌ها بطور فاحش، ولی با سرعتی یک‌پاکخت، کاهش می‌یابد. در آبان‌ماه سال ۱۳۴۳ اولین بارنگی به وقوع بیشتری و آبداری کل قنات‌ها که در آن زمان حداکثر بوده یکمیلیون و نیازاده می‌بوده، در این مدت مقدار بارنگی کل هر ماه نیز افزایش پیدا می‌کند. کاهش مقدار کل بارنگی در ماه بیشتر از ارقام دبی به‌صورت کاهش میزان افزایش قنات، متمایز می‌شود، که سایر دبی‌ها دیده است.

ماکزیمم دبی قنات در اواخر اسفند ماه و واکنش منفی دبی مشاهده می‌شود و پس از آن با سرعتی یک‌پاکخت کاهش می‌یابد.
دبي قناته اطراف مشهد

شکل ۱- ارتباط مايي بين متوسط بارندگي و درجه حرارت ماهيانيه و دبي قناتها
موئوتوان چنین نتیجه گیری کرد که رابطه نزدیکی بین بازندگی و دوی قطایهای مورد بررسی وجود دارد. اطافه بر این مشاهده می‌تواند نزوله‌هایی در این منطقه که دارای رسوبات آبی‌رهی می‌باشد داشته باشد. نفوذ کرده و به آب‌های زیرزمینی می‌پیوندد. بطوریکه که قبلاً هم بدان اشاره شده از آنجا که اکثر قربانی اتفاقات ایران در حالی دست‌یافته آب‌فرش و در دامنه مخروط اتفاک‌ها قرار دارند این نتیجه‌گیری می‌تواند احتمالاً برای اکثر قطایه‌ای ایران صادق باشد.

طول قسمت آبده قطایه در ایران

بطور کلی طول قطایه و طول قسمت آبده آنها با شیب زمین و شیب سفره آب زیرزمینی رابطه مهکوس دارد. هرچند شیب زمین و شیب سفره آب زیرزمینی تندرست باشد، طول قطایه و طول قسمت آبده کمتر و برخی هر چه شیب زمین کمتر باشد طول قطایه و طول قسمت آبده بیشتر خواهد بود. طبق مطالعات پیش‌روانی در سال ۱۹۴۸، طول قسمت آبده قطایه‌ای ایران را می‌توان بطور نزدیک بین ۱۰۰ تا ۲۵۰۰ متر تخمین زد (اطلاعات عمومی در مورد قطایه‌ای ایران در مراجع [۵ تا ۸] داده شده‌اند).

سرعت حرکت آب‌های زیرزمینی در دامنه مخروط اتفاک‌ها

طبق ادای رگی‌پیش‌گاهی که در چندین نقطه اطراف قطایهای استان اصفهان و یزد انجام شده [۹ و ۱۰] غرب نفوذ پذیری (K) بطور متوسط در قسمت خشک قطایه (دیالو) است. شیب سفره در نقاط اندازه‌گیر شده بطور متوسط ۱/۵۰۰/۱ تا ۱/۲۰۰ بوده است. سرعت آب‌های زیرزمینی در این نقاط طبق فرمول دارسی (Darcy) معادل ۱/۱۲ هر تا ۵/۴۹۲ متر در ماه است. البته هرچه بطرف مرکز
کنترل جریان آب قنات

هدف از کنترل جریان آب قنات ابداوع روش است که با استفاده از آن بتوان جلوی به هدر رفتن آب قناتها را در فصول غیر آبیاری به طريقي گرفت که لطمای به قنات وارد نشو و در ضمن مقدار قابل ملاحظه‌ای آب که بدون کنترل از ذخایر زیرزمینی برداشت می‌شود تحت کنترل قرار گیرد.

به‌سیاسی برای عقیده‌اند که آب جاری قنات‌ها غیر قابل

کنترل بوده و جانبه‌پی‌بری‌تریکی جلوی جریان آب قنات گرفته

شود این آب پس از پیمودن سافنتی به آب‌های شور مرکز کویریها و یا دشتی می‌پیوندد و یا به‌صورت زه آب در نقاط بست‌نفوذ

کرده و از دسترس خارج می‌شود. این نظام‌الثبات با زمانی

سنت داشت که حداقل تعداد ۱۱۵۴۰ هزاره تا سطح چاه عمیق و نیمه عمیق

مجاز پیمانام کشوره با تخلیه سالانه حدود ۲۲۴۰ میلیون مترمکعب

در ایران مورد پیموده دربار قرار داشته بود. امروزه برداشت

بیش از اندازه از آب‌های زیرزمینی در سیرای از نقاط کشور

بی‌پای دشت‌زد چکمان می‌شود و اطراف امکان و... باعث

پاکین افتدن سطح آب‌های زیرزمینی در تالاب‌های آخری شده

است. در نتیجه مقدار آبی که در اثر کنترل آب قنات از ذخایر

زیرزمینی برداشت شود با سرعتی که قبل ذکر شد بطرف مرکز

در مدت جاریان یافته و متواند در ایجاد تعادل بیلین آب‌های

زیرزمینی کمک نماید. ساحب نظران جهت صرف‌جوشی در آب قنات‌های روستاکی از
کاربرد مدل ریاضی در تخمین...

قبل استفاده از مزایا آب قنات در سالهای پر آب و یا در فصول غیر آبیاری جهت تغذیه مصنوعی و یا پر کردن آنان از آب قنات، ساخت نالاشیا (بزرکها)، بخخت نخالی و دیگر زند قسمتی از آب قنات و غیره را پیشنهاد کرده‌اند. که انجام این روش‌ها مستلزم صرف هزینه‌های زیاد بوده و بازدهی آنها بطور متوسط چیزی در حدود ۲۰ تا ۳۰ درصد بیشتر نمی‌باشد.

