Mellat-e-adeyi harkht yak feqehr dar-ejriyan pousal

Sedeh Murthooyi
Danekehade mohendesi makanik, danesheh seyyyed asafehan

(3arifam mazhal: 4/12/1387-3arifam nesehe neyahi: 8/12/1387)

A Numerical Study of Drop Motion in Poiseuille Flow

S. Mortazavi
Department of Mechanical Eng., Isfahan University of Technology

Abstract: The cross-stream migration of a deformable drop in two-dimensional Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (<1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For a viscosity ratio 0.125, the drop moves toward the centre of the channel while for the ratio 1.0, it moves away from the centre until halted by wall repulsion. The rate of migration increases...
with the deformability of the drop. At higher Reynolds numbers (5-50), the drop either moves to an equilibrium lateral position about halfway between the centerline and the wall for the so-called Segre-Silberberg effect or undergoes oscillatory motions. The steady-state position depends only weakly on the various physical parameters of the flow but the length of the transient oscillations increases as Reynolds number is raised, the density of the drop is increased, or the viscosity of the drop is decreased. Once the Reynolds number is high enough, the oscillations appear to persist forever and no steady state is observed. The numerical results are in good agreement with experimental observations, especially for drops that reach steady-state lateral position.

Keywords: Drop, Poiseuille flow, Deformation, Viscosity ratio, Equilibrium position, Capillary number.

1- مقدمه

قطرات كه دریک کالان در یک سیال غوطه وردن در بسیاری از تحولات صنعتی اتفاق می‌افتد. جداسازی و جبران آب و ضایع در خطوط لوله مالهایی از این بیشتر جریان‌ها هستند (1 و 2). در این باره یک اف‌ف شرکت مشخص، دبی جریان دریک کالان بستگی به توزیع قطرات در سطح مقطع کالان دارد. به‌значن مخازن در رفع قطرات و محل تاعید نهایی آنها بسیار مورد علاقه است. تعدیل محقق این مشکل را مطالعه کرده‌اند اما بیشتر آنها روی جریان در عددهای محدود از این صفر یا مانند یک کره کرده‌اند. در اینجا از رفتار قطرات را در یک محدوده برکت در ارائه بررسی می‌کنیم. این شرایط به‌خصوص دررابری با جریان در حالات نیروی تقل ناحیه‌هایی اهمیت دارد و اندام قطرات نسبتاً بزرگ است.

مطالعات اولیه تجربی توسط برتر (3) داده و تحقیق است. مخازن در دارات جامد و قطرات بدون نیروی غوطه وردن در حالات ویژه ریزیده تابعی صفر توسط گول سیمیس و میسون (4 و 5) در جریان درون لوله مطالعه شده است. آنها هر مخازن در رفع قطرات بالایی است. در مطالعات انجام شده توسط کارلین، گول سیمیس و میسون (6) دریک دارات مناسب در جریان داخل لوله در ارائه ریزیده که از هر دهانه‌ی دریک دارات در حالات بالا و ثابت می‌باشد که دارت‌های کردن مشاهده نکردند. آزمایشات انجام شده توسط کارلین، گول سیمیس و میسون (7) در یک قطعه که قطع‌کننده‌اندازه‌گیری شد. آنها مشاهده کردند که قطرات تغییر شکل پذیر اگر چسبندگی آنها کم باشد به طرف محو لوله مهاجرت می‌کنند (مشابه حاله جریان خشک)، اما درنبی چسبندگی زیاد مشابه به دارت

114

مطالعه تغییر تغییر در جریان برخی شکل محیطی اند به طرف مرکز کانال مجاورت می‌کند. تشایر دیواره‌ها یک نقطه تعادل که عبارت است از H1/2 یک نقطه تعادل که عبارت است از H1/2 و تغییرات این نقطه تعادل که عبارت است
معادلات ناوبری استوکس پیشین می‌شود. یک معادله برداری را
می‌توان برای کل میدان جریان با دو عضو اکنون با دو عضو اکنون
وسیبی‌گری به‌طور نابینه تغییر می‌کند و با دو عضو اکنون
کش‌شکن سطحی به‌صورت یک تیروی کلی حجمی که روی مزرع
دو سیال متمرکز است در نظر گرفت. معادله به میدان عبارت
است از:
\[
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \frac{1}{\rho} \mathbf{F} + \nu \nabla^2 \mathbf{u}
\]
\[
\nabla \cdot \mathbf{u} = 0
\]

