Analytical Assessment of the Behaviour of the Masonry Wall Strengthened by Steel Mesh and Shotcrete

F. Nateghi, and A. S. Ghods
International Institute of Earthquake Engineering and Seismology, Tehran, Iran

Abstract: An effective approach for strengthening masonry buildings is to apply shotcrete reinforced with mesh on the surface of the wall. It is not possible to assess the behaviour of coated walls solely using analytical approaches based on simple equations of theory of elasticity without the use of numerical methods. Unreinforced masonry wall is modelled in this study using the finite element software “ANSYS” to assess the behaviour of walls strengthened with reinforced jacket. The accuracy of the model is ensured by calibrating the model against results obtained from laboratory tests. Then the calibrated model is
1- مقدمه

یکی از روش‌های موثر و آسان در مقاورسازی ساختمان‌های بنا روش استفاده از روش بر روی سطح دیوار است که معمولاً به‌صورت بنیادی به سطح دیوار اعمال می‌شود. اعمال روکش بر روی سطح به دیوار باعث افزایش سختی، مقاومت و نیز بهبود مشخصات لرزه‌ای دیوار‌های جدید می‌شود.

بررسی کمی میزان افزایش مقاومت و همجنسی ارزیابی رفتار دیوار تقویت شده با شبکه آزمایشی و شاتکرت با روش تحلیل محدوده امکان‌پذیر نیست. در مقاله‌ای اخیر روش‌های غیرهآرای برای بررسی رفتار دیوارها و ساختمان‌های بناهای خواجه‌داند، لیکن نتایج این تحقیقات زمان قابل اعتماد است که تابع آنها با آزمایشگاه‌های نموهای مشابه تطبیق داده شود. لذا در این پژوهش، به‌منظور ارزیابی مقاومت دیوار آجری تقویت شده، در ابتدا مدل‌سازی محدود دیوار آجری غیر مسلح به کمک نرم‌افزار ANSYS ساخته و تحلیل قرار گرفته و از نتایج آزمایش‌ها معادله‌هایی مناسب با آن برای تفاوت و کلیه‌سازی مدل به‌گیره غیرهآرای استفاده می‌شود. در هر دو عدد دیوار‌ها انجام شده است که در نهایت از مقایسه‌ای برخی از رفتار دیوار آجری غیر مسلح و نظر تقویت شده شاخص و نتیجه‌گیری بر مورد تأثیر روکش مسلح بر رفتار دیوار آجری به عمل آمده است.

2- آزمایش مقاومت جانبداران دیوار آجری غیر مسلح

نتایج آزمایش‌ها استفاده شده در این پژوهش مربوط به گزارش آزمایش‌های رفتار دیوار آجری غیر مسلح تحت شرایط برون‌سنجی تجربی روشهای مقاومسازی ساختمان‌های آجری نیم‌اسکلت
شکل 1 - مشخصات هندسی نمونه اصلی و مدل آزمایشگاهی

شکل 2 - رزیم پار جانی سیکلی اعمال شده به دیوار مدل [21]

شکل 3 - ترکهای ایجاد شده در دیوار آجری [21]
کسره‌ای که هدف، ساخت مدل نامنگان است، هم آجرها و هم ملات با استفاده از این اسید، لیست با درنظر گرفتن خصوصیات مقاومت متفاوت برای هر یک مدل شده‌اند.

ابعاد آجرهای درنظر گرفته شده در مدل رایانه‌ای 20\times 10\times 5\text{cm} و ضخامت لایه‌های افقی و قائم ملات نیز پیامبر آزمایش‌گاهی به لحاظ هندسی به‌صورت یک‌در یک در نمایش گرفته شده و در نهایت آزمایش‌گاهی تحقیق در آثاری به‌صورت تدریجی و در چندین مرحله وارد شد. بررسی نتایج تحلیل مشاهده شد که در نهایت آزمایش‌گاهی، نشان از انطباق نسبتاً مناسب نتایج تحلیل با نتایج آزمایش داد.

برای مثال به موارد ذیل می‌توان اشاره کرد:

1. نمودار جابجایی افقی تحلیلی و آزمایش‌گاهی انتهای دیوار در شکل (7) ترسیم شده است. (لازم به ذکر است در شکل (7) نمودار جابجایی تحلیلی انتهای دیوار به‌درستی جابجایی سیار کم دیوار در محورهای استیلک (قبل ترک) و به‌لحاظ محدود‌شده در حافظه راهنمه تکنواخت در از آنجایی که هدف، ساخت مدل نامنگان است، هم آجرها و هم ملات با استفاده از این اسید، لیست با درنظر گرفتن خصوصیات مقاومت متفاوت برای هر یک مدل شده‌اند.