در این مقاله روشی خاص برای کنترل آب قنات مورد بررسی قرار می‌گیرد. احتمال دارد که این روش قبل پیشنهاد شده و در مورد آن مطالعاتی صورت گرفته باشد ولی ما موفق تشخیص به هیچ گونه مدرکی یا اطلاعی در این زمینه دسترسی پیدا کریم. اساس این روش مبتنی بر ساخت یک قسمت بتوانی در (Slide Gate) و یا یک دریچه پروانه‌ای (Butter-fly Valve) در مجزای قنات می‌باشد که با پیوست این دریچه در فصل غیر آبیاری آب قنات یا حداقل قسمتی از آن را در همان آبخوان قنات تغذیه نمود. این دریچه باید زیرکی از میله‌های قنات بوده و از سطح زمین قابل کنترل باشد (شکل ۲).

در نهایت اول‌سرع معده در استفاده از این روش به چشم می‌خورد که عبارتند از:

- اشکال‌های اجرایی نصب تعمیر و مانور این دریچه و طول عمر مفید آن.
- پیش‌بینی‌های لازم جهت جلوگیری از ریزش‌های احتمالی مجرای و میله‌ها میله‌های قنات بوبیل سگچینی با کول گذاری مشکی و یا...
- امکان استفاده از آب در آبخوان قنات با توجه به اینکه سفره آب زیرزمینی معمولاً دارای اضطراب است.
شکل ۲ - یک روش برای کنترل آب قنات
کاربرد مدل ریاضی در تخمین...

بررسی‌های بیشتر میتواند امکان پذیر بودن یا نبودن روش پیشنهادی بر روی عملاً شده را در عمل نشان دهد. این احتمال وجود دارد که این روش اگر بتوان بر مسائل آن فاصله آن را در تهیه پیاپی بساده کم خرج باد. البته با این اطمینان نمود که مسائل تکویری و اجرایی در بررسی مقدمه و کاربرد روش اجازه اظهار نظر خوشیبان‌های را نموده.

طبقی است که امکان فیزیکی ذكره آپ قنات در سفره آبده آن باید قبل از همه بررسی شود. چه در صورت امکان پذیر نبودن این عمل در سطح منتفی خواهد گردید. در ساختاری بررسی تکویری مسئله، ذخره کردن آب را امکان پذیر نشان دهد. با این ترتیب بررسی تکویری با آزمایش مدل هیدرولیکی‌کا ناکام شود. آگاهی می‌توان در نسبت اجرایی تصب دریچه و حفاظت قنات را از بالا آمدن سطح سفره آبده مطالعه نمود. تمامی این موارد در حوزه یک مقاله نمی‌کند و پیش‌سازی روش‌های اجرایی کار به‌بستر مطالعه نکرده‌اند. آنچه که به‌دست آمده در خواهد آمد؟ قلم تکویری مربوط به چگونگی ذخره آپ در سفره آبده قنات می‌باشد.

مسئله تغذیه سفره آبده قنات امولوا یک مسئله سه بعدی است در ساختاری شبیه به آبده سفر یا پیاپی کم باشد مسئله را در حالت دو بعدی در نظر گرفته. اما در دو مورد شبیه به آبده قابل ملاحظه است ولذا مراجعه به حالت سه بعدی اجتناب ناپذیر است [۱۶]...

در قسمت‌های بعدی ابتدا حالت دو بعدی مسئله در حالت پایدار (Steady) در نظر گرفته می‌شود. این حالت مربوط به رضایت عبور جریان از مجاری قنات است. سپس حالت دو بعدی و پایدار (Unsteady) مورد بررسی قرار می‌گیرد و این حالت مربوط به رضایت جریان در فصل غیرآبیاری یعنی...
استقلال

بسطه شدن مجزای قنات با دریچه میباشد. آنگاه به‌خست مختصات در حالت سه بعدی مسئله در حالت پایدار و نیز ناپایدار
(منشأ در باقی قنات و مجزای پسته قنات) بعمال
خواهد آمد و بر خاتمه خطوط کلی مدل هیدرولیکی دو بعدی برای
تایید جواب‌های تحلیلی تشکرحیلی می‌گردد.

تعمیین پروфیل سطح سفره آب زیرزمینی در مجاورت مجزای قنات

(حالات باز)

تعمیین پروفیل سطح سفره آب زیرزمینی در مجاورت مجزای
قنات بروش تحلیلی فقط با فرض دو بعدی بودن مسئله امکان
پذیر است. بدين ترتيب كه صفحه‌اي قائم را در نظر می‌گيریم
و فرض ميکنیم که اين صفحه عمود بر امتداد مجزای قنات است.
همچنین فرض ميکنیم که حرکت کليه ذرات آب واقع در هر
امتداد عمود بر اين صفحه كاملاً مشابه حرکت ذرات آب واقع
روي اين صفحه و خلا ميزنده می‌باشد. با اين فرض حرکت آب
در صفحه فوق سرعت حرکت آب در تمام صفحات قائم موازي با
اين صفحه خواهند بود. بديهي است مولفه‌هاي سرعت ذرات آب
روي اين صفحه واقع شده و مقدار اين مولفها تابعی از موقعیت
ذرات روي صفحه خواهد بود.

با فرض یک‌نواخت‌بودن خاک (Homogeneous) و یکسان
(Isotropic) بودن هدایت هیدرولیکی آن در چهار مختلف
معادلات اساسی جریان دو بعدی آب در خاک به‌صورت زیر بیان
می‌شوند:

\[v_x = \frac{\partial \phi}{\partial x}, \quad v_y = \frac{\partial \phi}{\partial y} \] \hspace{1cm} (1)

\[v_x = \frac{\partial \psi}{\partial y}, \quad v_y = \frac{\partial \psi}{\partial x} \] \hspace{1cm} (2)
کاربرد مدل ریاضی در تخمین ...

\[\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \quad (3) \]

\[\nabla^2 \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \quad (4) \]

\[\phi = -kh = k \left(y - \frac{p}{\gamma} \right) \quad (5) \]

در این معادلات: \(x \) و \(y \) محورهای مختصات در صفحه جریان، \(\phi \) و \(\psi \) مولفه‌های سرعت هر جریان در جهات \(x \) و \(y \) هستند. \(p \) فشار آب در هر نقطه می‌باشد و \(k \) و \(\gamma \) مختصات (Velocity Potential) و (Stream Function) هستند. معادلات (Harmonic) هم‌همه نتایج می‌دهند که توابع \(\phi \) و \(\psi \) در محدوده جریان‌ها هستند.

