توسعه یک فرمول品ی با عملکرد برتر برای تسخیر موج ضریب‌های ایستاده
در جریان با گستره کامل رژیم سرعت

مسعود دریبدی، واهاب مکاری‌زاده و احسان روحی
دانشگاه مهندسی هوافضا، دانشگاه صنعتی شریف
پژوهشکده انتزاعی و محیط زیست، پژوهشگاه ترو
گروه مهندسی ماکینک، دانشگاه فردوسی مشهد

چکیده - هدف از ارائه این مقاله کاربرد یک روش خطي سازي نوين برای کنستون سازي عبراتهای جابه‌جاي معادلات اولير - شبه يک بعدی روی شکله جابه‌جا تشده است. استفاده از شکله جابه‌جا تشده در روش حجم محدود منجر به ايجاد ميدان فشاري نوساني غير طبیعي شده که برای رفع آن استفاده از شکله بابکه و سرعت دوگانه پيشنهاد شده است. در این روش دو مولفه سرعت به ترتيب سرعتهای جابه‌جا و گرادیان در اين تحقیق تلفيق مناسب معادلات پيوستگي و ممنتوم به دست می‌آید. استفاده از این ویژگی سبب همگنستي قوي بين معادلات حاکم بر جریان می‌شود. در كار حاضر، براي خطي سازي جملات غير خطی از روش خطي سازی مفاهيم نويتون رافسون استفاده مي‌شود. در اين خطي سازي عبراتهای جابه‌جایي معادلات حاکم اولير با رعایت مفاهيم فیزيكي و مولفه سرعت بالا تعریف شده خطي سازی می‌شود و به عنوان سه می‌شود که هم میان سرعت و هم نفس می‌شوند. در مولفه جگالی را در خود متحمل می‌دارند. پس از پایان به راحتی قابلیت کاربرد در جریان با گستره کامل رژیم سرعت از دارا هستند. در نهایت عملکرد خطي سازي توسعه داده شده حاضر برای تحليل جریان در شبیه‌سازی همگرا و اولير به کار گرفته می‌شود. نتایج به دست آمده حاکی از عملکرد بر مراه بهتر روش حاضر در حل معادلات شبه يک بيدی اولير بوده به طوری که قابلیت تسخیر موج ضریب‌های ایستاده در جریان با ماهیت تمام زمین سرعت را به راحتی داراست.

ویژگان کلیدی: معادلات اولیر، جریان با تمام زمین سرعت، شبیه‌سازی همگرا- اولیر، شکله جابه‌جا تشده، خطي سازي نويتون- رافسون

(دریافت مقاله: ۱۳۹۳/۰۳/۲۸- دریافت نسخه نهایی: ۱۳۹۳/۰۷/۱۲)
Developing a Shock-Capturing Formulation with Higher Performance to Capture Normal Standing Shock in All-Speed Regime

M. Darbandi, V. Mokarizadeh, and E. Roohi
Department of Aerospace Engineering, Sharif University of Technology
Energy & Environmental Research Center, Niroo Research Institute

Abstract: The main objective of the present study is to utilize a novel linearization strategy to linearize the convection terms of the quasi-one-dimensional Euler governing equations on collocated grids and to examine its shock-capturing capabilities. To avoid a pressure checkerboard problem on the collocated grids, it is necessary to utilize two velocity definitions at each cell face. Similarly, we define two velocity expressions at cell faces known as convecting and convected velocities. We derive them from the linearization procedure. The performance of the new formulation is then investigated in a converging-diverging nozzle flow. The results show great improvement in both the performance of the original formulation and in capturing shocks. The results also indicate that the new extended formulation is robust enough to be used as an all-speed flow solver.

Keywords: Euler flow equations, All speed flow regime, Convergent-divergent nozzle, Collocated grid, Newton-Raphson linearization

The main objective of the present study is to utilize a novel linearization strategy to linearize the convection terms of the quasi-one-dimensional Euler governing equations on collocated grids and to examine its shock-capturing capabilities. To avoid a pressure checkerboard problem on the collocated grids, it is necessary to utilize two velocity definitions at each cell face. Similarly, we define two velocity expressions at cell faces known as convecting and convected velocities. We derive them from the linearization procedure. The performance of the new formulation is then investigated in a converging-diverging nozzle flow. The results show great improvement in both the performance of the original formulation and in capturing shocks. The results also indicate that the new extended formulation is robust enough to be used as an all-speed flow solver.
کستره کامی از رژیم‌های سرعت را فراهم می‌کند. از آنجا که
نقطه دوگانه مولفه‌های سرعت در خط حساب زایی این عبارت‌ها ظاهر می‌شود باید است خطا زایی مذکور براساس در نظر گرفتن
نقطه هر دو مولفه سرعت و با حفظ مفاهیم پایان آنها صورت
گیرد.