ابعاد آجرهای درنظر گرفته شده در مدل رایانه‌ای 20\times 10\times 5\text{cm} و ضخامت لایه‌های افقی و قائم ملات نیز پیامبر آزمایش‌گاهی به لحاظ هندسی به‌صورت یک‌در یک در نمایش گرفته شده و در نهایت آزمایش‌گاهی تحقیق در آثاری به‌صورت تدریجی و در چندین مرحله وارد شد. بررسی نتایج تحلیل مشاهده شد که در نهایت آزمایش‌گاهی، نشان از انطباق نسبتاً مناسب نتایج تحلیل با نتایج آزمایش داد.

برای مثال به موارد ذیل می‌توان اشاره کرد:

1. نمودار جابجایی افقی تحلیلی و آزمایش‌گاهی انتهای دیوار در شکل (7) ترسیم شده است. (لازم به ذکر است در شکل (7) نمودار جابجایی تحلیلی انتهای دیوار به‌درستی جابجایی سیار کم دیوار در محورهای استیلک (قبل ترک) و به‌لحاظ محدود‌شده در حافظه راهنمه تکنواخت در

استقلال، سال 25، شماره 3، اسفند 1385
4- بررسی مقاومت دیوار تقویت شده با شبکه آرامشک و شاتکریت

با توجه به انتباه مناسب نتایج تحلیل مدل‌های مقداری و نتایج آزمون دیوار آجری در آرامشگاه می‌توان این مدل را برای دیوارهای تقویت شده با مش و شاتکریت تعیین داد و از نتایج بدست آمده از تحلیل آنها از راه‌های مختلف و مقاومت دیوارها بدست آورده. بایان می‌شود که در این نمونه، مدل تحلیلی یک دیوار آجری غیر محاسبه در حالت‌های مختلف (با بارش و بدون بارش) مورد بررسی قرار گرفت. در مرحله بعد مدل‌های تقویت شده مناظر این دیوار نیز ساخته شد و نتایج بررسی در همه مقایسه شدند.

نمودار دیوار آجری انتخابی به طول 2m و ارتفاع 2m و ضخامت 22cm است. برای اعمال بار قائم و جاتی به دیوار تیر بار گذاری محدوده بالایی برای دیوار ترسیم شده است. جابجایی افقی در آزمون و تحلیل قبل از وقوع ترک کم بوده که پس از وقوع ترک بطور ناگهانی افزایش می‌یابد (در هر دو مورد حداکثر 5 mm همچنین، مثالی جابجایی نهایی در هر دو مورد حدود 15 mm است. همچنین بار و وقوع ترک در هر دو مورد حدود 70KN و بار نهایی حدود 70KN است.

2- در شکل (8) تغییر منحنی هیستردیز تحلیلی و آرامشگاهی را می‌توان ملاحظه کرد.

3- مکانیزم وقوع ترکها و گسترش آنها در مدل و آزمون شبیه یک‌دیگر بوده و منشا ترکها در هر دو حسی است. شکل (5) ترک خودکاری دیوار در اثر بار 60 را نشان می‌دهد که (داوودی‌ها) قریز رنگی در شکل نشان دهنده ترکها در جهت اصلی 1 است [3]. کانتور جابجایی قائم دیوار نیز در شکل (6) آورده شده است.
جدول ۱ - مقاومت حد ترک و گسخگی نهایی در مدل‌ها

<table>
<thead>
<tr>
<th>دیوار آجری</th>
<th>وضعیت</th>
<th>بار جانی در لحظه ترک اوول</th>
<th>مقاومت نهایی</th>
<th>نسبت مقاومت حد نهایی به مقاومت ترک خوردگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون تقویت</td>
<td>68 KN</td>
<td>72 KN</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>پوزه ای</td>
<td>10 KN</td>
<td>10 KN</td>
<td>1/5</td>
<td></td>
</tr>
<tr>
<td>با تقویت</td>
<td>125 KN</td>
<td>24 KN</td>
<td>1/6</td>
<td></td>
</tr>
<tr>
<td>روش مشکل پنجره</td>
<td>125 KN</td>
<td>20 KN</td>
<td>1/6</td>
<td></td>
</tr>
<tr>
<td>بار شو مشکل در</td>
<td>125 KN</td>
<td>20 KN</td>
<td>1/6</td>
<td></td>
</tr>
</tbody>
</table>

المان‌های نباتی به‌خویش متعلق شدهاند به‌گونه‌ای که در اثر اعمال‌های بار جانی و قلمی، روش‌های بازگشت در دیوار جدای یا گیم و کمان می‌کند و به مقطع‌های صورت‌پیک‌رجیه فضایی‌اند. ضمانتی فرض شد که

آمرشیک مقطعی مورد روش‌های داخل فندرانسون داده پیش‌بینی شده‌بود. طول‌های مناسب آمرشیک قائم تانین شده و یا آمرشیک در

بای دیوار می‌تواند به طور بالاتری کمک کند خود‌برنده شود.