از آنجاییکه در تعیین پروفیل سطح سطح آب زیرزمینی در مجاورت جریان‌ها، از توابع مختلط (Complex) استفاده می‌گردد (Domain) که باید آوری‌پاره‌ای تعریف در این زمینه‌های ضروری است. متغیر مختلط \(z = x + iy \) محدوده جریان را در صفحه اعداد مختلط نشان می‌دهد. توابع مختلط به نیز بصورت زیر تعیین می‌گردد:

\[\omega = \phi + i \psi \quad (6) \]

موئن نتایج می‌که تابع مختلط \(\omega \) در محدوده جریان تحلیلی است (Reduced Complex Potential) [12]. توابع مختلط ساده شده \(\omega \) به صورت زیر در نظر گرفته می‌شود:

\[\omega_r = \frac{\omega}{k} = \phi + i \psi \quad \text{زا} \quad \frac{\phi}{k} = -h \quad (6) \]
بی‌پیش‌بینی است‌بایع ω نیز در محدوده جریان تحلیلی Moibaşd و به‌آختری تابع تحلیلی زوکوفسکی ω که بصورت زیر تعیین می‌شود:

$$\omega_j = z - i \omega_j = v_j + iv_j$$

$$= (x + \Psi_r) + i(y - \phi_r)$$

شکل ۶ را در نظر بگیریم. این شکل نشان دهنده جریان در صفحه‌ای عمود بر مجرای قنات موبایش (مقطع $I-I$ در شکل ۶) است. فرض می‌کنیم که طبقه‌ای قابل انفکش خاک در ساخت بعیضی زیر مجرای قنات قرار دارد. برای تعیین معادله سطح سطح آب بزرگ‌ترین استفاده از روش واریانس دوم (Hodograph Method) می‌گردد.

در این نمودار، طبقه‌ای مجزا قرار دارد که بالا و پایین این طبقه نهایتاً به کنار مجزا می‌رسد. فاصله طبیعی مجزا تغییر می‌یابد و سپس سطح آب در بالا و پایین تغییر می‌کند.

شکل ۶ - نمودار مجزا مجرای قنات
کاربرد مدل رياضی در تخمين ... مناسب است. فشار آب در طول سطح سفره آب زیرزمینی به‌طور منظم و همچنین سرعت جریان در طول این منحنی به‌طور متوسط است. با توجه به شکل ۴ داریم:

\[
\begin{align*}
 u_j &= 0 \\
 u_j &= 0.5 \left(\frac{b + q_x}{r} \right) \\
 u_j &= -0.5 \left(\frac{b + q_x}{r} \right) \\
 u_j &= \pm \infty
\end{align*}
\]

در نقطه (۱) در این روابط b عضو مجاور و q لمبه سطح می‌باشد. شکل ۵ خواهد بود. حال جریان سرعت را در مرزهای محدوده جریان تعیین می‌کنیم. در انتگرال سطح سفره آب زیرزمینی واقع در سمت چپ مجرای قطعات از نقطه (۲) تا نقطه (۴) زاویه منحنی با محور x از سفر شروع و به حداکثر مقدار خود در نقطه (۴) می‌رسد. لذا می‌توان گفت که هودوگراف سرعت در این شاخه به‌صورت قوس دایره (۳) به شعاع \(k\) و به مرکز مختصات (\(0, 0\)) است (شکل ۶). هودوگراف سرعت برای شاخه شست سطح سفره آب‌خوان به‌صورت قوس (۴) است. که امتداد قوس (۴) می‌باشد. باعث شده فرض مکانی که هودوگراف سرعت برای کف شاخه قطعات به‌صورت قوس (۴) (۱)

است و مرکز آن طوری قرار دارد که این قوس به قوس (۴) (۲) مطابقت است. بعداً خواهیم دید که این فرض به تقیدب‌کافی، صحیح می‌باشد. محدوده هودوگراف سرعت برای قسمت‌های دیگر به‌صورت دایره در شکل عناصر داده می‌شود. (شکل ۶) بعداً را در نظر می‌کنیم:

Transformation
\[\omega = \frac{k_i}{v_x - i v_y} + 1 = 1 + \frac{dz}{d\omega_x} \] (8)

شکل ۴ - جریان در صفحه عمود بر مجرای فننات

شکل ۵ - محدوده تابع زوکوفسکی
شکل ۶- هودوگراف سرعت

سطح هودوگراف سرعت، با بکار بردن این تبدیل، به دیگر صفحه راست منهایی یک قسمت دایره‌ای در صفحه تبدیل می‌گردد (شکل ۷). در حقیقت نتایج بصورت زیر تعریف شده است:

\[z = f \left(1 - \frac{1}{\omega} \right) \sin \omega_j \]

\[\omega = -i R \left(\frac{2 \omega_j}{b+q} \right) + \sqrt{\left(\frac{2 \omega_j}{b+q} \right)^2 - 1} \]
و قرار دادن آن در رابطه (1) و رعایت شرط 0 = \omega_j 0 و 0 = Z

خواهیم داشت:

\[z = \omega_j - A \left[i \omega_j + \omega_j \sqrt{\frac{b+q_r}{2}} \right] - \omega_j x \]

\[+ \left(\frac{b+q_r}{2} \right)^2 \arcsin \left(\frac{2 \omega_j}{b+q_r} \right) \] (11)

در این رابطه، عدد ثابت مثبت است که

\[A = \frac{1}{(b+q_r)R} \]

مقدار آن از مشخصات نقطه (2) علیه (b + q_r) بی‌ربطی می‌گردد. با محاسبه مقدار A و با در نظر گرفتن خواهیم داشت (2) علامت آب مجاور (1):

\[h_0 = \frac{10}{\pi q_r} \]

\[z = \omega_j - \frac{1}{q_r} \left[i \left(\frac{2 \omega_j}{b+q_r} \right) + \frac{2 \omega_j}{b+q_r} \sqrt{1 - \left(\frac{2 \omega_j}{b+q_r} \right)^2} \right] \]

\[+ \arcsin \left(\frac{2 \omega_j}{b+q_r} \right) \] (12)

رابطه (2) پتانسیل مختلط ساده شده \(q_r \) را تعیین می‌کند.