یکی دیگر از مباحث تحقیقاتی مهم روز در حل عدید مفاهیم مولفه‌های سرعت در محورهای همبستگی، موضوع ارائه گروه‌بندیهای عددی
توانمند برای حل جریان از رژیم‌های مادون صوتی تا رژیم‌های
موفق صوت و همین طور رژیم‌های سرعت نزدیک به صفر
است. در پیشرفت و جریان سرعت نزدیک به صفر
استفاده قرار گرفت. مورد این مورد، چنین نوع سرعتی که ممکن است باعث ایجاد تغییرات فشار در محل نهایی شود می‌گردد. این
نقطه تغییرات فشار در محل سرعت این طرح می‌باشد.

در اصل آیه پیشنهادی برای گزینه از مدل‌های حیات نوبسانتی،
با توجه به شیوه ابتکار ممکن است وبه صورت

در آرایش شبکه جایی جدا شده روش‌های گوناگونی برای
جلوگیری از وجود آماده می‌باشد سرعت و فشار
پیشنهاد شده است. یکی از این روش‌ها (که در شرح مختصر
نیز از آن استفاده شده است) استفاده از یک سیستم
دوگانه روی خطوط مصرف این است. در این خصوص روش
چو [2] دو نوع مولفه سرعت به نام‌های سرعت حریم یا
جایه جاکلیند و سرعت ممتنی یا جایه جا شونده را معرفی
کرده که سرعت اول در مفاهیم پیوستگی و سرعت دوم در
معادله ممتنی اصلی می‌باشد. می‌باید این مطلب که
روش پیشنهادی به شکل مفصل در شرایطی که تغییرات
پیشنهادی را تحت خط حساب می‌تواند همراه با
سرعت‌های هم‌فاز سازی در سطح حریم کنترل شود. رحلماً
همکاران [4] این روش را به درختان ممکن کرده به
تغییرات فشار در تقسیم روی حجم کنترل اصلاح کرده. مستقل
از این آیه پیشنهادی برای گزینه از مدل‌های حیات نوبسانتی،
یکی از مهم‌ترین مبدا به شکل مفصل در شرایطی که

بوده که نیاز به خصوصیات محاسبات نیز دارند. از طرفی،
روش‌های پیشنهادی برای خصوصیات مدل‌های مختلف ممتنی به
ظراف شدن مقدار سرعت مربوط به تکرار قبل در این

معادله می‌شود که باید به شیوه مفصل توسط مفاده‌گر صفر

جاذبه‌اری کردد.

الگوریتم سبیله و بررسی‌های تحقیقی دانش اکثر که به

 فقط برای جریان شریک ناپذیر کاردینال داشته توسط عددهای
محقق تغییر نیز دورالی و همکاران [4] برای حل جریان‌های ناپذیر
پذیری تحقیق داده شد. مرجع اخیر روش تینون-رنسون را برای

خطی سازی عبارت شار حریم در معادله پیوستگی به کار بسته

است. این خصوصیات نقص فعلی هم برای مولفه چگالی و هم

برای مولفه‌های سرعت در نظر می‌گیرد. به طوری که اگر

در تغییرات سرعت را فراهم می‌سازد. به طور مشابه، روی

خطی سازی فوق را می‌توان برای عبارت‌های غیرخطی جایگزین

در معادلات ممتنی نیز به کار برد. این روی همکاران افتراق

کارایی یک فرمول‌بندی تراکم پذیر برای کاربرد حل جریان روی
شکل ۱ - شیبک بندی میدان جریان درون شیشه

می‌توان معادلات بقای جرم، معمول و انرژی را به کمک کمیتهای پایه به صورت زیر نوشت:

\[
\frac{\partial \Phi}{\partial t} + \frac{\partial \psi}{\partial x} = S
\] \hspace{1cm} (1-الف)

\[
\begin{bmatrix}
\rho A \\
\rho u A \\
\rho e, A
\end{bmatrix} = \begin{bmatrix}
\mu A \\
\mu u^2 A \\
\mu \psi, A
\end{bmatrix} \quad S = -\frac{\partial p}{\partial x}
\] \hspace{1cm} (1-ب)

\[
e_1 = e + \frac{u^2}{2} = c_v T + \frac{u^2}{2} \quad h_1 = e + \frac{p}{\rho}
\] \hspace{1cm} (1-ج)

که در آن آ A سطح سطل سلول C_i C_p ضرایب گرمایی ج؛ و T سرعت، h_1 انتزاعی بالایی T دما، u سرعت، \rho چگالی و \tau زمان هستند. برای حلال دستگاه معادلات فوق نیاز به اندازه‌گیری جریان حل است. در تحقیق حاضر، معمولی‌شانگ ر. داشتن شار معمولی \rho T سطح و \rho T سطح و \rho T سطح نشان داده شد که به کمک معادله حالت نسبت تغییرات عدد ماخ و امکان حلال ممکن است.

