An Investigation of Coarse Aggregate, Water-Cement Ratio, and Silika Fume on Frost Resistance of HS Concrete

D. Mostofinejad and M. Hoseinian
Department of Civil Engineering, Isfahan University of Technology
Department of Civil Engineering, Hamedan Buali Sina University

Abstract: It is well known that the characteristics of concrete components greatly affect the durability of high strength/high performance (HS/HP) concrete against frost action. Undoubtedly, precise recognition of this relationship leads...
to appropriate selection of the type and proportions of concrete components in any particular project. In the current study, the aim is to investigate the possibility of developing some mathematical-experimental models to explain the frost resistance of high-performance concrete, regarding the role of some of its main components. To do so, the effects of four key elements, i.e. water, silica fume, coarse aggregate, and number of freeze-thawing cycles, were studied on the frost resistance of HS/HP concrete were studied. 24 concrete mix designs including 3 ratios of water to cementitious materials, i.e. 0.4, 0.3, and 0.25; 4 ratios of silica fume to cementitious materials, i.e. 0, 5, 10, and 15 percent; and 2 types of coarse aggregates, i.e. Limestone and Quartzite were utilized for HS/HP concrete. Overall, about 432 concrete cubes were cast, cured and tested under freeze-thaw cycles. Finally, some models were proposed for describing the frost resistance of high strength concrete.

Keywords: Freeze-thaw durability, Compressive strength, Water-cement ratio, Length change, Weight change, Absorption, Silica fume.
нымه‌هایی بینی این محققان بعد از ۱۰۰ سیکل، در بین بند هوا ۸۰٪ و در بین هواوادار ۳۰٪، با کاهش یافته بیش از ۲۴۰ سیکل و در انجام‌ها، بین بند هوا و نیکروسیلسیس به فاکتور دوم بود، رشد سیکلیک، در حالی‌که نمونه‌های بدون میکروسیلسیس و هواوادار هیچگونه تخریبی نداشتند. آن‌ها علی‌رغم این‌طور داشتند که به دلیل مصرف زیاد میکروسیلسیس، فاصله حباب‌های هوا افزایش یافته که این امر باعث کاهش دوام بین میکروسیلسیس شده است. این‌ها هیچ‌یک تナー در بین هواوادار برابر با ۵٪ در نظر گرفته شده بود. [۱۱]

در سال ۱۹۸۶ تاکید علی برای دوام بینی هوا با مقاومت بالا با نسبت آب به سیمان ۸۵٪ با یک بند حیاط به نشانه است. از نتایج به‌دست آمده در این آزمایش، دوام بینی توسط کنترل گرفته شده است. این‌ها هیچ‌یک با بند حیاط با مقاومت بالا با نسبت آب به سیمان ۲۵٪ نیز در تحقیقات خود به نتایج زیر رسیدند: [۲]

۱. تحت سیکل‌های‌ی خشن‌تر، رقابت بین معمولی بین حاوی میکروسیلسیس مقاوت است. این تحقیقات نشان می‌دهند که میکروسیلسیس مقاومت‌های میدانی بیشتری را به‌وجود می‌آورد.

۲. به نظر می‌رسد که میکروسیلسیس دوام دائمی بین در بیرا یخ‌شیران با بهره‌مندی بخش‌اند. [۳]

۳. به نظر می‌رسد که افزایش موادی از بین معمولی و میکروسیلسیس هوا و ۲۰٪ روز، نری بر دوام بین در بیرا یخ‌شیران داشته باشد.

۴. به نظر می‌رسد که استفاده از استاندارد برای ASTM C666 تعمیم دوام بین حاوی میکروسیلسیس در بیرا یخ‌شیران، روش مناسب است. [۴]

تحقیقات دیگری نتوسط هم‌وند در سال ۱۹۹۳ برای بررسی اثر ۱۰ درصد میکروسیلسیس جایگزین سیمان بین بند در مقابل سیکل‌های بین دوام بین آب و آب‌شیران، حمله سولفاتها و میکروب‌ها و خواص مکانیکی [۵].

۳۳

نیوانه‌ها و سپس شروع که به این مدل پس از تعداد سیکل‌های بین آب و آب‌شیران، نمایانگر صدمه دیدن بین می‌باشد. این روش می‌توانیم از این‌ها خطرات وارد بر بین با یک به‌صورت و یک به‌صورت دریک مشاهده شود. به وجود آن‌ها [۱] با یک و در این‌جا این‌گونه تغییرات مدل است، به شکلی‌که در سال ۱۹۸۶ تاکید علی برای دوام بینی هوا با مقاومت بالا با نسبت آب به سیمان ۸۵٪ با یک بند حیاط به نشانه است. این‌ها هیچ‌یک با بند حیاط با مقاومت بالا با نسبت آب به سیمان ۲۵٪ نیز در تحقیقات خود به نتایج زیر رسیدند: [۲]

۱. تحت سیکل‌های‌ی خشن‌تر، رقابت بین معمولی بین حاوی میکروسیلسیس مقاوت است. این تحقیقات نشان می‌دهند که میکروسیلسیس مقاومت‌های میدانی بیشتری را به‌وجود می‌آورد.

۲. به نظر می‌رسد که میکروسیلسیس دوام دائمی بین در بیرا یخ‌شیران با بهره‌مندی بخش‌اند. [۳]

۳. به نظر می‌رسد که افزایش موادی از بین معمولی و میکروسیلسیس هوا و ۲۰٪ روز، نری بر دوام بین در بیرا یخ‌شیران داشته باشد.