در بررسی فوق برای هودوگراف سرعت در کف مجري قات قوس دایره (4) در نظر گرفته شد. حال ببینیم به از این چه شکلی از پروفیل کف مجرای این فرض صحیح است. در طول
کاربرد مدل ریاضی در تخمین

کف مجزا رابطه $x = \frac{1}{r} \int_{0}^{0.5} (b + q_{r}) \frac{dx}{d \psi} \frac{d \psi}{r}$ برقرار است. اگر در رابطه (12) قسمتهای حقیقی و مجازی از هم جدا گردد، خواهید داشت:

$$x = x + \psi_{r} - \frac{q_{r}}{\pi} \left[2 \frac{x + \psi_{r}}{b + q_{r}} \sqrt{1 - \left(\frac{2x + 2\psi_{r}}{b + q_{r}} \right)^{2}} \right] + \arcsin \frac{2x + 2\psi_{r}}{b + q_{r}}$$

(13)

$$y = -\frac{q_{r}}{\pi} \left(\frac{2x + 2\psi_{r}}{b + q_{r}} \right)^{2}$$

[صفحه 77]

شکل 7 - گشایش هدایت و سرعت در صفحه 78
شکل 8 - تغییرات عبارت دوم معادله 14 بر حسب $\frac{y}{h_0}$

با حذف جمله $b + q_r$ از این دو معادله می‌توان منحنی $\frac{2r + 2
\Psi_r}{b + q_r}$
کاربرد مدل ریاضی در تخمین...

برویل کف مجاور یا بدست آورده، این پروفیل سیستم به محور ی متقاطع است و معادله قسمت واقع در سمت راست محور به صورت زیر خواهد بود:

\[
x = \frac{b}{2} \sqrt{-\frac{y}{h_0}} - q_r \left[\sqrt{\frac{-y}{h_0}} \left(-\frac{1}{2} + \frac{1}{\pi} \sqrt{1 + \frac{y}{h_0}} \right) \right] + \frac{1}{\pi} \arcsin \left(\frac{-y}{h_0} \right), \quad h_0 < y < 0
\]

(14)

تغییرات جمله دوم سمت راست رابطه فوق بر حسب مقادیر مختلف \(-y / h_0 < 1 \) در شکل \(y \) رسم گردیده است. مشاهده می‌شود که این جمله اصولاً تا چهار بوده و میتوان از آن صرف‌نظر نمود. در نتیجه معادله پروفیل کف مجزای قنات در سمت راست محور \(y \) به صورت \(y = -4 h_0 x^2 / b^2 \) در مرداد ۷ که یک سهمی است. با توجه به شکل بیشتر کول، این فرش کم و بیش مقدار است.

میتوان معادله سطح سفره آب را در نمی‌رست محور \(y \) با استفاده از رابطه (14) و قراردادن آن در معادله (14) بدست آورده. نتیجه ناپای حسورت زیر خواهد بود:

\[
y = -h_0 - \frac{q_r}{\pi} \left(\sqrt{\frac{2x + q_r}{b + q_r}} - \ln \left(\sqrt{\frac{2x + q_r}{b + q_r}} - 1 \right) \right) + \cosh \left(\frac{2x + q_r}{b + q_r} \right)
\]

(15)

\[0.5 b < x < \infty\]
استقلال

برای رسم منحنی پروفیل سطح سفره آب متغیرهای بی‌بعد

\(\xi \) و \(\eta \) با محور زیر تعیین کرده و جهت محور \(y \) را عضو موقتیم

(شکل 9)

\[
\eta = \frac{y}{h_0}
\]

\[
\xi = \frac{2x + q_r}{b + q_r}
\]

(\(q_r = \pi h_0 \))

شکل 9- روش رسم منحنی پروفیل سطح سفره آب

معادله (15) بهمراه روش زیر خواهد بود:

\[
\eta = \frac{x^2}{\xi} - \xi \sqrt{\frac{2}{\xi} - 1} + \text{arc Cosh } \xi
\]

(16)

منحنی تغییرات \(\eta \) بر حسب \(\xi \) در شکل 10 نشان داده شده است.

مکانی به این منحنی دارای معادلهای به شرح زیر است:

\[
\eta = 0.5 + \ln 2 + \ln \xi
\]

(17)

می‌باشد که برای مقادیر بزرگ \(\xi \) می‌توان با تقییات از آن استفاده
كاربرد مدل ریاضی در تخمین...

думه.

در روابط فوق مقدار q_r مجهول است ولی میتوان از شرایط
یک نقطه روی سطح سفره A, h را تعیین نمود. فرض میکاییم عرض
سفره A, زیرزمینی (محدوده اشر قنات) براپر L (شکل 9) و ارتفاع
سطح سفره از سطح آب در مجاور برای h باشد. در این صورت نقطه
مختصات $L/2$ و $h+h_0$ روی سطح سفره قرار خواهد گرفت. این
نقطه در سیستم مختصات x بصورت $h_0 = \frac{h}{L}$ و

بیان می‌گردد. همچنین این نقطه به‌کارا می‌آید بدور است
لذا میتوان معادله میانب (17) را بکار برد. از این شرط نتیجه
زیر بدست می‌یابد:

$$\frac{L}{h} + \frac{q_r}{h} = \frac{\pi}{2} e \left(\frac{q_r}{h}\right)$$

(18)

با بایورودی معادله کلی زیر را [13] برای جریان داخلی
مجای قنات در نظر می‌گیرد:

$$h/L = f(q)$$

(19)

البته رابطه پیشنهادی ایشان جمله h را باید تغییر مختصات بیان
می‌کند. جمله است که یکی از روابط تجربی موجود برای جریان
به زهکشی با مقطع استوانه‌ای را بعنوان مثال با رابطه (17)
مقايسه نمود.

