تَعیین ضریب کمیش صفحات مستطیلی تحت بارهای میانی و انتهایی داخل صفحه
به روش نوار محدود اسپلاین

محمدهادی انفرادی و محبی ازهری
دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان

چکیده
هدف اصلی این مقاله بررسی کمیش‌های موضعی صفحات مستطیلی تحت بارهای میانی و انتهایی (داخل صفحه) است. در این صفحات
علاوه بر بارهایه که در دو انتهای جذب دارد، بارهای میانی نیز موجود است. بارهایی که به این بارهای موجود که به عنوان بارهای
مستطیلی و محدودیت انتهایی بارهای انتهایی تعریف می‌شود. در این صفحات از روش‌های خدماتی بهره‌مندی می‌شود. برای حل این مسئله با توجه به
محدودیت‌های درون‌یابی انتهایی (۱) در جهت طولی و از توابع دکمه‌ای در جهت عرضی، برای درون‌یابی مقادیری از استفاده می‌شود.
روش نوار محدود اسپلاین به‌عنوان روشی که به حرکت داشتن درجه آزادی کمتر در گره‌ها و داده‌های ورودی کمتر است. در این صفحات
باید از پردازش کمیش‌های موضعی روش‌های خدماتی بهره‌مندی کرده و به کمیش‌های موضعی از دست گرفته شود. مورد آزمون به
اظهار گریزی کمیش موضعی نوار محدود اسپلاین از دست گرفته شود.

واژه‌کلیدی: بارهای داخل صفحه، کمیش‌های موضعی، نوار محدود اسپلاین، اندک‌کش
Stability Criteria for Rectangular Plates Subjected to Intermediate and End Inplane Loads Using Spline Finite Strip Method

M.H. Enferadi and M. Azhari
Department of Civil Engineering, Isfahan University of Technology

Abstract: This paper is concerned with elastic local buckling of rectangular plates subjected to intermediate and end inplane loads. In this application, plates (or walls) may carry intermediate loads (whose direction is parallel to end loads) in addition to end loads. Since closed form solution for buckling analysis of plates with different end conditions and subjected to intermediate loads is complicated, numerical methods are more useful. Because of restrictions on the two finite strip methods (classical method and complex method), the spline finite strip method is used to solve the buckling. In spline finite strip method, the longitudinal B_3 spline expressions combined with conventional transverse shape functions are used as displacement functions. This method is computationally more efficient than the finite element method, more flexible in boundary treatment, and more accurate in dealing with point forces and axial loads than the conventional finite strip method. Local buckling coefficients are presented for plates under intermediate and end inplane loads which are useful for design of steel walls or plates that support intermediate floors/loads.

Keywords: Inplane loads, Local buckling, Spline finite strip, Interaction
این صفحات را نشنایم.

با ایده‌ای استیلی این نوع صفحات توسط زبان‌گوی و همکارنشان به روش تحلیلی (روش چند حلقه) (ارائه شده و تکمیل آن برای ورودی مستقل از سیستم با شرایط زمانی ساده به‌کار گیرنده می‌باشد. در صورت جدایی و ارتباط کافی با محدوده، گزارش و شرایط لیستی ساده، گزارش و نامه آزاد برای لیست تنظیم شده است.

حقوق کاربران طراحی و نگهداری تحت پایه‌ای تحت (بارهای که در (هارد ویژن) یکی از اصلاح‌های مستقل پایداری صفحات است و حالت آن در پی بررسی از مقایسه و کسب پایداری صفحات موجود است. [1] پس از استرداد معلمان دفرانتیک کلمات صفحات توسط سیستم و نسخه محققان پیامبر به جمله انواع صفحات (صفحات نازک، صفحات ضخیم، صفحات ارتودورسپت و...) تحت حالتی مختلف طراحی و نگهداری تحت لیستهای برداختن در اغلب مسائل حالت عرض بر این بوده که با کار در لیستهای ورق وارد شوند. اما در بعضی حالات، ممکن است پایه‌ای داخل صفحات تحت پایه‌ای به‌کار رفته و می‌تواند هم برای نگهداری گزارند که تأثیر نگهداری طولی در تغییر ضریب کلمات بیشتر است. به‌طوری که با زیاد شدن نسبت نیمی‌بوده در طول ورق و میزان (عرض ورق) تأثیر نگهداری طولی در ضریب کلمات کاهش می‌یابد. این طریف حل کلمات ورودی با نسبی‌های محدود باید و تحت پایه‌ای میانی و انتهایی به‌روش تحلیلی (روش زبان‌گوی) برای نگهداری طولی ساده، برای نظارت حالت کامل باشید. علائم بر این باید وجود اینکه در مواردی می‌توان جواب‌های دقیق معلق هاکم بر رفرنگ کامنتی ورق را به روش تحلیلی به‌عنوان آزمایشات برای این حالت، در تکنیک محدودی از تهیه کننده. این طریف حل کلمات ورودی با نسبی‌های محدود باید و تحت پایه‌ای میانی و انتهایی به‌روش تحلیلی (روش زبان‌گوی) برای نگهداری طولی ساده
عملی مهم است افزایش می‌ده. در این مقاله نیز به حل عددي (روش نویز محدود اسلیپین) کمک‌سازی موفقیت ورهفته تحت بارهای میانی و انتهایی و تعین اندرکنش بین بارهای میانی و انتهایی برداخته می‌شود.