۴. به نظر می‌رسد که استفاده از استاندارد برای ASTM C666 تعمیم دوام بین حاوی میکروسیلسیس در بیرا یخ‌شیران، روش مناسب است. [۴]

تحقیقات دیگری نتوسط هم‌وند در سال ۱۹۹۳ برای بررسی اثر ۱۰ درصد میکروسیلسیس جایگزین سیمان بین بند در مقابل سیکل‌های بین دوام بین آب و آب‌شیران، حمله سولفاتها و میکروب‌ها و خواص مکانیکی [۵].

۳۳

استفاده‌السال ۲۵ شهریور ۲ استفاده ۱۳۸۵
برخی هنوز ناشناخته بایقی مانده‌اند: پارسایی تحت کنترل بوده و یارادی ذکر خارج از کنترل هستند. از جمله عوامل شناخته شده و تحت کنترل، می‌توان به مواردی از قبیل مقادیر آب مصری، مقادیر ماده سیمان، نسبت آب به ماده سیمان، مقادیر میکروسیلس جاگرینی، حجم درشت دانه بر حسب نسبی از حجم کل، یافته‌ها به‌جای نشان‌دهنده درشت دانه، مدل الاستیسیتی درشت دانه، رونایی بین، تراکم بین، شرایط عمل آوری، عمر بین، چگالی بین، نوع سیمان، شکل و اندازه نمونه بین، درصد هوای محبوس در بین، میزان حیاتی‌های ایجاد شده بین درصد سیلانی‌های بین و آب شدن، سرعت جذب بین، ماده انتقال از شروع یکسانی و ... اشاره کرد. هدف از این تحقیق، دستیابی به مدل‌های تجربی-ایزود برای ایجاد آنتی‌کلیک در بین با مقادیر بالا، با لحاظ کردن بعضی از عوامل مولکول بر دوام است. اثرات بین‌یان یا سنجش افت مقادیر فشاری و نیز مشاهدات بر روی تغییر طول و زنر، با میزان جذب نمونه‌های بینی بررسی می‌شود. بندها نظوری با انجام آزمایش بین و آب شدن برونی نمونه‌های مختلف سیستان و مولکول مواد مناسب بین مشخصات مانند و درشت دانه، درصد هوای و دوام بین با مقادیر بالا در برای یکسانی، برقرار شود. در جزء نهایی با مقادیر بالا (ناتیو و سگرتان) را در هجین نمایش دهنده دیگر، سیمان‌های بین اجزای اصلی درشت دانه، ریزدانه، سیمان، میکروسیلس، آب و فوق روان کننده تقسیم کرد. از میان اجزای فوق به بررسی نشانگ طراحی درشت دانه‌ها، مقادیر مختلف میکروسیلس و آب در کنار تعداد شکل‌های مناسب در برای مقادیر بالا در برای یکسانی در حدود دانه (درصد حجمی در بین، دانه بین، یافته‌های بین، انتقال دانه، شکل و بافت، سطحی دانه‌ها) و نیز از نظر ریزدانه و فوق روان کننده، نوع سیمان، سرعت میکروسیلس و میزان ایجاد نمونه‌ها با نتیجه‌گیری آنها صرف نظر شده است. بررسی اطلاعات نگارنده، اگرچه برخی از عوامل سازنده اطمینان داشته باشند.

و توسط مزروک و جانگ در سال 1994 در مورد اثر سیلانی پی‌خ‌دن و توسط پاپ و سیتان در سال 1999 در مورد اثر سیتانی‌های با برآور میکروسیلس در برای یکسانی در انجام گرفت [7]. نتایج تحقیقات آنها به این قرار است: در تحقیقات هوتره ایرانی 10 درصد میکروسیلس جاگرینی سیمان، برای مقادیر در برای پی‌خ‌دن و آب شدن کافی نشان‌دهنده داده شد [5]. مزروک و جانگ به این نتیجه رسیدند که مدل الاستیسیتی کنترلی نسبت بین با مقادیر بالا به‌عنوان میکروسیلس سیمان در نمود معمول است [6] و پاپ و سیتان به این نتیجه رسیدند که در بین با سیتانی‌های معمولی با‌خوانی میکروسیلس جاگرینی به آب به ماده سیمانی در دوام در برای یکسانی کاهش داشت. اما در بین دارای سیتانی‌های سیمانی، عکسی این عمل انفعال افتاد. به عبارت دیگر افزودن میکروسیلس، دوام بین در برای یکسانی افزایش یافته.

همچنین در سال 1997 در مرکز تکنولوژی بین پیشرفته کانادا، تحقیقاتی در زمینه تأثیر میکروسیلس بر دوام بین توسط ماهورا انجام گرفت. بندها نظوری با انجام آزمایش بین و آب شدن 30 درصد و نیز میکروسیلس جاگرینی سیمان با نسبت آب به ماده سیمانی 4/00 نتایج آزمایش‌ها به این شرح است که استفاده از میکروسیلس باعث بهبود دومین بین در برای سیتانی با تغییر پی‌خ‌دن و آب شدن می‌شود: مگر بین‌ها کم شل‌بود 20 تا 30 درصد میکروسیلس‌اند. ماهورا علت این امر را این طور بیان داشت که مقادیر زیاد میکروسیلس باعث ایجاد یک سیستانی به‌شکل میان ماده سیمانی به‌گونه‌ی زیاد می‌شود که ممکن است اثر معکوس در روی نواحی تغییر شکل بین در برای فشار ناشی از انقباض آب بی‌خ زده داشته باشد. [8]