رابطه هوگو (Hooghoudt) [15] را برای این منظور در نظر
می‌گیریم. این رابطه بصورت مفهومی را پیشنهاد گردیده است.
\[h = \frac{q_r L P_H}{2 \pi r_0} \] \hspace{2cm} (20)

\[p_H = \frac{(L - D \sqrt{2})^2}{8DL} + \frac{1}{\pi} \ln \frac{D}{r_0 \sqrt{2}} + f(D, L) \] \hspace{2cm} (21)

\[\log \xi \rightarrow \]

\[\eta \rightarrow \]

Log \(\xi \) - تغييرات \(\eta \) بر حسب رешات
کاربرد مدل ریاضی در تخمین ...

در این رابطه D فاصله محور گوله تا لبه فیبر قالب تخمین
فاصله سطح سفره آب زبرزمینی تا محور گوله و θ نمایش دهنده لوله
است. مقادیر تابع $(L \text{ و } \theta)$ معمولاً کوچک و قابل مسخر
است [15]. میتوان r_0 و θ_0 در نظر گرفت و میتوان
نتیجه "ثابتی" نشان داد که برای $D = \left(\frac{1}{4} \right)$
میانگین، در حالت فیزیکی مقادیر D باید به نظر گرفته
شده است. لذا برای مقایسه میزان در رابطه (21) باید
مقادیر $\frac{L}{r_0}$ و $\frac{b}{h}$ را قرار داد.
نتیجه نهایی
بر حسب متغیرهای معادله (18) صورت زیر خواهد بود:

$$
\left(\frac{q_t}{h} \right) \left(\frac{L}{h} \right) \left[\ln \frac{L}{h} - \ln \frac{b}{h} - 0.383 \right] = \pi^2 \left(\frac{b}{h} \right)^2
$$

(22)

توضیح: پیروی سطح سفره آب زبرزمینی در مجاورت مجري قنات

(حالته بسته)

فرض مکانیم در حالت بازدار پیروی سطح سفره آب زبرزمینی
ویژگی‌های محیطی است که معادله آن در قسمت قبل محاسبه
گردید. با استفاده از قوانین سطح فلزی شده آب زبرزمینی
باید میزان سطح فلزی شده آب زبرزمینی
بر حسب واریانس، فرض مکانیم در این حالت نیز پیشنهاد صورت
ز قانون دارسی تبیین می‌شود. پیشنهاد مختلط

$$
\phi(t, x, y, z) = \phi_y(t, x) + \phi_z(t, y) + \phi_{xx}(t, y, x)
$$

زمانن تغییر مکانی. اگر Δ واریانس در روز سفره آب زبرزمینی
باشد ویژگی‌های A واریانس یافته‌های Δ واریانس
باشد میزان A که این فشار مادی خواهد بود

$$
A = A_a - A_b
$$
لذا با توجه به رابطه کلی بین \(\phi \), \(y \) و \(p \) در هر نقطه عضوي \(P - P_a + P_b \) (موتوان کفته که روى پروفیل سفره

\[\dot{\phi} = -k y \] \hspace{1cm} (23)

این معادله اولین شرط متناخر با سطح سفره آب زیرزمینی است. با مشتق گیری از این معادله داریم:

\[\frac{d\phi}{dt} = \frac{2\phi}{\delta t} + \frac{2\phi}{\delta x} \frac{dx}{dt} + \frac{2\phi}{\delta y} \frac{dy}{dt} = -k \frac{dy}{dt} \] \hspace{1cm} (24)

جملات و تجاویز مقادیر واقعی سرعت جریان را در دو جهت نشان می‌دهند. ارتباط آنها با سرعت نفوذ بوصور زیست، است:

\[\frac{dx}{dt} = \frac{vx}{p} = \frac{1}{p} \frac{\delta \phi}{\delta x} \]

\[\frac{dy}{dt} = \frac{vy}{p} = \frac{1}{p} \frac{\delta \phi}{\delta y} \]

در این رابطه \(p \) پوراژیته خاک (نسبت حجم آب قابل عبور از خلل و فرح خاک) به طریق ثقلی به کل حجم خاک) می‌باشد. با قرار دادن این مقادیر در معادله (24) و ضرایب طراحی جملات، دارای توان 2 خواهیم داشت:

\[\frac{\delta \phi}{\delta t} + \frac{k}{p} \frac{\delta \phi}{\delta y} = 0 \] \hspace{1cm} (25)

فرض می‌گنیم تغییر سطح سفره (یعنی \(y \)) نسبت به ابعاد \(x \)
کاربرد مدل ریاضی در تخمین ...

نامیز است لذا میتواند دو شرط بست آمده را به محور x استاد نمود.

$$\phi \bigg|_{y=0} + ky = 0$$ (26)

$$\frac{\partial \phi}{\partial t} + \frac{k}{p} \frac{\partial \phi}{\partial y} \bigg|_{y=0} = 0$$ (27)

این طرز ساده تعمیم از روش آنالیز امواج سطحی آبی اقتباس گردده است. معادلات فوق نوسانات سفره را تعمیم می‌کند به شرطی که پتانسیل سرعت ϕ معلوم باشد. فرض می‌کنیم در لحظه $y = f(x) = 0$ که $t = 0$ معادله سفره آب بحورت (معادله 15) است

بنظر تعمیم پتانسیل سرعت هارمونیک ϕ در نیمه ی انتهایی

صفحه ($0 < y$) است به قسمی که شرط محدود و اولیه:

$$\phi \bigg|_{y=0} = -k f(x), \quad \int_{-\infty}^{+\infty}$$ (28)

برقرار باشد.