شکل ۲ - معادلات حاکم

با صرف‌نظر کردن از اثرات اصطکاک (لزجت) در جریان درون مجرای شیبک به بعیدی و فرض آپراتیک بودن جریان
4- گسسته سازی معادلات حاکم

انگرال گیری از معادله پیوستگی در روز حجم محدود

در اینجا استفاده از قضیه دیورانس برای عبارات شار جرمی

نتیجه می‌دهد:

\[\frac{\partial (pA)}{\partial t} + \int (pA) dA = 0 \]

همان‌گونه که در بخش (2) مذکر شد شیمی رویدار حاضر یک
روش کاملاً متفاوت می‌باشد که می‌تواند به طور کامل یک
عکار گذرا در زمان حضور می‌گذرد و عکار گذرا با
تقریب جرم ابزاره تنها زده می‌شود. بنابراین این استدلال،
معادله (2) به صورت زیر خلاصه می‌شود:

\[\frac{\Delta x}{\Delta t} (p_p - p_p^0) + (p_u)_{e} j_e - (p_u)_{w} j_w = 0 \]

بالانتیوس به‌طور مفهومی تقریب از زمان گذشته می‌باشد.
پارامترهای \(p, p_e, p_w \) به ترتیب پیانک سطح مقطع مرز
شریک و مرز غربی با مساحت کل در گره \(P \) ایند. با توجه به
اینکه چگالی یک مغناطیس اصلی نیست نیاز به اعمال عوامل
خطی سازی محسوب برای عدم وجود اینکه کار در معادله (3) است. یک
روش خطی سازی ساده عبارت است از:

\[\rho = \rho(p) = \frac{P}{RT} \]

که در این حالت خطی سازی نقطه فعلی چگالی مستقیم به فشار
تفاوتی می‌شود. در عکس‌های فیت مقدار دما از تکرار قبل چگالی
می‌شود. خازین باید با انتخاب کردن \(P \) به مفهوم تکرار قبل می‌باشد. یک
روش کاملاً باید در بعضی مسایل این است. که به‌طور کامل
داهی شد. به‌طور مثال:

\[p = p + \frac{\partial p}{\partial \rho} (p - P) + \frac{\partial p}{\partial T} (T - T_0) \]

برای محاسبه عبارات مشتق چگالی، از معادله (4) به‌طور
مناسب مشتق می‌گیریم به‌طور که:

\[\frac{\partial p}{\partial \rho} \frac{1}{R} \theta \quad \frac{\partial p}{\partial T} = \frac{P}{RT^2} \]

این شیوه خیلی دقیق و نسبت بسیار فعالی به بنگاه دمای
برای حضور در معادله پیوستگی می‌دهد. با توجه به اینکه دمای
نماهنده واقع معادله از مزایا است به این شیوه خیلی سازی
به‌طور مشابه به کمک انگیزگی گیری روز یک سلول دلخواه
و استفاده از قضیه دیورانس، فرم انگیزگی معادله مشتمل در
قابل شدن به کد و می‌تواند به صورت زیر در می‌آید:

\[\int \frac{\partial (pA)}{\partial t} dA + \int (pA)^2 dS = - \int \frac{\partial (pA)}{\partial x} dA \]

\[(p_u)_{e} - (p_u)_{w} + P (j_e - j_w) = 0 \]

\[\frac{\Delta x}{\Delta t} \int [p_{pp} - (p_{pp})_{e}] + (p_{uu}) e - (p_{uu}) w \]

\[\rho = \rho(p) \]

در کار این خطی سازی ساده، خطی سازی کاملاً نزدیک وجود دارد
که در پی‌بردن مغناطیسی فعال بیشتر است. این نیاز به
نام خطی سازی نیز مورد بهتر بوده به‌طوری که تئوری
زا برای هر متغیر سرعت و چگالی فراهم می‌کند.

\[\rho = \frac{P}{RT} \]

که در این حالت خطی سازی نقطه فعلی چگالی مستقیم به فشار
تفاوتی می‌شود. در عکس‌های فیت مقدار دما از تکرار قبل چگالی
می‌شود. خازین باید با انتخاب کردن \(P \) به مفهوم تکرار قبل می‌باشد. یک
روش کاملاً باید در بعضی مسایل این است. که به‌طور کامل
داهی شد. به‌طور مثال:
5- محاسبه مقدار متغیرهای وابسته به روي سطح حجم می‌توان یک معادله کلی به شکل دو معادله (9) و (11) به صورت زیر پیمان داشت:

\[
p_{uu} = 2 k_1 \bar{u} (p_{uu}) - k_2 \bar{u}^2 + k_3
\]

و در معادله (11) نتیجه می‌شود و اگر \(k_0 = 0 \) باشد خطا سازی بدون رابطه (9) را نتیجه می‌دهد. بحث کاملاً در مورد خطا سازی معادله ممتنم در پبخش (5-2) ارائه شده است.

