A Theoretical Study of the Behavior of Reinforced Concrete Columns Strengthened by Steel Plates and Transverse Reinforcements

M. Sheikhi and H. Haji-Kazemi
Faculty of Engineering, Ferdowsi University of Mashad

Abstract: Jacketing of reinforced concrete columns is a common and useful strengthening method. This method substantially improves mechanical properties of the column, such as flexural strength as well as shear and ductility. In this paper, the behavior of confined reinforced concrete columns are investigated. The results indicate that the method is more effective for slender columns in the region of their failure zone.

Keywords: Columns, Strengthening, Confinement, Load-moment interaction, Ductility.
1- مقدمه

در جنده آخر بحث مقارن سازی سازه‌ها یکی از مهم‌ترین موضوعات مورد بررسی توسط پژوهشگران و جامعه علمی- صنعتی بوده است. وقوع زلزله و تغییر آینه‌های از سویی و تغییرات شرایط مبتنی بر بارگذاری و عمر سازه‌های بینی از راه‌های مهندسی نیاز به مقاوم سازی است. از این رو در این مقاله، مقاوم سازی سیستم‌های مناسب و از میان شیوه‌های مختلف مقارن سازی، روش پوشش دادن سیستم با ورق‌های فولادی به‌عنوان یکی از روش‌های جدید و تأثیر محصول‌سازی کننده بر رفتار سیستم به‌پژوهشده در پیامدهای مقاوم‌سازی مورد بررسی قرار گرفته است.

و مقاوم سازی سیستم‌های بینی به شیوه پوشش دادن با ورق‌های فولادی بر افزایش مقاوم‌سازی دارای محسوس تأثیر به‌وجود می‌آید. اولین مزیت این روش فضایی کمی است که ورق‌های فولادی تغییر انرژی می‌کنند. از این روی دیگری باید مواردی بررسی شود. این روش کیفیت‌های سیستم را بهبود می‌دهد و ایجاد مقاوم‌سازی خودکاری می‌کند. این روش به عنوان مورد بررسی فیزیکی و هسته‌پوشی بهره‌برداری می‌شود. از این روی دیگری باید مواردی بررسی شود. این روش به عنوان مورد بررسی فیزیکی و هسته‌پوشی بهره‌برداری می‌کند. این روش به عنوان مورد بررسی فیزیکی و هسته‌پوشی بهره‌برداری می‌کند. این روش به عنوان مورد بررسی فیزیکی و هسته‌پوشی بهره‌برداری می‌کند. این روش به عنوان مورد بررسی فیزیکی و هسته‌پوشی بهره‌برداری می‌کند. این روش به عنوان مورد بررسی فیزیکی و هسته‌پوشی بهره‌برداری می‌کند. این روش به عنوان مورد بررسی فیزیکی و هسته‌پوشی بهره‌برداری می‌کند.

2- رفتار مقطع سیستم‌های بین مسلح

وجود فولادهای عرضی در سیستم بین مسلح علاوه بر افزایش مقاومت دهنده بی‌پیش‌بینی می‌شود را نیز به دنبال خواهش داشته. اساس کار این است که بر اثر شرایط جابجایی وارده به بین آن مسئله تبدیل خواهد شد که نیاز به آن افزایش مقاومت و شکل‌پذیری بین خواهد بود. معادله‌ی بر مبنای اثر فشار جابجایی بر مقاومت‌سازی بین است.
فشار در گوشپیا با وسط اضلاع متفاوت است، معادله بالا به صورت مستقیم قابل استفاده بود و لازم است که فشار جانی معادل در نظر گرفته شود. برای این منظر، سانسیگار و همکاران [3] معادله‌های زیر را برای محاسبه فشار معادل جانی برای مقطع مربعی بین مسلم پیشنهاد کردند.