میتوان نشان داد که تابع زیر جواب مسئله است:

$$\phi = \frac{k}{p} = \frac{f(s)}{\infty} \frac{(y - \frac{k}{p} t) f(s)}{(y - \frac{k}{p} t)^2 + (x-s)^2} ds$$ (29)

زیرا اگر این تابع دوبار نسبت به x و مشتق گرفته شود، معادله ابتدایی را اقتناع می‌کند (برای $0 < y$). همچنین با مشتق گیری معادله (7) نیز اقتناع می‌کنیم. با لذا طبق دادن $y = 0$
\[\theta = \arctan \frac{x-s}{kt/p} \]

\[\Phi \bigg|_{y=0} = -\frac{k}{\pi} \int_{-\pi/2}^{\pi/2} f(x + \frac{k}{p} t \cdot \tan \theta) \, d\theta \] \hspace{1cm} (30)

و برای \(t = 0 \) نتیجه میدهد \(y = -kf(x) \) است. \hspace{1cm} (8)

با قرار دادن \(\Phi \) از معادله (29) در معادله (27) می‌توان معادله سطح آب زیرزمینی را در هر لحظه \(t \) بدست آورد:

\[y = \frac{kt}{\pi p} \int_{-\infty}^{\infty} \frac{f(s)}{\left(\frac{kt}{p} \right)^2 + (x-s)^2} \, ds \] \hspace{1cm} (31)

شکل 11- تغییرات فشار سطح آب زیرزمینی در لحظه \(t = 0 \)

برای تعیین تغییرات سطح سفره آب زیرزمینی با زمان، بعد از بسته شدن مجري قناة يعني بعد از لحظه \(t \) معادله پروفیل سطح سفره آب زیرزمینی در حالت پایدار (معادله 24) را در نظر بگیریم.

برای سمت راست محور \(x \) متفاوت \(\xi = \frac{2x+q_x}{b+q_x} \) بصورت

\[\frac{x-s}{kt/p}. \]
کاربرد مدل رياضي در تخمین...

تعريف گرديده است ($\frac{x}{\alpha} > 0$, $0.5b < x < +\infty$) از آنچاکه
قاضیه $0.5b < x < +\infty$ خارج از شرایط تعريف شده برای مسئله
است، لذا بايد اين قاضیه را مستثنی نمود. همچنين بعليه
تقارن نسبت به محور y مي‌توان محاسبات را فقط برای نيم‌
روست محور y را حدود كرد. نيمه ديگر قريچه آن خواهد بود. اگر
در معادله (23)تابع (s) با استفاده از معادله (15) جايزد
گردد خواهيم داشت:

$$\phi = \frac{k}{\pi} \int_{0.5b}^{\infty} \frac{(y - \frac{k}{p}t)}{(y - \frac{k}{p}t)^2 + (x - s)^2} \left[\ln \frac{\sqrt{2s + q_r^2} - \ln \frac{2s + q_r^2}{b + q_r^2} + \text{arc Cos} \frac{2s + q_r^2}{b + q_r^2}} \right] ds$$

(32)

اين معادله بر حسب متغیرهای x و t بطور زیر در می‌آید:

$$\phi = \frac{\tau k h_0}{\pi} \int_{1}^{\infty} \frac{s^2 - s \sqrt{s^2 - 1} + \text{arc Cos} s}{\tau^2 + (\xi - s)^2} ds$$

(33)

$$\tau = \frac{2}{(b + q_r)} \left(\frac{y - \frac{k}{p}t} \right)$$

(34)

محاسبه انتگرال (33) با استفاده از روشهای عددی بسیار
امکان پذير است. از آنچاکه برای باکي محاسبات، تفاوت جمله
آنتک است مي‌توان از معادله مجانب استفاده نمود، در اين
صورت محاسبه تحليلي انتگرال (33) هر چند پيچيده و مفصل
استقلال

ولی امکان پذیراست. جواب نهایی بصورت زیر خواهد بود:

\[
\phi = \frac{k \cdot h_0}{\pi} \left\{ (0.5 + \ln 2) \left(\frac{\pi}{2} + \frac{\text{arcTan} \left(\frac{\xi - 1}{\tau} \right)}{\tau^2 + \xi^2} \right) + \left(1 + \frac{\tau^2}{\tau^2 + \xi^2} \right) \left(\ln \sqrt{\tau^2 + \xi^2} \right) \left(\frac{\tau^2}{\tau^2 + \xi^2} \right) \right\} ,
\]

\[+ 1 < \xi < + \infty\]

رابطه فوق پتانسیل سرعت را در نیمه راست محور y در حالت غیر پایدار نشان می‌دهد. برای محاسبه تغییرات سطح فروکش طبقه آب‌ده در مجاورت مجرای قنات از رابطه (21) استفاده می‌کنیم این رابطه بر حسب متغیرهای η و τ به صورت زیر است:

\[
\tau = \frac{2k t}{\rho (b + q_r)}
\]

با استفاده از معادله مجانب (17) برای نیمه راست محور y بصورت زیر است:

\[
\eta = \frac{\tau}{\pi} \int_{+1}^{s=\infty} \frac{2 - s}{\sqrt{s^2 - 1}} + \frac{\text{arcCosh}s}{\tau^2 + (\xi - s)^2} ds
\]

\[= \frac{\tau}{\pi} \int_{+1}^{s=\infty} \frac{0.5 + \ln 2s}{\tau^2 + (\xi - s)^2} ds
\]

بعد از انتگرال گیری،
کاربرد مدل ریاضی در تخمین ...

\[\eta = \frac{0.5 + \ln 2}{\pi} \left(\frac{\pi}{2} \arctan \frac{\xi - 1}{\tau} \right) + \frac{1}{\pi} \left(1 + \frac{\tau \xi}{\tau^2 + \xi^2} \right) \]

\[(\arcsin \frac{\tau}{\sqrt{\tau^2 + \xi^2}}) \left(\ln \sqrt{\tau^2 + \xi^2} \right) \quad (38) \]