مشابه معادلات پیوستگی و ممتنم، معادله پیوستگی انرژی به شکل انتگرالی به صورت زیر در می‌آید:

\[
\int \frac{\partial (\rho \varepsilon A)}{\partial t} \, dA + \int [(u + pue) A] \, ds = 0
\]

(13)

با انجام انتگرالکی روي یک سری اعداد اختباری با سطح غربی و شرکی \(w \) و \(\varepsilon \) مشابه معادله انرژی بدست می‌آید:

\[
\frac{\Delta}{\Delta t} (\rho E_p - \rho E) + (\rho w) \frac{\partial p}{\partial t} + (\rho u) \frac{\partial u}{\partial x} = 0
\]

(14)

در معادله فوق \(p_{ee} \) نتیجه می‌شود به کمک روش تاپون-رافسون \(E \) نسبت به هر دوی \(e \) و \(w \) خطا سازی شود. از طرفی خود \(e \) نیز به صورت زیر خطا سازی می‌شود:

\[
E = c_v T + \frac{U}{2p}, \quad e = c_v T + \frac{U}{2p} + \frac{F}{p}
\]

(15)

عبارت گذاری در معادله (14) با استفاده از معادله (15) به صورت زیر خطا سازی می‌شود:

\[
\frac{\Delta x}{\Delta t} (\rho E_p - \rho E) + \frac{\Delta y}{\Delta t} \left[\frac{U}{2p} + \frac{F}{p} \right] + (\rho w) \frac{\partial p}{\partial x} + (\rho u) \frac{\partial u}{\partial x} + (\rho w) \frac{\partial v}{\partial x} + (\rho u) \frac{\partial v}{\partial x} = 0
\]

(16)

ان در طرفی، عبارتهای جایگی جایگی \(pue \) در معادله (14) نخست با معادله (11) به شکل دو معادله \(pu \) و \(e \) خطا سازی می‌شود:

\[
pue = (pu) e + (eh)pu - (pu)
\]

(17)

و سپس متغیر \(e \) از معادله (15) در آن جایگزین می‌شود:

\[
pue = (e + \frac{\bar{u}^2}{2} f) + (e, f) t - \bar{u}
\]

(18)

عبارت \(Pu \) در معادله (14) به نسبت به \(f \) و با روش تاپون-رافسون تبدیل و سپس نسبت به \(f \) و با روش تاپون-رافسون
عبارت های جایگزین به صورت بالادست و عبارت فشار به صورت اختلاف مکزی بر روی سطح سکول (به طور مشابه سطح شریک) تقریب زده می‌شوند:

\[
\frac{\partial e}{\partial t} = A_e e \left(e - \frac{e^2}{2} \right) + \frac{p}{\rho} u_e e \left(e - \frac{e^2}{2} \right) + \frac{\partial}{\partial x} \left(\frac{\partial (\ln A)}{\partial x} \right) \tag{22}
\]

\[
\frac{\partial f_0}{\partial t} = A_e f_0 \left(f_0 - \frac{f_0^2}{2} \right) - \frac{f_0}{\rho} u_e f_0 \left(f_0 - \frac{f_0^2}{2} \right) - \frac{\partial}{\partial x} \left(\frac{\partial (\ln A)}{\partial x} \right) \tag{23}
\]

\[
\frac{\partial p}{\partial t} = A_p \left(\frac{p}{\rho} - \bar{p} \right) \tag{24}
\]

با توجه به تقریب‌ها در نظر گرفتن شده برای عبارت‌های معادله (27) و جایگزین آنها در این معادله، مقدار دما در سطح سکول برحسب مقدار مغول‌های مجهول بر روی مراکز سکول مجاز از دست می‌آید:

\[
t_e = \frac{t_e}{1 + 2C_e} + 2C_e + \frac{1}{2C_e} T_p
\]

\[
+ \frac{C_e P_e}{p u_e C_e (1 + 2C_e)} \left(\frac{F_p - F_e}{P_p} - \frac{P}{P_e} \right)
\]

\[
- \frac{C_e P_e}{p u_e C_e (1 + 2C_e)} \Delta x \left(\frac{\partial (\ln A)}{\partial x} \right)
\]

\[
\frac{\partial}{\partial x} \left(\frac{\partial (\ln A)}{\partial x} \right) \tag{25}
\]

برای محاسبه مقدار دما مربوط به تکرار قبل که در بعضی محاسبات از جمله معادله (20) مورد نیاز است، از معادله فوق و یا از تقریب‌های بالادست استفاده می‌شود. همچنین برای محاسبه چگالی مربوط به تکرار قبل، از تقریب بالادست (ρp=ρp) (ρp=ρp) و یا از خطی سازی نیوتن-رافستون، معادله (5) به کمک متوسط‌گرای و داده‌های تست محاسبه می‌شود. برای محاسبه مجهول شار بر روی سطح سکول باید متوسط‌گرای محصول آن را به مراکز سکول هم‌سازه مربوط می‌کنیم:

\[
p_c \approx \left(p_{sp} + P_e \right) / 2 \tag{26}
\]

5-2 حل مدل میدان نوسانی فشار و محاسبه سرعت چاپ‌گذار کننده در روز سطح حجم میزان اگر مقدار شار جرمی محاسبه شده در معادله (26) هم در معادله می‌شود، می‌تواند از این معادله پوستگیکی (27) در معادله (26) یا جمله جایگزینی معادله (28) در معادله پوستگیکی (27) یا جمله جایگزینی بایستی استفاده شود.

\[
\frac{\partial e}{\partial t} + \frac{\partial u_e e}{\partial x} + \frac{\partial}{\partial x} \left(\frac{\partial (\ln A)}{\partial x} \right) = 0 \tag{27}
\]

مشابه سطح سکول که در مورد معادله می‌شود به معادله (26) و یا جمله جایگزینی (27) بایستی استفاده شود و محاسبه می‌شود.
این عبارت را می‌توان مستقیماً در معادله پیوستگی یافت.