شکل 1- هندسه در نظر گرفته شده برای تاشوهای سازی یک قطعه در
یک کانال مستطیلی. یک گرادیان فشار ثابت جریان را به حرکت
در می‌آورد

بهینه سازی و مکانیکی‌های به دست دیواره و پ接著 کانال مجاورت کنن. تاشوهای سازی‌های به دست دیواره یک به دست مسیر در جریان ساده
برای توصیف کنن. مولتیپلیس سایزی ساده، نتایج آنها به نظر اخلاقی هستند. نتایج آنها به نظر اخلاقی هستند.
تارکت ناب‌اندی در زمینه میدان جریان معادله زیر را اضافه کند.
\[
\nabla \cdot \mathbf{u} = 0
\]

شکل 2- معادلات سطحی و پارامترهای بدون بعد

حرکت غیر دائم یک قطعه تیونتی دریایی سیال تیونتی با

116
که عبارت از گرداورد فشار خارجی مشخص شده است v_0 و v' گرداورد فشار اختلاف است و به شورت جزي از جواب محاسبه می‌شود. سرعت جریان در اینجا به شورت پرتویلی سرعت سهمی مربوط به گرداورد فشار اعمال شده در حالی که هیچ ارتباطی ندارد. یک فریم با شعاع a از یک تابع پرتویلی سرعت سهمی تغییر شکل می‌یابد. اما کشش سطحی سرعت تغییر شکل قطعه را محدود می‌سازد و سرعت جریان به عنوانی فقرط نظری تغییر می‌کند. چون گرداورد فشار مشخص شده است، دبی حجمی در حالی که یکی نیروی مقاومت صرف نظر است، با پرتویلی ورودی وری و تا وقتی که فقرط نسبت به سیال می‌باشد، جابجایی دانشی باش، نتایج درحالته H را به سیال ریوندز Re و پرتویلی G، نسبت دانشی هر نقطه سطحی به سیال ارتفاع کالان H، چسبندگی و دانشی سیال فقرط به سیال p_0، نشان داده می‌شود و سیال محیطی دارای چسبندگی H درحالته H کالان به شورت مرتبه از ارتفاع Re ریوندز K به نگه داشتن تغییر شده است و مناسب شده به تن باید اعتبار صرف نظر باشد و کشش سطحی به تابع چرب حسابی هم در سیال به شورت مقدار نقطه توسط می‌باشد θ نشان داده می‌شود. این نقطه توسط میدان θ جهت به طریق لاگرانژی حکمران داده می‌شود (جهت) اگر جهت در جریان کشیده شود این نقطه از هم فاصله می‌گیرد و به هنگام محاسبه شعاع احتیاج سطح فقرط وضعیت باید ایجاد می‌شود. به عبارت دیگر محاسبه احتیاج سطح که در محاسبه نیروی کشش سطحی اهمیت دارد با دقت بسیار باین انجام می‌گیرد. برای ثابت نگه داشتن تمرکز نقاط، هنگامی که فاصله بین آنها زیاد می‌شود، نقاط جدید بین آنها اضافه می‌شود. همچنین وقتی فاصله بین نقاط از مقدار
شکل ۲- اثر تمرکز شبکه روی ماهورت عرضی یک قطره. خطوط چربان در بالا و سرعت و موقعیت عرضی بر حسب موقعیت طولی در پایین بار دادن در اندازه شبکه رسم شده است. خطوط چربان در طرف چپ مربوط به شبکه 4 و خطوط چربان در طرف راست مربوط به شبکه 128 است.