\[f_{cc} = f_{co} + k_1 f_{le} \]
\[f_{le} = k_2 f_{i} \]
\[f_{i} = \frac{\sum A_s f_s \sin \alpha}{sb} \]
\[k_1 = 6.7(f_{le})^{-0.17} \]
\[k_2 = 0.26 \left(\frac{b}{s} \right)^2 \left(\frac{h}{s_i} \right)^{0.6} \]
\[f_{co} \]

در معادله‌های بالا، \(A_s \) سطح مقطع فولادهای عرضی است. \(e_{01}(1+5k) \) مقدار فشاری بین معکوش شده، \(f_{co} \) مقدار فشاری بین معکوش شده، \(f_{le} \) مقدار فشاری بین معکوش شده، \(f_{i} \) عرض بین خامه‌ها s_i، \(A_s \) مقطع مربع عرضی، \(k_1 \) عرض خامه‌ها b، \(f_{le} \) مقدار و \(f_{co} \) کرنش‌های منظم بر اساس معادله‌های زیر، می‌توان نمودار نش-کرنش بین را رسم کرد، شکل (1).

\[e_{58} = 260\rho_{01} + e_{085} \]
\[\rho = \frac{\sum A_s}{sb} \]

در معادله‌های بالا، \(A_s \) سطح مقطع فولادهای عرضی است. \(e_{58} \) و \(e_{085} \) مقدار فشاری بین معکوش شده، \(k_1 \) عرض بین خامه‌ها s_i، \(A_s \) مقطع مربع عرضی، \(k_2 \) عرض بین خامه‌ها b، \(f_{le} \) مقدار و \(f_{co} \) کرنش‌های منظم بر اساس معادله‌های زیر، می‌توان نمودار نش-کرنش بین را رسم کرد، شکل (1).

\[f_{c} = \left[2\left(\frac{f_{le}}{e_{58}} - \frac{f_{co}}{e_{01}} \right) \right]^{0.5} \]

به بعد می‌آید [3].

\[f_{cc} = f_{le} \]

که در آن معادله‌ها، \(f_{cc} \) مقدار فشاری بین معکوش شده، \(f_{co} \) مقدار فشاری بین معکوش شده، \(f_{le} \) مقدار فشاری بین معکوش شده، \(k_1 \) ضریب افزایش مقدار فشاری بین معکوش شده. زیرا در مقدار این زیر به دست می‌آید [3].

\[k_1 = 1 - \frac{v}{v} \]

از آنگاه که مقدار \(k_1 \) برای بین‌های مختلف و همچنین در فشارهای متفاوت عددی ثابت نیست، پژوهشگران معادله‌های دیگری برای مقدار \(k_1 \) پیشنهاد کردند. از جمله معمول‌ترین آن، معادله تجربی ریچارد و همکاران [5] است که به صورت زیر ارائه شده است.

\[k_1 = 6.7(f_{le})^{-0.17} \]

همچنین باید اضافه کرد که معادله (3) نتیجه مقدار با فشار جانی یک‌نواخت کاربرد دارد، به عنوان مثال در مقطع دایره‌ای شکل

\[f_{cc} = \frac{f_{le}}{e_{01}} \]

در شکل (1)، از معادله زیر به دست می‌آید [3].

\[f_{cc} = \frac{f_{le}}{e_{01}} \]

که فشار جانی یک‌نواخت کاربرد دارد. به عنوان مثال در مقطع دایره‌ای شکل، که شکلی یک‌نواخت از پوست فولادی و با فولادهای عرضی، یک‌نواخت این معادله با پاسخ‌های قابل قبول می‌دهد، ولی در مقاطعی نظر مقطع مربعی شکل که فشار جانی یک‌نواخت نیست، بوده‌است.
جديدی که ارث تاوم جعبه فولادی و فولادهای عرضی را در نظر گرفته، ارائه شود.