معادله (2) به کار گرفته.

۳-۵ - اصل و بهبود‌های جابجایی در معادله منتقل

در نظر گرفتن نقش دو گانه سرعت در معادلات پیوستگی و منتقل، می‌توان می‌تواند در حالت دایمی به صورت زیر خلاصه‌شود:

\[
\frac{\partial (\rho u A)}{\partial x} = 0, \quad \frac{\partial (uA(\rho u))}{\partial x} + A \frac{\partial P}{\partial x} = 0
\]

(۳۹)

در این معادله، درابت ۱ و ۲ هر یک دارای مقایه خاص خود می‌شود. مولفه سرعتی که در جریان جرمی (ظرفی) شود سرعت جابجایی با کنش یا سرعت بقای جرمی نامیده می‌شود و مولفه‌ای که در جریان جابجایی وجود دارد سرعت جابجایی شاخص نام دارد که شار جرمی را از سطوح حجم می‌باشد. این می‌تواند پیوستگی و منتقل در معادله (۳۴) جایگزین شود به‌صورت می‌آید:

\[
\frac{\partial (\rho A)}{\partial t} + u \frac{\partial (fA)}{\partial x} + A \frac{\partial P}{\partial x} = 0
\]

(۴۰)

با استفاده از این معادله، معادله‌های برای منتقل به‌صورت می‌آید که آن را منتقل با کنش می‌نامیم. برای گسترش سازی معادله (۵) به این صورت عمل می‌شود که عبارت‌های داخل پرانتز اول مشابه با معادلات (۲) تا (۴) تقریب زده می‌شوند، عبارت اول پرانتز دوم به صورت مقدار معنای مسلسل و عبارت دوم در پرانتز دوم به روش بالا‌الدست تقریب زده می‌شود:

\[
u A \frac{\partial P}{\partial t} \approx \Pi e A \frac{\partial P}{\partial x} e
\]

(۴۱)

با جایگزینی معادلات (۳۴) و (۴۰) در معادله (۲۵) می‌توان در معادله (۲۵) مستقیماً به ما می‌آید که آن را منتقل با کنش می‌نامیم. این تقریب با علامت \(^{\hat{}}\) از منتقل جابجایی جا شوند در معادله (۳۴) می‌شود:

\[
\hat{f} = \frac{2C_e f e}{1 + 2C_e} P_F + \frac{C_e}{1 + 2C_e} (P_P - P_F)
\]

(۴۲)

\[
\hat{f} = \frac{f e}{1 + 2C_e} + \frac{C_e A e \frac{\partial P}{\partial x}}{1 + 2C_e} e
\]

(۴۳)

\[
\hat{f} = \frac{2C_e f e}{1 + 2C_e} P_F + \frac{C_e}{1 + 2C_e} (P_P - P_F)
\]

(۴۴)

\[
\hat{f} = \frac{f e}{1 + 2C_e} + \frac{C_e A e \frac{\partial P}{\partial x}}{1 + 2C_e} e
\]

(۴۵)
آنالیز

اگر خطي سازي نيون-رافسون را مجددا برای
کار بندی خواهم داشت:

\[u = \frac{\hat{u}}{p} \]

با قرار دادن معادله فوق در معادله (41) و پس از ساده سازی
داریم:

\[u \approx u + u \approx u - u \]

این خطي سازي كه تقسیم‌بندی برای بهره‌برداری از سرعت‌های
جایی جا شوده و جایی جا کننده در نظر می‌گیرد را خطي سازي
نيون-رافسون اصلاح شده (IRNL) می‌نامیم. مقدار چگالی نیرو
از تکرار قبلی جاگذاری می‌شود. با در نظر گرفتن این تقریب و
تعیین مولفه‌های مناسب، پاسخ معادله کلی که در برجام و
خطر سازی ساده و نيون-رافسون است به‌دست می‌آید. شکل
کلی این معادله به صورت زیر است:

\[u \approx u + u \approx u - u \]

که اگر \(k = 0 \) باشد خطي سازي ساده، یعنی معادله (41) و اگر
\(k = 1 \) باشد خطي سازي نيون-رافسون معادله (44) تابع
می‌شود. اگر مفاهیم سرعت‌های جایی جا شوده و جایی جا کننده
درهم آمیخته شود نوعی دیگر از خطي سازي به صورت زیر

نتیجه می‌شود:

\[u \approx u + u \approx u - u \]

که اگر \(k = 0 \) باشد خطي سازي ساده و اگر \(k = 1 \) باشد
آن گاه خطي سازي نيون-رافسون ساده (SNRL) تابع
می‌شود. در این تحلیل عمکترا روش خطي سازي موسوم به
رافسون اصلاح شده (IRNL) یعنی معادله (44)، و عمکترا
خطر سازي موسوم به نيون-رافسون ساده (SNRL) یعنی
معادله (46) با فرض \(k = 1 \) برای حل معادلات شبه یک
ب بعدی اولیه در شبیه‌سازی کارا و اگرا مورد بررسی قرار می‌گیرد
و نتایج به‌دست آمده با هم مقایسه و تفسیر می‌شوند.