2- هدف
پارامترهای زیادی بر دوام بین‌ها معمولی و بین با مقادیر

باش نمود که بردن نشانه‌های سیمان و بین با مقادیر

براساس اطلاعات نگارنده، اگرچه برخی از عوامل سازنده

استقلال، سال 35، شماره 2، اسفند 1385 34
3- مصالح مورد استفاده

مصالحی که در این تحقیق مورد استفاده قرار گرفته‌اند، عبارتند از:

- سیمان پرتلند نوع 1 (مطبق بر استاندارد ASTM-150).
- میکروسیلس با جامدگی 0.1 و درصد خلوص بیش از 99.9 (SiO2).
- ریزدانه‌های با مواد مرنم. 0.2 و جذب آلیاژ/ترکیبی 0.3.
- درصد اکسیدهای دنیای آهنی و کوارتز در یک حداکثر قطر 0.5 میلی‌متر. درصد دنیای آهنی و کوارتز در یک حداکثر قطر 0.5 میلی‌متر. درصد دنیای آهنی و کوارتز در یک حداکثر قطر 0.5 میلی‌متر. درصد دنیای آهنی و کوارتز در یک حداکثر قطر 0.5 میلی‌متر. درصد دنیای آهنی و کوارتز در یک حداکثر قطر 0.5 میلی‌متر. درصد دنیای آهنی و کوارتز در یک حداکثر قطر 0.5 میلی‌متر. درصد دنیای آهنی و کوارتز در یک حداکثر قطر 0.5 میلی‌متر.
جدول 1- نسبت‌های وزنی طرح اختلاف بتن با درشت دانه آهکی

<table>
<thead>
<tr>
<th>آب (kg/m³)</th>
<th>فوق روان کنده (kg/m³)</th>
<th>درشت دانه (kg/m³)</th>
<th>رزدانه (kg/m³)</th>
<th>میکروسیلس (kg/m³)</th>
<th>سیمان (kg/m³)</th>
<th>میکروسیلس به موان سیمانی</th>
<th>آب به موان سیمانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>169</td>
<td>13</td>
<td>106</td>
<td>143</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td>154</td>
<td>21</td>
<td>105</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/3</td>
</tr>
<tr>
<td>143</td>
<td>36</td>
<td>106</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/25</td>
</tr>
</tbody>
</table>

جدول 2- نسبت‌های وزنی طرح اختلاف بتن با درشت دانه کوارتزیت

<table>
<thead>
<tr>
<th>آب (kg/m³)</th>
<th>فوق روان کنده (kg/m³)</th>
<th>درشت دانه (kg/m³)</th>
<th>رزدانه (kg/m³)</th>
<th>میکروسیلس (kg/m³)</th>
<th>سیمان (kg/m³)</th>
<th>میکروسیلس به موان سیمانی</th>
<th>آب به موان سیمانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>167</td>
<td>13</td>
<td>114</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td>151</td>
<td>21</td>
<td>114</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/3</td>
</tr>
<tr>
<td>140</td>
<td>36</td>
<td>114</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/25</td>
</tr>
</tbody>
</table>

5- مقاومت فشاری بتن در معرض سیکل‌های یخ‌زان و آب شدن بر مبنای‌های تئوری

یخبندان

جدول (3) نتایج آزمایش مقاومت فشاری بتن بعد از 45، 150 و 200 سیکل یخ‌زن و آب شدن متوالی را نشان می‌دهد.

جدول (4) نتایج آزمایش مقاومت فشاری بتن شاهد در سنین 38، 73، 138 و 80 روزه (هم‌زمان با اندازه سیکل‌های 150 و 200) را نشان می‌دهد.

استقلال، سال، شماره، 7، شماره 2، اسفند 1385
جدول ۳ - مقاومت فشاری تکه‌های ساخته شده با درشت دانه آهنی و کوارتزیت (بر حسب مگایپاسکال) در معرض سیکل‌های یخیدان

<table>
<thead>
<tr>
<th>SF (%)</th>
<th>W/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۰/۴</td>
</tr>
<tr>
<td>۵</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۱۰</td>
<td>۰/۲۵</td>
</tr>
<tr>
<td>۱۵</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴ - مقاومت فشاری تکه‌های شاهد ساخته شده با درشت دانه آهنی و کوارتزیت

<table>
<thead>
<tr>
<th>SF (%)</th>
<th>W/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۰/۴</td>
</tr>
<tr>
<td>۵</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۱۰</td>
<td>۰/۲۵</td>
</tr>
<tr>
<td>۱۵</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۵ - تأثیر تعداد سیکل‌های یخیدن و آب شدن متناوب بر مقاومت فشاری بتن

<table>
<thead>
<tr>
<th>نسبت آب به مواد سیمانی</th>
<th>بتن با درشت دانه آهنی</th>
<th>بتن با درشت دانه کوارتزیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۲۵</td>
<td>۰/۲۳</td>
<td>۰/۲۴</td>
</tr>
<tr>
<td>۰/۹۹</td>
<td>۰/۹۶</td>
<td>۰/۹۲</td>
</tr>
<tr>
<td>۰/۹۷</td>
<td>۰/۹۴</td>
<td>۰/۹۰</td>
</tr>
<tr>
<td>۰/۹۱</td>
<td>۰/۸۳</td>
<td>۰/۸۷</td>
</tr>
<tr>
<td>۰/۹۹</td>
<td>۰/۹۶</td>
<td>۰/۹۰</td>
</tr>
<tr>
<td>۰/۹۸</td>
<td>۰/۸۷</td>
<td>۰/۸۵</td>
</tr>
<tr>
<td>۰/۹۷</td>
<td>۰/۸۴</td>
<td>۰/۸۲</td>
</tr>
</tbody>
</table>