برای بار جانی، نیز مناسب حالت قبل به داده‌های بار جانی نیز

باید یکسان در صورتی که باعث وقوع آن بار در دیوار شود آغاز

شد و خود باید به «BAB» کامل دیوار تغییر شده باعث گسخگی

به مقاومت حر دیواری با صورت مرحکه افزایش یافته.

بی‌مقطع ۲۳۰ cm به دیوار باید برابر

به دیوار باید برابر KN/m^2 به ظرفیت بالاتری کمک کند خود‌برنده شود.

به دیوار اجرایی روش در دیوار به نظر گرفته شد. برای بررسی اثر

بازگشت در دیوار آجری و همچنین تأثیر تقویت دیوار در این

حالات مدل دیوار باید تأثیر نیز مورد بررسی قرار گرفت. در مورد

اول دیوار به صورت یک درب به ابعاد ۹۰ cm در

بیش از دیوار اجرایی دیوار به صورت مقاوم در نظر گرفته شد. با توجه به

اینکه وجود دیوار باعث ایجاد ترک و تغییر شکل‌های زردی دیوار

در محل پنجره باعث ایجاد نیز مقاومت خواهد شد که تأثیر نعل در کاهش

بی‌مقطع در بای دیوار پنجره و درب مدل‌سازی شد.

در محل بی‌مقطع در دیوار باید تقویت شده مدل‌سازی شد. این

بی‌مقطع اثر شکست به همراه شد روی دیوار در حیات م 큰

بین مسال احتمال می‌کنید با اعمال استفاده شده در مدل‌سازی

شکست با استفاده از SOLID65 است. اندازه‌ها شکسته در

مقابل‌های با مدل‌های نهایی، نشان می‌دهد مدل‌های مقاومتی کم‌شتاب و

فشاری بالاتری دارند. اندازه‌های روشک در دو طرف دیوار و به

ظرفیت منظر شد. شکسته آمرشیک صورتگیری

به تبیین دیوار به صورت آمرشیکی به بی‌مقطع

فواصل ۱۰ cm (F8@10cm). مقادیر آمرشیک

به صورت درصد حجمی به خانه آمرشیک (7/10) به دست می‌آید ، لذا

درصد آمرشیک مدل‌سازی شکسته برابر (7/10) به دست می‌آید که

در جهت افزایش قیمت اعمال شد.

در مدل‌سازی شکسته فرصت می‌شود که اعمالی بی‌مقطع

استقلال، سال ۵، شماره ۲، اسفند ۱۳۸۵

۲۱۸
شده به صورت گرمات که بر هر میزان که منحنی هیسترسیز
چاقتر باشد یک اثری تلف شده بیشتر خواهد بود.[2]. بنابراین بررسی میزان جدایی دیوار روشک شده و دیوار
بودن روشک، منحنی هیسترسیز دیوارها ترسیم شده است.

شکل (9).

همانطور که ملاحظه می‌شود در دو دوآ جریان ساده میزان
جدایی آن‌زی در حدوده رنگ فاصله بسیار کم و برای صفر
است. بعد از ترک خوردن مسطح زیر منحنی به یک‌باره افزایش
یافته که نشانگر جذب و اثبات آن‌زی را می‌باشد اما باید توجه
کرد که روندر جذب آن‌زی باند با دیگر سیستم ادامه
می‌باید و در سیستم‌های بعدی متوغن می‌شود.

در مدل تقویت شده اگرچه دیوار پس از وجود آمدن ترکی در
ویژگی شکل بالاترین طرفیت باربری خود را از دست نماید و
می‌تواند برای آتیش تا بیش از دو برهم‌فروشی را جذب خورداری را
حتم کند لیکن میزان تغییر شکل نشانگر و در نتیجه شکل پذیری
دیواد بعلت مانند کننده و ترده توده رنگ روشک شده
کم است. همان‌گونه که در شکل (10) ملاحظه می‌شود سطح زیر
منحنی‌های هیسترسیز دیوار آگری تقویت شده بسیار کم بوده که
نیاز به ترکیاب اتلاف آتیش پایین آن است.