۶- نتایج

فرمول توصیع بانده در این تحقیق غلیظ و حل جریان در
تعمیم رژیمهای سرعت در داراست. با توجه به این دانش،
به‌خشه نتایج ابتدا مطوف به ارائه انواع فرمالندی حاضر
برای حل جریان در گستره کامل سرعت موی شود. آن‌گاه
عمکترا در روش خطي سازي توصیع یافته و ساده
SNRL متغیر وریسی قرار داده می‌شود. مقایسه عمکترا
خطر‌سازی به‌دست یافته با خطي سزي ساده می‌تواند با
بررسی موضوع‌های زیر به شیوه بهتری انجام پذیرد.
موضوع آن مقایسه دقت گرفت در حل درک منظم خاص است. پر و واضح است که هرچه‌چند دقت جواب‌های
عوی ودست آمده از یک روش پیشتر باشد نشان دهنده
مزیت‌آوری روش است. در این راستا از فاکتوری به نام
تعداد تکرار متوسط استفاده می‌کنیم. موضوع سوم محدود
کاربرد روش است. همان‌گونه که می‌دانیم از پارامترهای
که می‌توان توسط آن سرعت رساندن به جواب بدتن در
مسایلی که محور استفاده از یک بعدی زمانی هستیم را
افراشی داد گام زمانی است. هر چه برای بوئینگ گام زمانی را
افراشی به‌دست دمای رساندن به جواب حالت دائم کوتاهتر
می‌شود. این امکان همگرایی با اداسه گام زمانی برگزتر
خود یک مزیت مهم می‌شود.

در بخش نتایج تایپیه‌زند آن هستیم که با اختصاص یک آزمون
مناسب اقدام به بررسی سه موضوع اشاره شده در پاراگراف
قبل کنیم. یکی از بهترین آزمون‌های پیشنهادی برای حالت
جریان در تعمیم رژیمهای سرعت آزمون جریان درون شبیه‌ساز
همگرا- و اکثری این گاه حل تحلیلی نیز هست. در شبیه‌ساز
گستره و سپس از سرعت‌ها به همراه یک نابینتی شدید استفاده
وجود دارد. انتهای روش عددی از این شده در این تحقیق محدود
به حل جریان در شبیه‌سازی می‌شود. در اینجا نتایج از هندسه
شبیه‌ساز برای بررسی عمکترا روش عددی در حل جریان با

\[u = \frac{\hat{u}}{p} \]

استقلال سال ۱۳۸۵، شماره ۲، مسئول ۱۷۵
شکل 2- هندسه پيرايش های 1 (پروپیل داخلی) و 2 (پروپیل خارجی)

سطح مقطع مربع در تمام زریمهای سرعت استفاده شده است. مسلم اینکه بزرگی عملکرد فرمولیندی توسه باشیم در یک هندسه که حضیرانی آن موجود است برای استفاده بهینه آن در مسائل پیچیده‌تر به همین حال حضیرانی آن و وجود نیازمندی ضروری اجتناب ناباید است. پروپیل شیپوره مورد استفاده در این تحقیق از معادله زیر به دست می‌آید:

\[\text{Area}(x) = 1 + m(x - 1/2)^2 \]

این معادله به گونه‌ای برگردانده شده که امکان پوشش گستره وسیعی از زریمهای سرعت از مخ تقریباً صفر تا مخ برای بالا را در یک هندسه ثابت فراهم آورد. ضریب \(m \) بکه عددی مناسب و ضریب اینگونه طول شیپوره ساخت، با تغییر این دو پارامتر، می‌توان سطح مقطع شیپوره را به‌طور دلخواه اندازه‌گیری کرد.

\[\text{Area}(x) = 1 + m(x - 1/2)^2 \]

\[m = \frac{\text{Area} - 1}{(x - 1/2)^2} \]

1- بررسی دقت فرمولیندی توسه داده

در بررسی اول، هدف انتخاب صحیح روش در حل جریان تراکم پذیر و معادل تراکم ناباید آن است. برای بررسی قابلیت روش حاضر در حل جریان تراکم ناباید، جریان تراکم ناباید با تراکم پذیری بسیاری در هندسه شیپوره شماره (1) مورد بررسی قرار گرفت. اگر سرعت جریان ورودی به این شیپوره 20/1 متر بر ثانیه باشد، حداقل سرعتان در گلگاه 10/1 متر بر ثانیه خواهد بود که معرض تراکم بزرگی ناباید جریان است. توزیع سرعت به دست آمده از حل جریان به صورت مراکم ناباید (یعنی چگالی ثابت) و تراکم پذیر (\(p = P/RT \)) با استفاده از \(\alpha = 20 \) کره در شکل (3) ارائه شده است. در شکل (4)، بکه پروپیل شیپوره متقارن دیگر، شیپوره 3 با نسبت ساخت ورودی به گلگاه 200 سرعت شده است. نتایج توزیع سرعت ورودی به‌طور مثال، این کناره‌گیری موانع صوتی در ساخت و هم‌زمانی با استفاده از مدل استفاده کرده است. سرعت این مدل دقا و با استفاده از شیپوره صوتی کوچکتر می‌شود. پروپیل شیپوره برگردانده شده مخ ورودی تا کمترین می‌شود.