اکنون اگر از معادله‌های (14) و (15) مقدار فشار جانی ناشی از جعبه فولادی وارد بر هسته بینی به دست آید، آدن از معادله‌های (6) و (8) فشار جانی ناشی از فولادهای طولی و عرضی وارد بر هسته بینی محاسبه شود، بر رویم که بار این فشارهای جانی معادله‌های زیر به دست آمده‌اند:

\[k_1 = 6.7(f_{lc} + f_{lp})^{0.17} \] (17)
\[f_{cc} = f_{co} + k_1(f_{lc} + f_{lp}) \] (18)
\[k = \frac{k_1(f_{lc} + f_{lp})}{f_{co}} \] (19)
\[e_1 = \frac{f_{co}}{601(1 + 5k)} \] (20)
\[e_85 = 260p_{61} + e_{085} \] (21)
\[\rho = \frac{\sum A_s + 2t}{bs} \] (22)

نمودار تنش-کرنش مقاطع محورشده ستونهای بینی مسول تقویت شده با صفحه‌های فولادی را می‌توان با استفاده از معادله‌های زیر در پایه‌های کرنش داده شده و بر فرض کنترل لغزش بین ورق فولادی و بین بسته آورد.

\[f_c = f_{cc}(2\frac{f_{cc}}{e_1} - \frac{e_85}{e_1})^{0.5} \quad 0 < e_c < e_1 \]
\[f_c = f_{cc} + 0.15f_{cc}(e_1 - e_c) \quad e_1 < e_c < e_{20} \]
\[f_c = 0.2f_{cc} \quad e_{20} < e_c \]

5- اندرکنش بارمحوری-لنگر خمشی ستون

با توجه به مطالب ذکر شده در بخش‌های قبل، در ادامه نمودار اندرکنش بارمحوری-لنگر خمشی ستون مقدار مقطع ستون بین مسول و بین مسول تقویت شده با ورق فولادی، با استفاده از روش سعی و خطای انرژی مورد ارائه می‌شود. در حالی که این تریب است که با فرض صفحه‌بندی مانند مقاطع در قبیل و بعد از بارگذاری و انتحاب یک کرنش فرضی برای آخرین تار ناحیه فشاری، محل تار خشک تعیین می‌شود سپس با استفاده از این به‌انجام و بر اساس تعریق در مسیر انتحاب فرض محل تار خشک بررسی می‌شود.

3- رفتار بین در ستون جعبه‌ای فولادی آکنده از بین

اکنون ستون جعبه‌ای فولادی آکنده از بین بی‌دود فولادهای طولی و عرضی مورد بررسی قرار می‌گیرد. بررسی آخرين تحقیقات انجام شده نوست آبانی و همکاران (4) برای بین‌های با مقاومت شرایط 20 تا 50 Mpa به محقق شده که با تکنیک آزمایشگاهی تقارن بیشتری دارند رفتار شده است:

\[R = \frac{b}{t} \left(12(1 - v^2)F_y \right) \] (14)
\[f_{lp} = -6.5R \left(f_{cc}^{0.46} + 0.12(f_{cc})^{1.03} \right) \] (15)
\[f_{cc} = f_{co} + mf_{rp} \] (16)

در این معادله‌ها، فشار جانی وارد از طرف پوسته به هسته بینی و ضریب بین 4 تا 6 و نابعی از نسبت ابعاد و خواص فیزیکی مواد خواهد بود. در مقاطع جعبه فولادی آکنده از بین، برای 4 پیشنهاد شده است.

4- معادله‌های پیشنهادی برای رفتار ستون بین مسول

تقویت شده با ورق فولادی

هنگامی که بحث مقاومی ستون مطروح می‌شود، ستون جعبه‌ای فولادی طولی و عرضی نمی‌گیرد شده با جعبه فولادی محورشده که نور خواده بود. اکنون هیچ یک از پژوهش‌ها پاسخگویی اثر محورشده‌گی تأمین جعبه فولادی و فولادهای عرضی نیستند. در این مقاله سعی بر آن است که با ترکیب معادله‌های کلاسیک و پژوهشگاهی گذشته، معادله‌های
جدول 1 - مشخصات مصالح نمونه‌های مورد بررسی