معنی کمتر می‌شود ناچار حذف می‌شوند. به عبارت دیگر یک شبکه بدون سازمان بر روی مرز بین دو سیال وجود دارد. در حالی که بعدی این شبکه از الپاتری خلق تدریج شده است و در حالی که بعد سطح بین دو سیال با شبکه بدون سازمان که از الپاتری خلق شده است مدل می‌شود. این شبکه بدون سازمان به طریق آگرانزی روی شبکه ثابت اولیه حرکت داده می‌شود. به‌طوری که نقاط شبکه بدون سازمان از روی سرعت موجود در شبکه ثابت می‌باشند و سپس گسترش آن سرعت به دست آمده از شبکه ثابت نقاط موجود دیگر شبکه بدون سازمان پاره. آگرانزی حرکت داده می‌شود. بدین سبب می‌توان چگالی و میدان چسبندگی را در سیال دوپیسی در هر مرحله از محاسبه نشان داد. به عبارت دیگر با توجه به موقعیت جدید شبکه بدون سازمان نقاطی از شبکه ثابت که در داخل شبکه بدون سازمان قرار دارند خصوصیات سیال داخلی و نقاطی که در خارج از شبکه بدون سازمان قرار می‌گیرند دارای خصوصیات سیال خارجی می‌شوند. معادله بیضوی برای فشار با روش چند شکه‌ای [۳۶] ونی دانیشی استفاده

\[\text{استقامت سال ۲۵، شماره ۲، اسفند ۱۳۸۵} \]

\[\text{۱۱۸} \]
شکل ۲- آزمایش‌های اثر اندازه‌گیری شکل در اندازه‌گیری مشاهده‌ام از تغییر سرعت در مرکز کانال و قطر قطره است

خطو ط پر در مربوط به شکل است و خطوط خصیچی مربوط به شکل است.

خطو در جریان در زمان پک‌های برای هوش می‌شود و قطعه به حال تعادل رسیده است تشان داده شده‌اند. قطره با شکلی ریز کمی از قطره با شکل درشت حرکت می‌کند. در غیر این صورت تابع تغییر خودی با هم دارند. نقطه تعادل به اندازه ۰٪ ارتفاع کنال با هم تفاوت دارد و اختلاف بین سرعت محرور در حدود ۶٪ سرعت محرور است. شکل (۳) آزمایش‌های دیگری را در اعداد ریتولد باقی می‌ماند و درکی نسبت جسمانی تفاوت با شکلشان های ۰.۲ و ۰.۵۳ تشان می‌دهد. موقعیت عرضی قطره نسبت به زمان سری‌شده است و سرعت محرور نسبت به موقعیت محروری برای ۳۷ و رسم شده است اگرچه قطره با نسبت از دیداره رها شده است که در عکس تعادل اسکیپ از طول سیستم نوسان می‌کند و قطره در حدود ۴۰ برای ارتفاع کانال قبل از رسیدن به حالت دامنه حرکت می‌کند. با افزایش

۲-۴- مهاجرت عرضی یک قطره در حدود ایرانی ناجی

مطالعه حرکت یک قطره تغییر شکل پدید را با تعدادی تشانبر سازی دو بعدی در حدود ایرانی ناجی شروع می‌کند. چون جریان شیبی تحت تأثیر اثرات چسبندگی است، عدد بدون بعد مناسب عدد می‌گین (Ca) به تغییر شکل کوچک و قطرات کوچک است. اما تشانبر سازی‌ها اجازه تغییر شکل دلخواه و اندازه قطره محدود را می‌دهند.