استقلال، سال ۱۳۸۵، شماره ۲
جدول ۶- رشد متقاطع فشاری بتن شاهد در طول زمان

<table>
<thead>
<tr>
<th>نسبت آب به مواد سیمانی</th>
<th>بتن با درشت دانه</th>
<th>آهکی</th>
<th>کوارتزیتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۳۰</td>
<td>۰/۱۶</td>
<td>۰/۲۸</td>
<td>۰/۳۳</td>
</tr>
<tr>
<td>۰/۲۴</td>
<td>۰/۱۴</td>
<td>۰/۱۸</td>
<td>۰/۲۳</td>
</tr>
<tr>
<td>۰/۲۰</td>
<td>۰/۱۲</td>
<td>۰/۱۰</td>
<td>۰/۱۵</td>
</tr>
<tr>
<td>۰/۱۶</td>
<td>۰/۱۰</td>
<td>۰/۰۸</td>
<td>۰/۷۶</td>
</tr>
<tr>
<td>۰/۱۲</td>
<td>۰/۰۸</td>
<td>۰/۰۶</td>
<td>۰/۶۳</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۶</td>
<td>۰/۰۴</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>۰/۰۸</td>
<td>۰/۰۴</td>
<td>۰/۰۲</td>
<td>۰/۴۳</td>
</tr>
</tbody>
</table>

جدول ۷- تأثیر نسبت آب به مواد سیمانی بر متقاطع فشاری بتن در طول سیکلهای خیبیندان

<table>
<thead>
<tr>
<th>تعداد سیکلهای خیبیندان</th>
<th>بتن با درشت دانه</th>
<th>آهکی</th>
<th>کوارتزیتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۲۸</td>
<td>۱/۲۸</td>
<td>۱/۲۱</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۰/۲۴</td>
<td>۱/۲۴</td>
<td>۱/۱۶</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>۰/۱۶</td>
<td>۱/۱۳</td>
<td>۱/۱۱</td>
<td>۱/۷۶</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۱/۱۰</td>
<td>۱/۰۸</td>
<td>۱/۰۴</td>
</tr>
<tr>
<td>۰/۰۸</td>
<td>۱/۰۶</td>
<td>۱/۰۴</td>
<td>۰/۶۳</td>
</tr>
<tr>
<td>۰/۰۶</td>
<td>۱/۰۴</td>
<td>۰/۶۰</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>۰/۰۴</td>
<td>۱/۰۲</td>
<td>۰/۴۳</td>
<td>۰/۴۳</td>
</tr>
</tbody>
</table>

جدول ۸- تأثیر نوع درشت دانه بر متقاطع فشاری بتن در طول سیکلهای خیبیندان

<table>
<thead>
<tr>
<th>نسبت مقاطع فشاری سیگ‌های مثبت</th>
<th>نسبت جذب آب سیگ بتن</th>
<th>W/C</th>
<th>T عدد سیکلهای خیبیندان</th>
<th>بتن</th>
<th>نسبت مقاطع فشاری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

یک اساس تغییر نسبت آب به مواد سیمانی ارائه می‌دهد. همان‌طور که در جدول مشاهده می‌شود کاهش نسبت آب به مواد سیمانی منجر به افزایش مقاطع فشاری بتن در هنگام خیبیندان شده است. مطالب این جدول هر چه تعداد سیکلهای خیبیندان افزایش می‌یابد، اثر کاهش نسبت آب به مواد سیمانی بر افزایش مقاطع فشاری بتن در هنگام خیبیندان اشکارتر می‌شود.

جدول ۹- تأثیر نسبت آب به مواد سیمانی بر متقاطع فشاری بتن در معرض خیبیندان

<table>
<thead>
<tr>
<th>نسبت میانگین مقاطع فشاری بتن</th>
<th>تعداد سیکلهای خیبیندان</th>
<th>Bون</th>
<th>Tعدد سیکلهای خیبیندان</th>
<th>بتن</th>
<th>نسبت مقاطع فشاری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

متوازن در افزایش مقاطع فشاری بتن کاهش یافته است. برای مقایسه، تأثیر زمان بر رشد متوسط مقاطع فشاری بتن شاهد که تحت اثر خیبیندان قرار ندارند، در جدول (۶) نشان داده شده است. در جدول‌های فوق مقاطع ۸۳ و ۸۰ روزه بتن هیزمان با امام سیکلهای ۰۵ و ۰۰ اندازه‌گیری شده‌اند.

جدول ۵- تأثیر نسبت آب به مواد سیمانی بر متقاطع فشاری بتن در معرض خیبیندان

<table>
<thead>
<tr>
<th>نسبت میانگین مقاطع فشاری بتن</th>
<th>تعداد سیکلهای خیبیندان</th>
<th>Bون</th>
<th>Tعدد سیکلهای خیبیندان</th>
<th>بتن</th>
<th>نسبت مقاطع فشاری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

یکی از راه‌های درصد متقاطع افزایش خطی به‌بیننده و بررسی فشاری بتن در جدول (۶) نشان می‌دهد که میانگین مقاطع فشاری بتن با درشت

استقلا. سال ۱۳۸۵، شماره ۲، استادی ۳۸.
دانه کوارتزینی (متوسط، بارز) چهار درصد مقاومت میکروسیلیس جاجزی‌گری، را به مانند مقاومت فشاری بنی با درشت دانه آهکی را از مایه داده و با نسبت مقاومت فشاری درشت دانه آهنگ و جذب آب باعث اشاعه با سطح خشک آنها مقابله می‌کند. جدول (8) نشان می‌دهد که استفاده از درشت دانه‌های با مقاومت بیشتر و جذب آب کمتر، نتیجه با مقاومت فشاری بیشتر در حین خشک‌شدن می‌کند. اثر نوع سگنده، در سیکل‌های بالاتر به‌کارگیری آب شدن‌های دو باره مصرف دانه‌های بیشتر کمتر می‌باشد.