در معادله (38):

\[\tau = \frac{2k \tau}{p(b + q_r)} \quad (36) \]
\[\xi = \frac{2x + q_r}{b + q_r} \quad (39) \]
\[\eta = \frac{y}{h_0} = \frac{\pi y}{q_r} \quad (40) \]

با در نظر گرفتن مقدار محدود پورازیته \(p \) در حدود 10\% هدایت هیدرولیکی \(k \) در حدود \(10^{-6} \frac{m}{d} \) و مقادیر محصولی عرض مجرای قنات، می‌توان گفت که مقدار \(\tau \) در رده 1 می‌باشد به‌طوری که \(\xi \) بر حسب روز سنگین‌سازی شود. منحنی تغییرات \(\eta \) بر حسب \(\log \xi \) در 3 ریه مختلف در اعکال 12 و 13 نشان داده شده است این این شکل نشان می‌دهد که چگونه با به‌سمت دفن مجرای قنات سطح فروشک طبقه آب‌دی به زمان بالا می‌آید. نکته جالب در این منحنی‌ها چگونگی پی‌رفت موج ایجاد شده روی سطح سفره آب با گذشت زمان می‌باشد.

امکان خیلی آب در طبقه آب‌دی به‌سمت دفن دریچه مجزای قنات در واحد طول مجارا با سطح بین پروفیل سطح سفره دره لمحظ معین و سطح سفره در زمان سفر با احتساب پورازیته --
شکل ۱۲ - تغییرات η بر حسب $\log \xi$
کاربرد مدل ریاضی در تخمین...

شکل ۱۳ - تغییرات η بر حسب 10٠\log x

شکل ۱۴ - ذخیره آب در واحد طول
مشخص می‌گردد، سطح حاضر خورده در شکل ۱۴) این سطح بوده و انتگرال زیر محاسبه می‌شود:

\[
\Delta S_t = 2\pi \int_{0.5b}^{\infty} (y_t - y_0) \, dx
\]

و یا بر حسب متغیرهای \(\xi \) و \(\eta \):

\[
\delta S_t = \int \left\{ \left(0.5 + \ln 2 \right) \left(\arctan \frac{\xi - 1}{\tau} - \frac{\pi}{2} \right) - \tau \ln \xi \right. \\
+ \left. (1 + \frac{\tau \xi}{\tau^2 + \xi^2}) \left(\arcsin \frac{\tau}{\sqrt{\tau^2 + \xi^2}} \right) (\ln \sqrt{\tau^2 + \xi^2}) \right\} \, d \xi
\]

در معادله (۴۲) می‌توان از معادله (۴۲) محاسبه می‌گردد و تابع از زمان بادن بعد ۲ می‌باشد. میزان نشان داده‌کننده انتگرال (۴۲) برای برای کنترل نتایج کافی است مقدار \(\delta S_t \) را به‌دست آورده.
کاربرد مدل ریاضی در تخمین ...

زمان \(t = x \) ناپایه از مدل خطی که در آن به‌دست آمده، نتیجه‌ی ناپایه‌ای است که در آن استفاده‌ای از \(\Delta S \) بطور چنین خواهد بود:

\[\Delta S = q_x \cdot k \cdot t \] \(\Delta \) (

دبی‌ی است این مقدار در معادله \(\Delta S = q_x \cdot k \cdot t \) ناپایه خواهد بود.

هیدرولیک قنات در رژیم‌های پایدار و ناپایدار (حالات سه‌بعدی):

مهترین محدودیت در فرش دو بعید مسئله وجود شبیه سازی آب زیرزمینی است که باعث ایجاد حرکت با مولفه‌ای در امتداد مجري و ساختام می‌گردد. بررسی تحلیل در حالات سه‌بعدی امکان پذیر نبود و با استفاده از تقینیات تقییی استفاده شده است. مراجع [14] [15] که مبانی زمین‌شناسی سفره‌های شبیه‌سازی دارا مورد تجزیه و تحلیل قرار می‌گیرند، متن‌بندی مورد استفاده قرار گیرند.

بررسی سطح هیدرولیک قنات در حالات سه‌بعدی و در جریان پایدار توسط دکتر پاپ‌گلریزی مورد گرفتن است [13] و از تکرار آن در اینجا خود داری می‌گردد. آنچه که به‌یعنی بررسی مشنوای انگه‌کردن استفاده از نتایج روش هودوگراف سرعت است. بعبارت بیش‌تر مشنوای معادله سطح سفره آب‌ده قنات را (معادله \(x \) بی‌ای مدل‌سازی مناسب و تقریبی (روابط 7 و 8)

بررسی سه‌بعدی جریان در حالت ناپایدار (بسه بودن مجري قنات) قاعدتاً با بروز تقینیات و مشابه به حالت
استقلال

پایداری و با استفاده از نتایج حاصله از تجزیه و تحلیل دو بعدی جریان تایپادار (بحث فعلي) صورت گرفت.

خطوط کلی این بررسی مشخص گردیده و بعداً تکمیل

مطالعات در آینده، در صورت لزوم، اراکه خواهد گردید.

روش دیگری برای بررسی مسئله جریان تایپادار در قات

یکن می‌خورد که حداکثر چشم‌انداز جالبی دارد. این روش بر

مبنای استفاده از جواب‌های تقریبی معادله لاپلاس مشابه با

جواب‌های است که در تجزیه و تحلیل متنابع نتفت در برکار

مورود است. از نتایج نظر مقایسه میتوان مستحکم بستن مجري

ورود به صورت سطحی فرکس ایجاد در آبها را مشابه با بستن در چاه نفت

و بالا رفت فشار نفت و کاگ در چاه یک فرض به نمود. بدبی است

در این تشکیل یارشترهای مختلف را میتوان فقط با تبدیل

و تغییرات زیادی، همان نمود. بر خلاف این روش آنالیز

نیز جالب است و با این هم‌بایی آنالیز قبلی جلو رود. مراجع

در این زمینه پیمان ایجاد است. از جمله مراجع [۲۰، ۲۱، ۲۲]،

را می‌توان در برخی مسئله ایجاد از دیدگاه فشار چاه‌های

نفت را بررسی کرد و می‌تواند در قرآن استفاده قرار گیرد، روش

بررسی مذکور در دست مطالعه است و در مورد حصول نتایج

موفق، اراکه خواهد گردید.