۱۱۹

استقلال، سال ۲۵، شماره ۲، اسفند ۱۳۸۵
نحوه گرفتن برای قطره پلاستیکی ممکن است به سطح خارجی آن است. موضعیت تغییرات نسبت به موضعیت محوری در شکل (5) رسم شده است. قطره با چسبندگی کم به طرف مرکز کانال مهاجرت می‌کند و قطره با چسبندگی زیاد از مرکز کانال دور می‌شود که در توافق با پیش‌بینی چن و لیل است اما مهاجرت بسیار ضعیف است و زمان نسبتاً طولانی برای رسیدن قطره به حالت تعادل لازم است.
چون در شیب‌رانی عرض روی بادباده این روی بادباده است، در اعداد ریتون‌لژر بیش از پایین قدم زمانی به علت پایداری بسیار $Re_{y}=1$ کوچک می‌شود. بنابراین می‌توان در این مقدار تغییر شکل قطره کوچک است و نسبت دانسیته به 1 این شکل (6) در خروجی مرکز با برای دو قطره با چسبندگی $Re_{y}=1$ در حضور تغییر شکل قطره با چسبندگی زیاد ندیده که مرکز قطره است در حالی که مرکز

می‌توان پارامترها را طوری انتخاب کرد که محوریت‌های نظری تقریباً آزمایش شوند.

برای تحقیق وایستگی مهاجرت نسبت به چسبندگی شیب‌رانی در $Re_{y}=1$ انجام شده است انتخاب شد.

$Re_{y}=1$ ابتدا حالت ریتون‌لژر پایین را در نظر می‌گیریم. محاسبات روی یک شبکه 44 انجام شده‌اند. عددهای $Mo_{y}=25$ و فاصله بین اعداد $Ca_{y}=20$ و نسبت دانسیته به 1 است، شکل (6) در خروجی مرکز با برای دو قطره با چسبندگی $Re_{y}=1$ در حضور تغییر شکل قطره با ۷۹۳۹ نشان می‌دهد. مرکز ناحیه گردشی در داخل قطره با چسبندگی زیاد ندیده که مرکز قطره است در حالی که مرکز

شکل 5- موقعیت تغییر قطره نشان داده شده در شکل ۴ بر حسب موقعیت طولی

شکل 4- خطوط جریان برای یک قطره در $125/100=1$ با $Re_{y}=1$ و $Ca_{y}=20$ و $Re_{y}=1/125=1$ با $Ca_{y}=20$ و $Re_{y}=1$ است. برای خطوط جریان در طرف چپ نسبت چسبندگی برابر $125/100=1$ است.
شکل 6 - موقعیت عرضی و سرعت محوری بر حسب موقعیت طولی برای تعدادی قطره با $\text{Re}=1$ و نسبت چسبندگی و نسبت دانسیتی متفاوت

$\text{Re}=1$, $\text{Ca}=1/125$, $\text{We}=1$, $\text{We}=1/4$, $\text{Ca}=1/125$, $\text{We}=1$, $\text{Ca}=1/125$

گرفته‌اند. شکل‌های (الف) و (ب) نتایج را برای چهار نوع نسبت چسبندگی $\text{Ca}=1/125$, $\text{We}=1$, $\text{We}=1/4$, $\text{Ca}=1/125$ و نسبت دانسیتی متفاوت $\text{Re}=1$, $\text{Ca}=1/125$, $\text{We}=1$, $\text{Ca}=1/125$

شکل 7 - خطوط جریان برای یک قطره در $\text{We}=1$, $\text{Ca}=1/125$, $\text{We}=1$, $\text{Ca}=1/125$

در حالت کیفر $\text{Re}=1$, $\text{Ca}=1/125$, $\text{We}=1$, $\text{Ca}=1/125$ در فضایی تزیینی به دیواره بالایی رها شده است. قطره به چسبندگی کم در (الف) به طرف مرکز کانال مهاجرت می‌کند. اما این قطره به چسبندگی بالا (الف) به طرف دیوار مهاجرت می‌کند. این نتایج دیواره در توافق با پیش‌بینی نظیره

چن و لیل است. قطره‌هایی که به طرف دیوار مهاجرت می‌کنند

ioskashteq, 1385

استقلال، سال 1385، شماره 3، اسفند
شکل ۸-الف) موقعیت تعادل و شکل قطره در \(\text{Re}=180, \alpha=\beta=8 \) در اعداد و بر میانگین.