4-5- تأثیر درصد میکروسیلیس جاجزی‌گری بر مقاومت فشاری بنی در معرض خشک‌شدن

با تنظیم شکل‌های (1)، (3) و (5) اثر درصد میکروسیلیس جاجزی‌گری بر مقاومت فشاری بنی در حین خشک‌شدن برای بینت

به طور محسوسی مشخص می‌شود.
همچنین با تنظیم شکل‌های (7) تا (11) مسئله فوق برای بتن ساخته شده با درشت دانه کوارتزیتی مورد بررسی قرار گرفت. این شکل‌ها نشان می‌دهد که در بتن ساخته شده با درشت دانه به میزان 15% بیشترین رشد را در مقاومت فشاری بتن ایجاد کرده است. در شکل‌های مادکر مشاهده می‌شود که با افزایش تعداد سیکل‌های بی‌درن و آب شدن متوالی، اثر میکروسیلیس جایگزینی در افزایش مقاومت فشاری بتن در هنگین خنثی‌د
جدول 9 - میزان خطای به‌دست‌آمده برای پارامترهای معادله (1)

<table>
<thead>
<tr>
<th>پارامترها</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/16</td>
</tr>
<tr>
<td>میزان خطای</td>
</tr>
<tr>
<td>0/128</td>
</tr>
</tbody>
</table>

شکل 12- مقاومت فشاری بتن‌هایی با درشتی دانه کوارتزیت در مقابل درصد‌های میکروسپیلس بعد از 80 روز در دندان میکروسپیلس چیلیکلی، مقاومت فشاری درشتی دانه و تعداد سیکل‌های نیروگیری آن برابر می‌باشد و در مقایسه با برقراری چگونگی جنگل منجر به استفاده از نرم‌افزار اکسل [12] مقدار معادله (1)، مدلی از آن‌ها شد.

\[f'_c = \frac{14.1f_{0.19}(SF+1)^{0.09}}{W^{0.65}N^{0.05}}, \quad E_{rc}=0.8 \quad \& \quad R^2=0.87 \]

جدول 9، میزان خطای برای پارامترهای معادله فوق در سطح اطمینان 95٪ ارائه می‌دهد. میزان خطای باید غیر‌پارامتری باشید. این معناست که پارامتر فوق در بازه پارامتر ± میزان خطا پارامتر تغییر کند.

محدوده قابل قبول برای مقاومت فشاری درشت دانه 110 تا 130 مگاپاسکال، برای نسبت آب به ماده سیمان 0/25 تا 0/30 و برای درصد وزنی میکروسپیلس چیلیکلی سیمان 0 تا 0/15 و تعداد سیکل‌های نیروگیری بتن و آب شدن تا 200 سیکل است.

6- درصد جذب آب بتن در حین یخبندان

در تحقیق حاضر نمونه‌هایی به بار خاک‌آزمایشی فشاری طرح شده، هم‌مانی تحت آزمایش جذب آب نیز قرار گرفته.

5-5 نخستین مقاومت فشاری بتن با مقاومت بالا در حین یخبندان

در این تحقیق به ارزیابی هموگونی داده‌های مقاومت فشاری بتن (حاصل از آزمایش جذب آب از ماده سیمانی استقلال، سال 25، شماره 2/ استقلال 1385)
جدول 10- میزان جذب آب پن‌های ساعت داشته بوده برای درشت دانه آهکی و کوارتزیت در حین یخیدن

<table>
<thead>
<tr>
<th>Ab n=200 (%)</th>
<th>Ab n=150 (%)</th>
<th>Ab n=45 (%)</th>
<th>Ab n=200 (%)</th>
<th>Ab n=150 (%)</th>
<th>Ab n=45 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF(%)</td>
<td>W/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/10</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/15</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/25</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/30</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/45</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/60</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/75</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/90</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/105</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 11- میزان جذب آب پن‌های ساعت داشته بوده برای درشت دانه آهکی و کوارتزیت

<table>
<thead>
<tr>
<th>Ab, %</th>
<th>SF(%)</th>
<th>W/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/25</td>
<td>1</td>
<td>0/4</td>
</tr>
<tr>
<td>0/50</td>
<td>2</td>
<td>0/8</td>
</tr>
<tr>
<td>0/75</td>
<td>3</td>
<td>0/10</td>
</tr>
<tr>
<td>0/100</td>
<td>4</td>
<td>0/15</td>
</tr>
<tr>
<td>0/125</td>
<td>5</td>
<td>0/25</td>
</tr>
<tr>
<td>0/150</td>
<td>6</td>
<td>0/30</td>
</tr>
<tr>
<td>0/175</td>
<td>7</td>
<td>0/45</td>
</tr>
<tr>
<td>0/200</td>
<td>8</td>
<td>0/60</td>
</tr>
<tr>
<td>0/225</td>
<td>9</td>
<td>0/75</td>
</tr>
<tr>
<td>0/250</td>
<td>10</td>
<td>0/90</td>
</tr>
<tr>
<td>0/275</td>
<td>11</td>
<td>0/105</td>
</tr>
<tr>
<td>0/300</td>
<td>12</td>
<td>0/125</td>
</tr>
</tbody>
</table>