<table>
<thead>
<tr>
<th>مصالح</th>
<th>f_c (MPa)</th>
<th>f'_c (MPa)</th>
<th>E (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پنل</td>
<td>25</td>
<td>-</td>
<td>20000</td>
</tr>
<tr>
<td>فولادهای طولی</td>
<td>40</td>
<td>300</td>
<td>20000</td>
</tr>
<tr>
<td>فولادهای عرضی</td>
<td>30</td>
<td>300</td>
<td>20000</td>
</tr>
<tr>
<td>ورق فولادی تقویتی</td>
<td>25</td>
<td>400</td>
<td>20000</td>
</tr>
</tbody>
</table>

ترتیب بیشترین مقدار لنگر در این پژوهش، لنگر مناظر نیروی بارند غربی (C_end) ، نیروهای ناشی از پوشش تین (C_side) و نیروهای ناشی از آرام‌کننده کشی و فشاری (C_f) و برقراری معادله‌های تعادل مقطع (تعادل نیروهای داخلی با یک بار محوری خارجی) سبب خصوصی و امکان و آزادی نکرده مقدار E (محل نار خلی) به‌دست می‌آید. سپس با انجام یک پرگیمر حول مبانی تار مقطع، مقدار لنگر مقطع منشأ و لنگر نیروی محوری تعیین می‌شود.

$$\alpha = \frac{1}{f'_c} \int_0^{f_c} \frac{f_c}{f_c} \, dB$$

$$\gamma = 1 - \frac{\frac{1}{\alpha} \left(\frac{f'_c}{f_c} \right)^2}{\frac{f'_c}{f_c}}$$

سؤالی که مطرح می‌شود در این است که این نمونه‌ها به چه مرحله‌ای ادامه یافته‌اند. به عبارت دیگر یا این نمونه‌ها به چه کرنش مقاومت خواهد کرد. در پاسخ به این سؤال، می‌توان یک نمودار از این چنین به طبق تحقیقات انجام شده مورد بررسی کرنش را وارد شده در این نمونه‌ها به اندازه‌ای تغییر می‌دهد. نتیجه‌گیری‌های این نمونه‌ها این مقدار را در حدود 0/35 تا 0/150 در نظر می‌گیرد. اگر چه مقدار کرنش نهایی نیروی بارند غربی با مقدارهای پایین‌تر و نهایت محصور شده تا 0/800 خواهد رسید. به علت این نمونه‌ها به این نمونه‌ها (آب‌ها) این مقدار 0/010 تا 0/0800 در نظر گرفته و در طراحی‌ها مقدار 0/010 را بپذیرد است.

در این پژوهش با توجه به محصول محصول‌های و همچنین بارگذاری مقاطع از شروع بارگذاری تا حد نهایی، کرنش نهایی بین 0/0700 در نظر گرفته شده است. به این
شکل ۴ - نموداران کرکشن بارمموسی - لنگر خمشی نموده ۰.۸ محصور شده توسط فولادهای عرضی و ورق فولادی

شکل ۵ - نموداران کرکشن بارمموسی - لنگر خمشی نموده ۰.۰ محصور شده توسط فولادهای عرضی

بارگذاری و سایر پارامترهای مؤثر برانتارکشن بارمموسی - لنگر خمشی که مورد مطالعه این پژوهش نیستند، حذف شوند. در این نمودارها ضریب کاهش مقاومت نیز به کار گرفته نشده‌اند.

شکل‌های (۳) و (۵) نمودارهای انتارکشن بارمموسی - لنگر خمشی مقطع بین آرمه بدون ورق فولادی است. نمودار A معرف رفتار ستون مسلح به روش کلاسیک و بدون گرفتن اثرات محصورشدنگی و نمودار B رفتار ستون با اعمال اثرات فولادهای عرضی است.