شیپوره 1 در شکل (1) می‌تواند نسبت به گلگاه شیپوره متقارن است. این ویژگی این شیپوره در زریمه جریان‌ها دست در سمت چپ و راست گلگاه را در جریان‌های مداوم صوت فراهم می‌سازد. شرایط سری‌برای جریان به صورت تراکم ناباید با تراکم پذیر مادون صوت به این صورت است که در ورودی شیپوره سرعت و دما و در خروجی آن فشار تغییر می‌شود. برای هدست اوردون فشار در ورودی، معادله پیوسته حی می‌شود. مقدار سرعت و دما در خروجی‌ها برگردانده شده در داخل میدان جریان محاسبه

استقلال، سال 25، شماره 3، اسفند 1385

176
حل تراکم ناپایدار و تراکم پذیر برای این شیب‌های در شرایط سرعت ورودی 1 متر ثانیه با استفاده از 181 گرده در شکل (5) رسم شده است. شکلهای (3) و (5) بیان می‌دهد که فرمول‌بندی توسعه یافته در این بخش به راحتی هم در قابل جریان تراکم ناپایدار (چگالی ناپایدار) و هم در قابل جریان تراکم پذیر (چگالی متغیر) همگرا می‌شود و محدوده‌ای در کاربرد مانگهای پسی باین و حتی جریان تراکم ناپایدار ندارد. پس‌بازی از فرمول‌های چگالی میان از این توسعه یافته محدوده‌اند. همان‌گونه که انظار می‌رود جواب‌های تراکم ناپایدار و تراکم پذیر در محدوده‌هایی کاربردی موفق تاکتیک نشان نمی‌دهد.

در بخش دوم بررسی اقدام به حل جریان با تراکم پذیری

زیاد و وجود موج ضریب‌های در شیب‌هایی در شیب‌هایی که کم‌ترین شیب‌های خروجی 85 درجه یا بیشتر می‌باشد، در این راستا، موقعیت موج ضریب‌های این‌جای درون شیب‌هایی با تعیین مقادیر ضریب خروجی ثابت می‌شود. با کاهش فشار خروجی، موج ضریب‌های به طرف خروجی شیب‌های حکم‌کرده و به عنوانی محدوده

شکل 3- توزیع سرعت در حل جریان به دو روش تراکم پذیر و تراکم ناپایدار

شکل 5- توزیع سرعت در حل جریان به دو روش تراکم پذیر و تراکم ناپایدار

شکل 4- پروپل شیب‌های با نسبت مساحت (شیب‌های ناپایدار)
شکل ۷- توزیع عدد مای‌میناره‌ای تحلیلی با عدد مای‌میناره‌ای تحلیلی در سطح آزاد از شیره خروجی

برای شیره‌ای مالیاتی در شیره‌ه ۱

شکل ۸- مقایسه جواب‌های تحلیلی با عدد مای‌میناره‌ای تحلیلی در سطح آزاد از شیره

خروجی ۳۰ کیلو پاسکال

شکل ۹- مقایسه جواب‌های تحلیلی با عدد مای‌میناره‌ای تحلیلی در سطح آزاد از شیره

خروجی ۵۰ کیلو پاسکال

سرعت در شیره‌ه ۱، عدد مای‌میناره‌ای به مای‌میناره‌ای تعریف و گزارش می‌شود. توزیع عدد

ماه، شماره و جملات (که به ترتیب نسبت به شیره سکون،

دامای سکون و چگالی سکون به بعد شیدان) برحس طول به

بعد شیدش در شیره در شکل ۷ ترسیم شده است. در این شکل

گیران در شیره خروجی ۵۰ کیلو پاسکال با استفاده از ۲۰۱ گره به

صورت عددی حل شده که نتایج حاصل از بررسی در شکل (۸)

آورده شده‌اند. حداقل عدد ماخ در این آزمون حدود ۲/۵ است.

استقلال، سال ۱۳۸۵، شماره ۲، استقدام
نمودارهای به دست آمده بیانگر این تکنیک‌های به فرمول‌بندی حاضر به خوبی قابلیت تحلیل مناسب‌تری در تمام زیست‌های صوئی را داراست. مجدداً این آزمایش بیان می‌دهد که تفاوتی بین نتایج دو روش خطی سازی وجود ندارد و هر دو روش از دقت مناسبی برخوردارند. مقایسه مشکل‌ها (7 و 8) با شکل (۱) نشان می‌دهد که استفاده از ۴۰۱ گره برای گسنج سازی میدان محل و مقدار با استفاده از ۲۰۲ گره جوله‌ی دیفتری به دست می‌دهد. این باید به دقت است که بررسی نتایج حلقیاتی نشان داد که افزایش تعداد گرانه با بهبود.
۱۴۰۱ گره تاکنون مهمی در بهبود حلقیات گرفته شده است.