نتایج آزمایش فوک را نشان می‌دهد. برای مقایسه
جدول (11) نیز میزان جذب آب بین پیش می‌شود. برای مقایسه

جدول 6- تأثیر تعداد سیکل‌های یخیدن و آب شدن مشابه
بر جذب آب بین در حین یخیدان

جدول 13- ارائه دهنده میزان جذب آب متوسط نمونه‌های

استقبال سال: 25، شماره 2، استناد 1385

۴۲
جدول 12- تأثیر تعداد سیکل‌های یخزدن و آب شدن منتاوب بر میزان جذب آب پن در معرض سیکل‌های یخزدن

<table>
<thead>
<tr>
<th>W/C</th>
<th>نسبت جذب آب</th>
<th>نوع درشت دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/25</td>
<td>1/77</td>
<td>Ab_n=150 / Ab_n=45</td>
</tr>
<tr>
<td>1/16</td>
<td>1/22</td>
<td>Ab_n=200 / Ab_n=45</td>
</tr>
<tr>
<td>1/17</td>
<td>1/22</td>
<td>Ab_n=200 / Ab_n=45</td>
</tr>
<tr>
<td>1/17</td>
<td>1/22</td>
<td>Ab_n=200 / Ab_n=45</td>
</tr>
<tr>
<td>1/9</td>
<td>1/11</td>
<td>Ab_n=150 / Ab_n=45</td>
</tr>
</tbody>
</table>

جدول 13- تأثیر نسبت آب به مواد سیمانی بر میزان جذب آب پن در حین یخزدن

<table>
<thead>
<tr>
<th>Ab(w/c = 0.4) / Ab(w/c = 0.25)</th>
<th>Ab(w/c = 0.3) / Ab(w/c = 0.25)</th>
<th>Ab(w/c = 0.4) / Ab(w/c = 0.3)</th>
<th>Tعداد سیکل‌های یخزدن</th>
<th>درشت دانه مصرفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20</td>
<td>1/17</td>
<td>1/24</td>
<td>45</td>
<td>آهکی</td>
</tr>
<tr>
<td>1/23</td>
<td>1/15</td>
<td>1/24</td>
<td>100</td>
<td>کوارتزیتی</td>
</tr>
<tr>
<td>1/24</td>
<td>1/15</td>
<td>1/24</td>
<td>200</td>
<td>آهکی</td>
</tr>
<tr>
<td>1/41</td>
<td>1/21</td>
<td>1/24</td>
<td>45</td>
<td>کوارتزیتی</td>
</tr>
<tr>
<td>1/44</td>
<td>1/20</td>
<td>1/24</td>
<td>100</td>
<td>کوارتزیتی</td>
</tr>
<tr>
<td>1/49</td>
<td>1/21</td>
<td>1/24</td>
<td>200</td>
<td>آهکی</td>
</tr>
</tbody>
</table>

جدول 14- تأثیر نسبت آب به مواد سیمانی بر میزان جذب آب پن شاهد

<table>
<thead>
<tr>
<th>Ab(w/c = 0.4) / Ab(w/c = 0.25)</th>
<th>Ab(w/c = 0.3) / Ab(w/c = 0.25)</th>
<th>Ab(w/c = 0.4) / Ab(w/c = 0.3)</th>
<th>درشت دانه مصرفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/39</td>
<td>1/18</td>
<td>1/72</td>
<td>آهکی</td>
</tr>
<tr>
<td>1/41</td>
<td>1/21</td>
<td>1/17</td>
<td>کوارتزیتی</td>
</tr>
</tbody>
</table>

تفسیر نسبت آب به مواد سیمانی ارائه می‌دهد. همان‌طور که در این جدول مشاهده می‌شود، در هر سیکل یخزدن و آب شدن متوازی و باید دو نوع درشت دانه به کار رفته، کاهش نسبت آب به مواد سیمانی منجر به کاهش میزان جذب آب نمونه‌های بتینی (افراشی دوام) شده است. برای مقایسه جدول (14) نیم‌میزان جذب آب متوسط نمونه‌های شاهد را بر حسب تغییر نسبت آب به مواد سیمانی ارائه می‌دهد.

عمدتاً رشد میزان جذب آب در اثر افراشیت تعداد سیکل‌های ذوب و انجماد کمتر می‌شود.

2-6- تأثیر نسبت آب به مواد سیمانی بر میزان جذب آب نمونه‌های بتین در حین یخزدن

جدول (13) میزان جذب آب متوسط نمونه‌های بتینی (متوسط، به‌ازای چهار مقدار مختلف میکروسیلیس جایگزینی) بعد از سه سیکل 450 و 200 می‌باشد.
جدول 15- تأثیر نوع درشت دانه بر جذب آب بین در معرض سیکل‌های یخیدن‌دان

<table>
<thead>
<tr>
<th>W/C</th>
<th>تعداد سیکل‌های یخیدن‌دان</th>
<th>نسبت جذب آب سک WSSD, Q/WSSD, L</th>
<th>نسبت مقاومت فشاری سک f_a,L / f_a,Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/25</td>
<td>03</td>
<td>0/4</td>
<td>0/27</td>
</tr>
<tr>
<td>0/29</td>
<td>09</td>
<td>0/2</td>
<td>0/21</td>
</tr>
<tr>
<td>0/27</td>
<td>09</td>
<td>0/2</td>
<td>0/21</td>
</tr>
<tr>
<td>0/29</td>
<td>09</td>
<td>0/2</td>
<td>0/21</td>
</tr>
</tbody>
</table>