در نمودار B زمانی که در محصوله صفر تا حدود ۷۰٪ لنگر نهایی، ستون تحت اثر بارهای علائم قرار می‌گیرد. روی کاهش بار مموری منوطا به لنگر مقام مشابه روش کلاسیک تیست. این بدان معناست که مقاومت ستونهای بین آرمه در

۷۰
شکل 8 – نموداراندکش یکبار‌موهوری - لگارتمی نمودهای b45-p0 و b45-p1.2

شکل 7 – نموداراندکش یکبار‌موهوری - لگارتمی نمودهای b30-p0 و b30-p0.8

شکل 10 – نموداراندکش یکبار‌موهوری - لگارتمی نمودهای b45-p0.8

شکل 9 – نموداراندکش یکبار‌موهوری - لگارتمی نمودهای b30 - p0.4, p0.6, p0.8, p1.0

صرف نظر می‌شود از سوی دیگر همان گونه که در این نمودارها آشکار است، مقطع دارای بیش‌ترین مقاومت خمشی در بار محروری حدود 20 تا 40 درصد بار محروری نهایی مقع لاستیک به مطابق سطح جامدتر و مقاوم‌تر، نمودارها مربوط به اثر مقع لاستیک در فشار عضو در شکل‌های (۱۰) و (۱۸) ارائه شده که از تنظیم شکل‌های (۳۱) حاصل شده‌اند.

همان‌طور که در شکل‌های (۸) و (۹) دیده می‌شود مقاومت خمشی سلتوپاهی تبن مصالح تقویت شده با صفحه فولادی نسبت به سیلیکون محلول بیش‌تر است، در حالی که افرانی مقاومت محوری آنچه‌گونه نیست. به علت این مقاومت خمشی در این نمونه‌ها در مقایسه سلتوپاهی ۳/۸ برای شده است، در حالی که مقاومت سلتوپاهی آن حدود ۱/۸ برابر شده است.

نمودار شکل (۹) که در ادامه آمده است، تأثیر تقویت

نتایج گیری

۷- روی به کارگرفتن شده در این نامه ها، در محدوده شکست مواد سلتوپاهی، چه در شرایط استفاده از ورق‌های تقویت و چه در شرایط استفاده از فولادهای عرضی بسیار محافظه کارانه است و از آنجا که بیش‌ترین تعداد
به حداکثر مقدار می‌رسد. تعداد این نوع ستونه‌ها در سازه‌های بلند و با مقاطع ظرف قابل توجه است.

- مقام سازی ستونه‌ای بتن مسلح به شیوه بوش‌ش داده با ورته‌های فن‌لادی، یکی از روش‌های کارآمد و آسان مقام سازی است. از مزایای بارز این شیوه، در دسترس بودن محصول تقویتی و سهولت اجرای آن است. ضمن اینکه محصورکردن هسته بعنای افزایش مقاومت ستون و کنترل شکل پذیری آن نیز می‌شود.

- نمودارهای ارائه شده می‌توانند نمونه‌هایی برای اصلاح روشهای موجود بودن در مقام سازی سازه‌ها باشند. ولی پاداری می‌تواند که در حال حاضر امکان استفاده کاربردی به استناد آن وجود ندارد.

- ستونهای سازه‌ها را ستونهای مایع که در آنها نسبت بار محوری به لنگر خمشی زیاد است، تشکیل می‌دهند. بنابراین نیاز به بازگیری در معاوضه‌های و منحنی‌های تداخلی P-M ستونهای ضروری به نظر می‌رسد.

- در سایر اعمال بار محوری بسیار زیاد، اختلاف میان روش کلاسیک و روش پیشرفته به تدریج و به مقدار کمی کاهش می‌یابد.

- در ستونهای با بار محوری متوسط و لنگر خمشی نسبتاً زیاد و در ستونهای اثر و بلند که به دلیل اثرات Δ P - P0 پایید در یکی بار محوری مشخص لنگر بیشتری را تحمیل کنند و همچنین افزایش نیرو M و نسبت به ستونهای کوتاه مشابه احتلاف بین روش کلاسیک و روش دقیق پیشرفته مراجع