۲-۶- مقایسه عملکرد دو روش خطی سازی

در شکل‌ها (۹ و ۱۰) تعداد تکرار متوسط در هر گام زمانی (۶) برای رصد دهنده غیر همگرا به حاکمیت ۵×۴=۲۰ تعداد آزمایشات مختلف برای دو روش خطی سازی معرفی شده در شیپوره (۳) برای حالتی که فشار خطی سازی متوسط در شیپوره ۵۰ کیلو پاسکال است، رشته را به دست آورده است. هدف از این شکل‌ها مقایسه عملکرد دو سرعت همگرا در دو روش خطی سازی نسبت به یکدیگر است. نتایج SNRL و INRL نشان می‌دهد که در قدم‌های زمانی اولیه تعداد تکرار برای رسیدن به حاکمیت سیبی بررسی افزایش تعداد تکرار متوسط به تعداد زمانی بعدی است. این به دنبال شکل گرفتن اولیه موج ضربه‌ای است.
شکل 12- درصد کاهش نسبی تعداد تکرار متوسط در فضای خروجی 85 کیلو پاسکال برای رسیدن به حد همگرایی به INRL و SNRL و برای دو روش خطی سازی در سه حد همگرایی مختلف شده است. در این شکل می‌توان درصد نسبی اختلاف تکرار بین دو روش را با تغییر پارامترهای عدد کورانت و حد همگرایی مشاهده کرد. برای کل، نتایج برگرفته از شکل‌های (9) تا (11) به خوبی در این نمونه قابل پاسخ است. همان‌گونه که ملاحظه می‌شود نفوذ فاصله بین عبارت بر روی رسیدن به همگرایی کم‌تر از INRL و SNRL و بردن به عبارت همگرایی در فضای 85 کیلو پاسکال برای رسیدن به کوچک‌ترین معیار همگرایی، برای با 42 درصد است که بهترین عبارت کاملاً برتر روش INRL در تسخیر موج ضریب‌های ایستاده است.

شکل 11- مقایسه متوسط تعداد تکرارها در دو روش 85 کیلو پاسکال برای حد همگرایی INRL و SNRL و برای دو روش خطی سازی در سه حد همگرایی

خطی است در حالی که در روش خطی سازی ساده ایفاییش از محدوده عدد کورانت 37/10 به بعد شکل غیر خطی و بلکه نمایی به خود غرفته است. این نظر عملی است که استفاده از این خطی سازی برای حل مسائل در محدوده کورانت فوق از نظر محاسباتی به ضریب جهت صرف نیست. اگر بالا به ترتیب حداقل عدد کورانت در روش INRL و SNRL و بردن به عدد با می‌توان درصد افزایش محدوده عدد کورانت را به صورت زیر تعريف کرد:

$$\eta = \frac{(C_1 - C_S)}{C_S} \times 100$$

با توجه به اطلاعات داده شده در شکل‌های (9) تا (11)، ملاحظه می‌شود که کم‌ترین عدد کورانت برای حد همگرایی عبارت کاملاً برتر روش INRL است. به چشم 13/3 و 47/6 درصد است. با بررسی این مقادیر به خوبی می‌توان محدوده کارایی این دو روش خطی سازی را ملاحظه کرد. در ضمن، برای انتخاب محدوده عدد کورانت بین دو روش بر حسب عدد کورانت به صورت دقیق اندازه‌گیری پارامتر درصد بهبود همگرایی κ به صورت زیر تعريف می‌شود:

$$\kappa = \frac{(N_S - N_1)}{N_1} \times 100$$

که به ترتیب معرف تعداد تکرار متوسط برای SNRL و بردن به حد همگرایی تعريف شده در روش‌های است. در شکل (12)، پارامتر κ بر حسب عدد کورانت INRL است. 1385
خود معادلات حاکم بر جریان استفاده می‌کند. این باعث می‌شود تا نه تنها اصل هر معادله به‌مانند اصل آن معادله ترکیب شود، بلکه همبستگی معادلات با یکدیگر افزایش و عملکرد کورنیوم به‌روز یابد. علاوه براین سرعت‌های جابه‌جا شونده و جابه‌جا کننده تعیین شده در اصول دارای مفاهیم میکروکاننده به‌روز گردیده این مفاهیم در خطی سازی معادلات موجود از این اشکال برای عملکرد روش پایه می‌شود. در این راستا این مفاهیم در خطی سازی عبارت‌های جابه‌جای معادلات ممکن حفظ شد. این قابلیت نه تنها موجب افزایش سرعت همگرایی خطی سازی جدید شد بلکه محدوده

وامز تامه

مراجع