جدول 16- تأثیر نوع درشت دانه بر جذب آب بین شاهد

<table>
<thead>
<tr>
<th>W/C</th>
<th>نسبت جذب آب سک WSSD, Q/WSSD, L</th>
<th>نسبت مقاومت فشاری سک f_a,L / f_a,Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/25</td>
<td>0/3</td>
<td>0/4</td>
</tr>
<tr>
<td>0/29</td>
<td>0/2</td>
<td>0/21</td>
</tr>
<tr>
<td>0/27</td>
<td>0/2</td>
<td>0/21</td>
</tr>
<tr>
<td>0/29</td>
<td>0/2</td>
<td>0/21</td>
</tr>
</tbody>
</table>

6-3- تأثیر نوع درشت دانه بر جذب آب بین در حین یخیدن‌دان

جدول 15 (15) نسبت متوسط جذب آب نمونه‌های بینی (متوسط به‌زاییهای درصد مختلف میکروسیلیس یا یا) ساخته‌شده در دانه کوارتز را به متوسط جذب آب نمونه‌های بینی ساخته‌شده در دانه آهکی می‌دهد، جدول فوق نشان می‌دهد که استفاده از درشت دانه با مقاومت بیشتر و جذب آب کمتر در هر سیکل از بین‌ریختن آب شاهد افزایش یافته و به جذب آب کمتر و دوم بیشتر در برابر یخیدن‌دان تولید می‌کند. برای مقایسه

جدول 16 (16) نیز نسبت متوسط جذب آب نمونه‌های بینی (متوسط به‌زاییهای درصد مختلف میکروسیلیس یا یا) ساخته‌شده در دانه کوارتز را به متوسط جذب آب نمونه‌های بینی ساخته‌شده در دانه آهکی ارائه می‌دهد.

4-6- تأثیر درصد میکروسیلیس یا یا بر میزان جذب آب نمونه‌های بینی در حین یخیدن‌دان

به منظور بررسی میزان تأثیر میکروسیلیس یا یا بر
شکل ۱۴- میزان جذب آب نمونه‌های بتنی با درشت دانه آهکی بر حسب درصد میکروسیلس جایگزینی بعد از ۵۰ و ج) ۲۰۰ سیکل
مدل ارائه شده که می‌تواند میزان جذب آب بتن در حین پیچیدن را براساس چهره برای تیپ کنند تغییر این آب به مواد سیمانی، درصد میکروسیلس جایگزینی، مقاومت فشاری

شکل ۱۳- میزان جذب آب نمونه‌های بتنی با درشت دانه آهکی بر حسب درصد میکروسیلس جایگزینی بعد از ۱۰۰ و ج) ۲۰۰ سیکل

شکل ۶- تخمین میزان جذب آب نمونه‌های بتنی با مقاومت بالا در حین پیچیدن
این با برقراری رگرسیون چند متغیره محققه رابطه (۲)

استقلال، سال ۱۳۸۵، شماره ۲، پژوهش ۴۵
می‌دهد. قابل ذکر است که میزان تغییر طول توسط کولیس دیجیتالی در هر ویدر در سه نقطه از آن و په اندازه‌گیری شد.

7-1 تخمین میزان تغییر طول و کاهش وزن نمونه‌های بتنی در معرض یخچال

اینک با برقراری رگرسیون جند مبیتی مقادیر معادلات (3) و (4) مدلی ارائه می‌شود که می‌تواند تغییر طول و کاهش وزن بتن در حین یخچالزنی را بر اساس چهار پارامتر اخیر سیگنال‌های بخزن و آب شدن، نسبت آب به مواد سبزیتی، درصد میکروسپیس جایگزینی و مقاومت فشاری درشت داشته باشد. دقت بسیار مناسب تخمین برون با این معادله، محصول قابل قبول برابر این چهار پارامتر همان محدوده‌ای است که در معادله (1) ذکر شد.

درست دانه و تعداد سیگنال‌های بخزن و آب شدن متوالی، با دقت بسیار مناسب تخمین برون. در این معادله، محصول قابل قبول برابر این چهار پارامتر همان محدوده‌ای است که در معادله (1) ذکر شد.

\[
\begin{align*}
\text{Ab} &= 11.43N^{0.19} \frac{W}{C}^{1.44} W + 2.1, \\
\text{Er}_{\text{Ab}} &= 0.16 & R^2 = 0.89
\end{align*}
\]

جدول (17) هم میزان خطا را برای پارامترهای معادله فوق در سطح اعتماد 95% ارائه می‌دهد.

7-2 تغییر طول و کاهش وزن نمونه‌های بتنی در معرض یخچال

درصد تغییر طول و وزن کاهش وزن نمونه‌های بتنی در حین یخچالزنی از دیگر پارامترهایی است که نشان دهنده میرزان دام بتن در بر پای سیگنال‌های متناوب بخزن و آب شدن است [11].