\(W_e=16 \) خطوط جریان برای قطره با

و موقعیت تعداد را برای سه قطره با عدد و بر را ۱۶، ۱۵، ۱۴ و \(\alpha, \beta=8 \) و \(\text{Re}=180, 2125 \) است. عدد ریلبرگ ذره و عدد ریلبرگ کانال \(\text{Re}_r \) است. با افزایش عدد ور بحرانی تغییر شکل بیضی معیوب می‌باشد. خطوط جریان در حال حاضر در شکل (۸-ب) برای قطره با بیشترین تغییر شکل نشان داده شده است. \(W_e=16 \) نقطه عرضی قطره نشان می‌دهد سه موقعیت مغناطیسی در شکل (۸-الف) نشان داده شده است. فاصله تعداد در دیوار بالایی برای قطره طبقاً دایره برای ۱۸ \(Z_{\text{پر}} \) است و قدری بیشتر از مقدار پیش بینی شده نتوانست تغییر بیشتری را در حالت اکتشال و لای [۱۹] و وسیع و کادک [۲۰] و شونبرگ و هیچین [۲۱] به ترتیب ۰/۱۹، ۰/۱۸۵ در حالت حذف گره هک و عدد ریلبرگ کوچک است. اما نتیجه ما نزدیک به شکل‌های از این نتایج با استفاده از مدل مکانیکی که موقعیت تعداد را باعث نسبت دانسته می‌باشد (۱۴۲۵/۰/۱\(a=\beta \) هر دو با یک نرخ به طرف مرکز کانال مهاجرت می‌کند (ح) و (د) که تصادف می‌کند و یا انتخاب نشان دادن نسبت دانسته تأثیری روی مهاجرت قطره ندارد.

سرعت مغناطیسی قطرات نسبت به موقعیت مغناطیسی در شکل (۸) نشان داده شده است. مطلوب با پیش بینی چنین و لای قطره همیشه نسبت به جریان بدون قطره عقب است (سرعت آن از سرعت جریان بدون اکتشال کمتر است). قطره‌های با عدد آزمایشگر بیشتر کم تدریج نسبت به قطرات با عدد آزمایشگر کمتر حکم می‌کند. اما سرعت لغزش (اختلاف سرعت قطره با سرعت جریان بدون قطره در همان محل قطره) در هر دو حالت ناجایی است.

۴-۳-۱ مهاجرت یک قطره در اعداد ریلبرگ محدود

در این بخش ما حکایت قطره را در اعداد ریلبرگ بالاتر مطالعه می‌کنیم و اثرات یارانه‌های مربوط به تخصیص مورد بررسی قرار می‌گیرند.

۴-۳-۱-۳ نتیجه شکل قطره

برای قطرات در حجمی استوک هر نتیجه شکل، مهاجرت عرضی قطره است. برای نشان دادن اثر تغییر شکل برای اعداد ریلبرگ غیر صفر در شکل (۸-الف) شکل تعداد

:\(122 \)
سیال بدون وجود قطره در مرکز قطره تعیین می‌شود در
شکل (9 ب) نشان داده شده است. قطره‌ها همچنین نسبت به
جربان بدون اختلاف عقب اند که در توافق با پیشینی نظریه
چن و لیل است. سرعت لغزش برای قطره با بسیاری تغییر
مکانیکی را در مقابل جربان از خود نشان می‌دهد. کاهش
سرعت لغزش در مجاوره‌ی کم‌کمی تغییر کمیت می‌شود
قطره تغییر شکل یافته کمی سریعتر نسبت به قطره تغییر
شکل ناپایدار در طول کانال حرکت کند. قطرات در عدده
ریونلز صفر نیست و تغییر شکل یافته می‌تواند مهاجرت
کند. نابرابری می‌تواند مقدار همانی یک قطره
تغییر شکل یافته برای عدد ریونلز غیر صفر اثر را ببیند
تغییر شکل یافته ای نرفته است. در اعداد ریونلز در
نظر گرفته شده در این بخش اثرات ایرانس شیلدترین و نقطه
تعادل توسط اثر سگر و سیل‌برگ به دست می‌آید.