سومین روش تجزیه و تحلیل بر مبنای روابط متدول در

بحث تغذیه مصنوعی سفره‌ها آپ زیرزمینی می‌باشد، اگر چه

مطالعات انجام شده نشان داده است که احتمالاً این روش‌های

تقریبی به نتایج مفیدی منجر نمی‌گردد. می‌توان در این

زمینه به مراجع [۲۳، ۲۴ و ۲۵] اشاره نمود.

با لایه می‌توان به روش‌های تقریبی در بررسی تغذیه

1. Pressure Build - up
کاربرد مدل ریاضی در تخمین...

آبخوان قنات اثره نمود. این روش ها عبارتند از:

- روش قطعات (Method of Segments)
- روش ترسیمی (Graphical Method)
- روش تشابه الکتروهدرودینامیکی (Method of Finite Differences)
- روش تشابه الکتروهدرودینامیکی (Method of Electrohydrodynamic Analogies) EHDA

از بين روش‌های فوق روش تفاوت‌های محدود و بویژه روش تشابه الکتروهدرودینامیکی (EHDA) مناسب تر بنظر می‌رسد.

روش تشابه الکتروهدرودینامیکی در جریان نایپیدار براين اساس استوار است که در طول هر مدت زمان t میتوان جریان را بايدار نمو نمود. تغییرات سطح سفره آبده برای رفتار زمانی از میزان جابجایی سطح منتج از خطوط تجربی جریان (Isoplastic Lines) و خطوط تجربی فشار ثبات (Streamlines) تعیین می‌گردد. این روش نیاز به یک مدل دارد. مطالعات مربوط به این روش نیز هم اکثرین ادامه دارد. بعلت اجتایاز طولانی شدن مبحث، از ذکر جزئیات و ساختن مدل الکتروهدرودینامیکی لازم خودداری می‌گردد.

مدل هیدرولوگیک

حرکت سطح سفره آب زیرزمینی در اثر تغذیه مصنوعی (Unsteady Flow) ناشی از اندازه‌گیری قنات، یک حرکت نایپیدار (Boundary Conditions) است که تقریباً همان‌طور با شرایط حدا (Boundary Conditions) به‌یکدیگر می‌باشند. فرضیات ایجادشک که در قسمت‌های پیش‌بینی بعمل آمد در گذن راه حل تحلیلی به حالت دو بعدی سطح بست آورده. از آنجا که معمولاً مشخصات سفره از قبیل پورازیته و ضریب آبگذاری ممکن است در محدوده جریان متغیر باشد لذا لازم است که راه حل مدلی برای باید به روش تشابه الکتروهدرودینامیکی محدود
و با فرض جریان سه بعدی در نظر گرفته شود. بایدی است در حالت سه بعدی میتوان شبکه پر سرفه و انتقال طولی منجر به آن می‌باشد. یک مدل هیدرولیکی نیز مورد نیاز است تا بتوان قابل اکاربرد راه حل عملی را در صورت اطمینان جویاکننده بیشتر نشان دهد. بایدی است مدل سیمپاتسات مناسب برای این منظور نیوپاکتند و مستقل را کنترل نمود. بایدی است مدل سیمپاتسات مناسب برای این منظور نیوپاکتند و مستقل را کنترل نمود. بایدی است مدل سیمپاتسات مناسب برای این منظور نیوپاکتند و مستقل را کنترل نمود. بایدی است مدل سیمپاتسات مناسب برای این منظور نیوپاکتند و مستقل را کنترل نمود.
کاربرد مدل ریاضی در تخمین ...

بحث نخواهد داشت.

پیشنهاد برای مطالعات آینده
در مورد تکمیل بررسی‌های انجام شده مفید تشخیص داده شود.

۱- بررسی مسئله در حالت سه بعدی با روش‌های عددی
۲- بررسی مسئله از روش‌های دیگر (متد در متن مقاله)
۳- آزمایشات مدل هیدرولیک با مدل الکتروهدودینامیکی.
۴- بررسی روش‌های اجرایی نصب دریچه.
۵- اجرای روش پیشنهاد شده برای یک گزینه و آزمایش سیستم برای مدت زمانی کافی با اندوزه‌گیریهای لازم.

به‌نظر می‌رسد انجام مطالعات هر مرحله منوط به اخذ
نتایج مثبت از مراحل قبلی خواهد بود.
استقلال

مراجع

1 - منایت اله رضا، غلامرضا تورسی، محمد حسن شوشترا و علی اکبر انتظامی، آب و هوا، ماهنامه ایران باستان، وزارت آب و برق.

2 - خلاصه مرکز زیرزمینی کشور (بتفکرک حوزه آبیاری)، وزارت نیرو، اسفند ماه 1359.

3 - سیر مطالعات آب‌های زیرزمینی در ایران، سمپوزیوم صنعت آب (ایران - هلند)، وزارت نیرو، خرداد ماه 1363.

4 - هرمز پاژو، نگاهی به برنامه بهره‌برداری از منابع آب ایران در گذشته، نشریه دانشگاه فنی شاره 31، مهرماه 1359.

5 - هرمز پاژو، نقش فناتیک در آبادانی کشورها، نشریه دانشگاه فنی شاره 34، خرداد ماه 1361.

6 - منوچهر وحیدی، قنوات ایران، سازمان برنامه و امور عمران روساتکی، شهریور ماه 1342.

7 - سمیه منصوری‌سجادی، قنات: "کاریز" تاریخی، ساختگان و چگونگی کنترل در جهان، انجمن فرهنگی ایتالیا-ایران، شماره 1، خرداد 1361.

8 - عیدالرحیم ذو لاتوار، مطالعه در سفره آبیه قناتها، گزارش منتشر نشده.

16. Luthin, J. N., and Taylor, G. S., "Computer Solution for Drainage of Sloping Land", Transactions of the