جدول (18) و (19) به ترتیب نتایج آزمایش درصد تغییر طول و درصد کاهش وزن نمونه‌های بتنی حاصل از میکروسپیس سیگنال‌های بعد از 45، 100 و 200 سیگنال بخزن و آب شدن متوالی نشان

استقلال، سال 1365، شماره 2، استقنو 1385

46
جدول 18- تغییر طول نمودن‌های بنی ساخته شده با درشت دانه آهکی و کوارتزیت تحت اثر سیکلهای بخشن و آب شدن

<table>
<thead>
<tr>
<th>ΔL/L (%)</th>
<th>SF/C (%)</th>
<th>W/C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 19- کاهش وزن نمودن‌های بنی ساخته شده با درشت دانه آهکی و کوارتزیت تحت اثر سیکلهای بخشن و آب شدن

<table>
<thead>
<tr>
<th>ΔM/M(%)</th>
<th>SF/C (%)</th>
<th>W/C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول 20- میزان خطا به دست آمده برای پارامترهای معادله (3)

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>میزان خطا</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/35</td>
<td>0/06</td>
</tr>
<tr>
<td>0/37</td>
<td>0/07</td>
</tr>
<tr>
<td>0/38</td>
<td>0/08</td>
</tr>
<tr>
<td>0/41</td>
<td>0/07</td>
</tr>
<tr>
<td>0/42</td>
<td>0/03</td>
</tr>
<tr>
<td>0/44</td>
<td>0/04</td>
</tr>
<tr>
<td>0/46</td>
<td>0/06</td>
</tr>
</tbody>
</table>

جدول 21- میزان خطا به دست آمده برای پارامترهای معادله (4)

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>میزان خطا</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/49</td>
<td>0/06</td>
</tr>
<tr>
<td>0/65</td>
<td>0/07</td>
</tr>
<tr>
<td>0/67</td>
<td>0/08</td>
</tr>
<tr>
<td>0/68</td>
<td>0/07</td>
</tr>
<tr>
<td>0/06</td>
<td>0/04</td>
</tr>
<tr>
<td>0/03</td>
<td>0/03</td>
</tr>
<tr>
<td>0/02</td>
<td>0/02</td>
</tr>
<tr>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td>0/00</td>
<td>0/00</td>
</tr>
</tbody>
</table>

سیمان 0/4 و بدون میکروسپلس را بعد از 200 سیکل نشان می‌دهد. نمونه‌ها از رست به چپ دارای درشت داده‌های آهکی و کوارتزیتی‌اند. دیده می‌شود که نمونه‌های درشت داده کوارتزیتی‌های پوشکی نسبت به نمونه‌های درشت داده آهکی از خود نشان داده است.

7- نتایج

نتایج حاصل از تحقیق نشان می‌دهد که نمونه به شرح زیر ارائه گردید:

- 1- میکروسپلس به مقدار 10% به بهتری که در بین با مقاومت بالا بعد از 45 و 200 سیکل یکهزن و آب شدن، بهبود 10/1% میکروسپلس جایگزین حاصل شد. همچنین میکروسپلس جایگزین سیمان حاصل شد.

شکل 17- نتایج نوع درشت دانه بر دوام بین

شکل 16- نتایج درصد میکروسپلس جایگزین سیمان بر دوام بین

جدول (20) و (21) به ترتیب میزان خطا را برای پارامترهای معادله (3) و (4) در سطح اعتماد 95% ارائه می‌دهد.

معادلات فوق بر اساس همان ضریب همیسنج خوب، مدلی برای مناسب برای پیش بینی دوام بر اساس مقاومت بالا در هنگینان مستند. هم‌نام‌های طریق در معادلات (3) و (4) همان شود، با به وجودگیری درشت دانه‌های با مقاومت بالاتر، می‌توان به بین تأثیر کربنات در برادر به خیچن‌دان دست یافت.

همچنین استفاده از میکروسپلس جایگزین سیمان، میزان تخریب بین با مقاومت بالا را در برابر خیچن‌دان کاهش می‌دهد.

شکل (16) نشان می‌دهد که همان میزان نقطه بین بر اساس 200 سیکل نشان می‌دهد.

همچنین نشان می‌دهد که مناسبی با تغییر درای جریان آب در بین با مقاومت بالا بعد از سیکل‌های مذکور، بهبود 15/1% میکروسپلس جایگزین سیمان حاصل شد.

استقلال سال 25، شماره 3، اسفند 1385

48
۲- همواره کاهش نسبت آب به مواد سیمانی تا میزان لازم برای انجام هره بیشتر هیدراتاسیون، مقاومت فشاری بین در حین یخیدن را افزایش می‌دهد. همچنین کاهش نسبت آب به مواد سیمانی در حین یخیدن، میزان تخریب ظاهری (کاهش طول و کاهش وزن) و میزان تخریب دوستی (جذب آب) بین را در برای سیکل‌هاذ و انجماد کاهش می‌دهد.

۳- همواره با به کارگیری دانه‌های با مقاومت بالاتر و جذب آب کمتر، می‌توان به بین با دوم بیشتر در برای یخیدن دست یافت.

۴- استفاده از میکروسیل‌سی جایگزین سیمان، همواره مقاومت فشاری بین را در برای یخیدن افزایش می‌دهد. همچنین

واژه نامه

1. qurtzite
2. melamine formaldeid sulphonates
3. compressive strength
4. length change

مراجع

2. تیلی، م. و کامادا، ا.، "آرزوی سریع دوام بین‌های با مقاومت یزید در مقابل بحیره و آب شن با استفاده از روش تبعین مقاومت کلیکی"، مجموعه مقالات سومین کنفرانس بین‌المللی بین‌ های، شماره ۱۰۱، تهران، ادبیات ۱۳۷۹.