شکل 9- مقطعی عرضی و یا (ب) سرعت لغزش بر حسب موقعیت تلوی برای قطره‌های نشان داده شده در شکل (8)

متغیر شهری کرده‌اند. جربان در فاصله بین ذره و دیواره
با یک نیروی روان‌گذاری رانش می‌شود که توسط فنگ
مسود کننده هندسی نامیده شد. این نیرو با افزایش اندازه
ذره زیاد می‌شود. اما در همیشه دارای سرعت لغزش منفی
است و از جربان بدون اختلالات عقب است. سرعت لغزش
منفی وانحنا بر پایه سرعت یک نیرویی تولید می‌کند که ذره
را از مرکز کانال دور می‌کند. قطره تغییر شکل پایه
نازکتر است اختلاف سرعت در عرض قطره همیشه کمتر از
قطره کروی است بنابراین نیروی وارداتی قطره را به طرف
دبیاره می‌رود که جوابی است بنابراین نقطه تعادل توزیعی
بر مرکز کانال است. این اثر با وجود این کوچک است. سرعه‌های
لغزش که به صورت سرعت محوری قطره منفی‌سایه سرعت

شکل 10- موقعیت عرضی بر حسب موقعیت محوری برای یک قطره (ب) با $\alpha=\beta=\gamma=0.5$، $\omega=10$, $Re=200$ و $Re=500$، $Re=1000$ و $Re=5000$، $Re=10000$ و $Re=50000$ (8)

132
استقلال، سال 1380، شماره 2، اسفند 1385
تغییراتی که رفتار قطرات با سیالات متفاوت بررسی می‌شود، نسبت چسبندگی ممکن است که تغییر می‌یابد (با فرض اینکه اندوزه قطرات در اینجا ثابت ماند). در این بخش ما نسبت چسبندگی را برای تغییر شکل تناوبی کم گر در آزمایش‌های متبنا می‌گیریم.

ویژگی اصلی ویژگی اصلی چسبندگی (We=0.5) برای اعداد رینولدز خیلی کم در بخش (ب) بررسی شد.

در شکل (11) سرعت عرضی برای یک قطره بر حسب موضعی عرضی برای یک قطره و نسبت چسبندگی (k=8.2) و چهار عدد رینولدز متفاوت (Re=100, 250, 500) می‌باشد. سرعت عرضی برای یک قطره به طوری که در صورت محیطی کمک به محور ماند.

پارامترهای دیگری جزیره ضخامت انعطاف

شکل 11- مولفه سرعت w نسبت به محکم یک قطره در چهار عدد رینولدز متفاوت: (الف) Re=10, (ب) Re=25, (ج) Re=75 و (د) Re=100.

"\(\alpha = 8 \), \(We = 100 \)"
موقعیت اولیه متفاوت نشان می‌دهد قطعه‌ای که دراینده‌ی نزدیک به مرکز کانال به طرف دیواره حرکت می‌کند و به دیواره به‌خود کرده و به طرف مرکز کانال حرکت خود را ادامه می‌دهد. و در حوالی نصف فاصله بین دیواره و مرکز کانال به سرعت صفر می‌رسد. و سپس به طرف نهایی دیگر کانال مهاجرت کرده و حرکت به همین ترتیب تکرار می‌شود. قطره‌هایی که دراینده‌ی نزدیک به دیواره به دستا به محل که تقریباً نصف فاصله بین دیواره و مرکز کانال است حرکت کرده اما از اینجا بعد به طرف دیواره حرکت می‌کند و همان سرعت قطره اول را تکرار می‌کند.

نتایج ما بنا به کاریس (۷ و ۴) متفاوت است. آنها مشاهده کرده‌اند که قطرات با چسبندگی خیلی کم به طرف محور کانال حرکت می‌کنند. اما عده‌ای دیگر در خیلی باینی بوده است (خیلی کمتر از یک) و در بعضی از نقاط افزایش تغییری نیافته و در چنین شرایطی قطرات به مسیر مرکز کانال می‌شود. اما در واحد می‌توان امر را این‌طور باهاشی فضتها قطره به حالت تکرار متفاوت نیافته است. تعادل که تقریباً نصف فاصله دیواره تا مرکز کانال است توانست می‌دهد.