علت کم بودن میزان شکل پذیری و جذب آن‌زی دیوار
درصد نسبتاً بالای آزمایش انجام برای ایجاد ماهیت‌های شاک‌پذیر
(1/4) است که نشانگر شکل پذیری بیشتر در بوده و مهار آن ترد
محصول می‌شود در مقاطع پیش مسلح، آزمایش‌های فولادی

حد ترک 1/5 1/4 برآمر و مقاومت‌های 6 جدول (1) نشان دهنده
مقاومت در حد 6 از آن‌زی به مقاومت ترک خورده‌گی است. ملاحظه
می‌شود که نسبت مقاومت حد ۶ از مقاومت حد استیسیک در
دیوارهای تقویت شده نسبت به دیوارهای ساده ۳ برآمر بیشتر
است. این مطلب به‌دین معنی‌داری که دیوارهای روشکی شده پس از
ترک خورده‌گی و تغییر شکل‌هایی پلامین‌های طرفیت باربری خود را
از دست نمی‌دهد و بعضاً در ایجاد مهانی‌های دیوارهای تقویت
شهده و یافته و در دو آماره بی‌انجامی دوآ دیوار نیست.

2-5- منحنی

در اثر اعمال روشک سخت دیوار به‌طور مشخصی افزایش
می‌یابد. شکل (9) نشان‌های دیوار آگری تقویت شده و
بدون تقویت را با دواد این نشان می‌دهد. با انجام روشک
سخت دیوار تقویت را 1 برآمر افزایش یافته، نهکه دیگر
تغییرات سبب ایجاد است. سه‌گانه‌های می‌شود دیوار
آگری تقویت شده فاصله پلاستیکی افزایش را از وجود آمدن ترک و
تغییرات سختی منحنی پلاستیکی خود را از دست می‌دهد (منحنی
با شیب تنید سقوط می‌کند). لیکن در نمونه تقویت شده شیب
منحنی می‌ایسته و سختی با روند کنترلی کاهش می‌یابد.

3-4- منحنی هیسترسیز

سطح زیر منحنی‌های هیسترسیز نشان دهنده مقدار انرژی تلف
علاوه بر فرآیند نمودن مقاومت کششی، عامل اصلی افزایش شکل پذیری نیز محسوب می‌گردد زیرا آرامانگی در کشش تسهیم سریع و نیافتن این آرامانگی به کمک می‌کند. به طور کلی، سطح نیاز به دیوارها در مقاطع بیش از میزان آرامانگی ها که عامل اصلی شکل پذیری در مقاطع بین مسعلان در مقاومت گسترش گیتیک می‌باشد به حذف تسهیم خود نرسیده و لذا مقطع بهصورت ترد دچار شکست شود.

پایه‌گذاری خودکفایان سیستم شکشی، میزان نشان از آرامانگی را می‌توان به‌دست آورد. ملاحظه شده که در دیوارهای آجری روش شده میزان نشان دهنده آرامانگی می‌باشد. در دیوارهای قائم در حالی که شکشی بوده‌است، کژی آرامانگی به حذف تسهیم خود نرسیده و لذا مقطع به‌صورت ترد دچار شکست شود.

برای بررسی این مورد، مدل دیوار آجری تقیت شده
روش پیشنهادی:
در این تحقیق تاکید ذیل پس از بررسی تحلیلی و محاسبات و نمودارها به دست آمده است:

۱. ایجاد روش پیشنهادی در دیوار آجری تحلیل شده مقامت حد استاندارد را به طور متوسط ۱/۶ برابر و مقامت حد نهایی را تا ۱/۴ برابر افزایش داد.

۲. دیوار آجری روش پیشنهادی در درخواست دیوارهای آجری معرفی دیوار به دست نداشت و تا ۱/۳ برابر نیروی حد ترک خوردنی بار تحمیل کرد.

۳. ساخته دیوار روش پیشنهادی در ۶ برابر نسبت به دیوار بدون

مراجع

۲. تنبیهی ع، بررسی تجربی روش‌های مقام سازی ساختن‌های آجری نیم اسکلت در بار زلزله (کارزار مرحله اول) ۱۷، چ ۱، تهران: کمیته فرعی تخصصی مقابله با خطرات ناشی از زلزله و لغزش لایه‌های زمین، ۱۳۸۰.

۴. قصد، س، "مقامات سازی دیوارهای آجری تقریبی"، شده با مشکلا آزمایش و شناختی، پایان نامه دورة کارشناسی ارشد سازه، تهران: دانشگاه آزاد اسلامی واحد جنوب تهران، زمین‌نما ۱۳۸۲، زیر نظر دکتر فربرز ناطقی الیه.