۱۲- مولفه سرعت و بر حسب مختصات z و دو قطره با Shutterstock

خطوط پر مربوط به یک نقطه در یک موقعیت عرضی مشخص و خط چین مربوط به یک قطره با موقعیت عرضی متفاوت است.

تعادل حرکت می‌کند قطعه‌ی با چسبندگی کمتر به دیواره نزدیکتر می‌شود. با این حال که قطره‌ها متفاوت از حالت تعادل فاصله می‌گیرند و قطره‌ی با چسبندگی کمتر حتی بعد از اینکه به انتها ۲۰ برای ارفند کانال حرکت کرده است همچنان دارای نوسانات است. از طرف دیگر قطره‌ی با چسبندگی بالاتر سرعت مستهلک می‌شود.

در چنین شرایطی قطره به حالت تکرار متفاوت نیافته است. تعادل که می‌توان امر را این‌طور باهاشی فضتها قطره به حالت تکرار متفاوت نیافته است. تعادل که تقریباً نصف فاصله دیواره تا مرکز کانال است توانست می‌دهد.

۱۳- ژاله تختیاتی اثر نسبت دانشی

اگر نسبت دانشی روی مهاجری منجر به نشان می‌دهد قطعه‌ای با نوسانات قطره با Shutterstock

برای ریسک رفتار قطره در چسبندگی‌های بالاتر تختیاتی شرایطی

سرعت عرضی را نسبت به موقعیت عرضی برای دو قطره با دو

۱۲۵ استقلال، سال ۲، شماره ۲، شماره ۱۳۸۵
گرفته تشابه سازی سه بعدی برای مدل سردره ی نزدیک به زمانی طولانی‌تر دارد و به همین دلیل ما تعدادی تشابه‌سازی سه بعدی در عدد روندز لاین و برای شبکه نسبتاً درشت ارائه می‌دهیم. برای اینکه شرایط تشابه‌سازی سه بعدی و تشابه‌سازی دو بعدی تا حد امکان یکسان باشد ما از یک دامنه باریک در جهت اول استفاده می‌کنیم (0/3V0H). اندلار شکل طراحی از 24×160 به ترتیب در جهات x و z است. در شکل (15) قطره و خطوط جریان در حالی دوایی در روی یک صفحه که از مرکز قطره می‌گذرد (y=180/180V0H) برای 10 و 0/5 و Re=10 و 4 و α=37 و Re=10 و 4 و α=37 و α=125 در شکل (16) یک مقایسه بین تشابه سازی سه بعدی نشان داده شده در شکل (15) و یک تشابه سازی دو بعدی با همان پارامترهای توسط رسم موفقیت عرضی و سرعت محوری قطره نسبت به موقعیت محوری انجماد است که نقطه تعداد برای قطره‌های سکبی‌تری کمی زیر می‌گذرد به دیواره است. توجه شود که افزایش دانسیتی قطره دارای همان اثر کاهش چسبندگی قطره است و این مسئله بیشتر می‌کند که این اثر عدد روندز سیال قطره است که باعث تشکیل نوسانات می‌شود. اما تغییرات چسبندگی دارای اثرات شدیدتر است. همانطور که در شکل (14) نشان داده شده است. دراین شکل موقعیت عرضی قطره نسبت به موقعیت محوری برای دو نسبت دانسیتی و دو نسبت چسبندگی رسم شده است.

4-4-1 تشابه‌سازی سه بعدی
نتایج ارائه شده درخشانه قابل برای جریان دو بعدی با استفاده از یک شبکه نسبتاً ری انجام شد و تشابه سازی برای زمان نسبتاً طولانی برای به‌دست آوردن جواب‌های دانسیتی انجام

اشتغال سال 35، شماره 2، اسفند 1385

176
دریافت می‌کنید که در توافق با تابعی در دو بعدی است. این اثر قابل برای حالات دو بعدی در بخش (4-3) بحث شده است.

5 - نتیجه‌گیری

درک یک ویژگی در حالی که در خود توانایی انرژی نسبی قبلاً برای تابع واقع شده است. نسبت در حالی نسبت و نسبت تابع سازی به حالت دو بعدی محدود شده. اما یک تعداد تابع‌های سازی به دو بعدی نسبت و نسبت سازی در نظر گرفته شده است.

در سطح محسوس ارائه شدن. برای دسته اول (4-3) عدد ری‌پلز (Re) دارای ویژگی یک چنار است. نتایج نشان داد که حکمت یک ویژگی به‌طور کلی به نسبت چسبندگی سیال گرفته است. تشییع‌سازی دو بعدی برای دو شیب انجام شده است که نشان دهنده اثر اکتشاف شیب شده است. اندازه شیب برای حالت سه بعدی و برای حالات دو بعدی با شیب درست‌تر یکسان است. موقعیت حذف فلوئو سه بعدی با موقعیت قطعه دو بعدی در حالی بشری درست قبلاً یکسان است اما قطعه سه بعدی دارای سرعت محوری نسبتاً بیشتری است این احتمالاً به عنوان اختلال کمتر ایجاد شده توسط قطعه در حالت سه بعدی است که به نیروی در دم کمتر نسبت به حالت دو بعدی منتهی می‌شود. اثر نسبت چسبندگی در شکل (17) نشان داده شده است. موقعیت مشترک فلوئو سه بعدی نسبت به مشخصات محوری برای نسبت چسبندگی = 2.04 می‌شده است. بکارگیری نسبت چسبندگی قطعه سه بعدی به موقعیت حساسیت نژادی شده است.

شکل 17- اثر نسبت چسبندگی روی موقعیت تعادل برای یک قطعه سه بعدی با

موقعیت عرضی بر حسب موقعیت محوری رسم شده است.
کن. برای حالات مطالعه شده در اینجا تغییرات در موقعیت قطره به‌جای سیال محیطی دارد. یک قطره با چسبندگی کم به طرف مرکز کانال حرکت می‌کند. در حالی که یک قطره با چسبندگی قابل ملاحظه نسبت به چسبندگی سیال محیطی به طرف دور از مرکز کانال حرکت می‌کند. این نتایج در تفاوت بین پیش‌بینی نظری‌های چیم و لیل [18] و مراحل زو و پوزنیکس [28] است. قطره‌های با عده ریوندلز (1) با سمت مرکز کانال حرکت می‌کنند و یا به یک موقعیت تعادل بین مرکز و دیواره می‌رسند. برای دسته نهم ناشی‌ها به‌خصوص (4-3) عدد ریوندلز کانال بسیار بیشتر 0-50 می‌باشد. قطره‌های کوچک با به یک موقعیت تعادل در فاصله‌ای حدوداً نصف فاصله‌ی مرکز کانال و دیواره اسکان می‌بندند و یا به یک حرکت نشانه‌نوازی عده دوم در به‌های حرکت خوبی این نتایج عده دوم دیده به‌بینی محتوای دیده نشان نشاند. موقعیت قطب حرکتی که اسکان می‌بیند به‌طور نسبتاً ضعیف وابسته به پارامترهای مختلف جریان است. افزایش عدد ریوندلز موقعیت تعادل را کمی به طرف دیواره حرکت می‌دهد در حالی که افزایش چسبندگی قطره با افزایش تغیر شکل قطره (با کاهش عدد ویر) افزایش دارد. افزایش دانش قطب حرکتی باعث بهبود محل تعادل به طرف دیواره حرکت می‌شود.

واژه‌نامه

1. Poiseuille
2. Segre-Silberberg
3. micro-gravity
4. creeping flow
5. Stokes flow
6. capillary number
7. lateral force
8. singular perturbation
9. boundary-integral
10. Couette flow
11. finite difference/front tracking
12. staggered grid
13. Marker points
14. FISHPACK
15. resolution test
16. code validation
17. geometric blocking

مراجع