شکل 1 - ورق تحت بارهای میانی و انتهایی داخل صفحه

پیچیده باغه می‌شود که در حل مسائل صحافی به جای روشهای تحلیلی از روشهای عددی استفاده کنیم. مراجع مربوط به تحلیل نباتی در صفحات تحت بارهای میانی و انتهایی برای لبه‌های بارگذاری نشده غیر ساده در راستای طولی، به صورت فراگیر بافت نشود. برای تعیین ضریب کمک‌سازی، این مقاله با هر نوع شرط لبه‌ای می‌توان از روش نویز محدود استفاده کرد. روش نویز محدود اولین بار توسط چونگ ارائه شد که انتها نیز به مورد استفاده از توان روش محدود عادی، نوار محدود مختلط و نوار محدود اسلیپین. تفاوت این سه روش نوار محدود در نحوه پرتویی مقایسه‌گری در راستای طولی است. هر یک از این روش‌ها به نوعی معمولاً پیداگیر را بی‌ربط کرده و دارای ویژگی‌ها و کاربردهای خاصی می‌باشد. ماهیت توان اسلیپین به گونه‌ای است که قادر به مدل کردن انواع شرایط مزری همراه با تکیه‌گاه‌های استیک است.

2 - روشهای حسابی کمک‌سازی

یکی از روشهای پرتویی بالاترین کمک‌سازی و پرتویی است که در توان روش محدود است. با این‌حال روش می‌توان با استفاده از توان ایجاد شکل، مسائل در بی‌تقصی به صورت یک به یک تحلیل کرده و معادلات دیفرانسیل جزئی (پاره‌ای) ورودی را حل کرده. رابطه‌بهره‌ای روش نوار محدود براساس فرضی تغییر شکل است. روشهای اولیه معمولاً با یکی از نوار نوار تحت جهت مطلق تنها در جهت عرضی نوارها و توان این‌ها بیشتر از سایر توانهای مطلوب در جهت طولی نوارها تحلیل را انجام می‌دادند. شکل نهایی تابع تغییر مانند حاصل از ضرب چند جمله‌ای و سری‌ها خواهدبود. در حالت کلی همه سری‌ها که بتواند حدااقل شرایط مزری را در به‌های نوار باردارمگر، قابل کاربردند. انتخاب توانایی روش‌های مناسب برای نوار براساس فرضیه جداسازی منفردها. یکی از مرحله مهم در تحلیل است. انتخاب نادرست آن ممکن است موجب سریزدی به جواب‌های نادرست و یا عدم همگرایی شود. پای بررسی شد، نواراها از توانایی شکل محسوبیاتی، این امکان فراهم کرده که به‌جای سری‌های مطلوب و هیپربولیک از توانایی اسلیپین استفاده

در ارتقاء به سمت همواره کمک‌سازی صفحات (بار میانی و وادار به اصلاح بازدهی پاره‌ای از انتها بر روشهای نوار محدود انگشت به طوری که می‌توان این روش را برترین راه حل برای مسائل صحافی دانست. به علت نمودار می‌توان به نتایج و برعسانی از هر اثر بی‌ربطی در نوار محدود عادی و مختلط) و دار [۶] (نوار محدود اسلیپین) اشاره کرد.

همان‌طور که قبلاً گفته شد، برای تحلیل کمک‌سازی صفحات تحت بارها میانی و انتهایی با هر نوع شرط لبه‌ای می‌توان از روش نوار محدود استفاده کرد. استفاده از شیوه‌های عددی توانایی مهندسان را در حل مسائل طراحی که از نظر
شکل ۲: ورق تسمیبندی شده به روش نوار محدود اسپلاین

شکل ۳: خط گره یک نوار در روش نوار محدود اسپلاین برای ورق مستطیلی به طول a

که در آن (ψ_j) یک تابع اسپلاین موضعی است و a_i ها به گونه‌ای هستند که تابع (ψ_j)شکل ۳) به گونه‌ای حدودی در انتهای هر خط گره برای اعمال شرایط لبه و اصلاح توابع اسپلاین در نظر گرفته می‌شود. توابع اسپلاین براساس درجه چند جمله‌ای B_2 یکی از بهترین انتخاب برای حل مسئله صفحات و پوسته‌های پیوستی مسئله صفحات ویاکسی، مشخصات C_2 و بویژه‌ها از نوع C_2 است و یک چند جمله‌ای درجه ۳ به‌راحتی میتوانند این پیوستگی را ایجاد کنند. V شکل‌های (۴) و (۵) به ترتیب تابع اسپلاین محلی و ترکیب خطی توابع اسپلاین را برای یک خط گره نشان می‌دهند.

اگر (ψ_j) یک تابع تغییر مکانی روي یک خط گره باشد و ψ_j (۱) را با ترکیب خطی توابع اسپلاین تخمین بزنیم، خواهیم داشت:

$$f(y) = \sum_{i=-l}^{m+1} a_i \psi_i(y)$$
پیامدهای و چند جمله ای اسپلاین
می‌توان تغییر مکان را در کل چرخ به صورت زیر نوشت:

\[
\psi = [N][\psi] \{\delta_i\}
\]

که در آن:

\[
[N] = [N_1, N_2, N_3, N_4]_{4x4}
\]

\[
\begin{align*}
N_1 &= 1 - 3\xi^2 + 2\xi^3 \\
N_2 &= \xi(1 - 2\xi - \xi^2) \\
N_3 &= (3\xi^2 + 2\xi^3) \\
N_4 &= \xi(\xi^2 - \xi)
\end{align*}
\]

\[
\begin{bmatrix}
<\psi> & 0 & 0 & 0 \\
0 & <\psi> & 0 & 0 \\
0 & 0 & <\psi> & 0 \\
0 & 0 & 0 & <\psi>
\end{bmatrix}_{4x4(m+3)}
\]

فرض می‌کنیم در این‌جا نویز شرایط لبه‌ای به صورت ساده‌ای پایه است:

\[
\frac{\partial^2 w}{\partial y^2} = 0 \quad \text{و} \quad w = 0 \quad \text{در} \quad y = 0 \quad n\text{اکثر بازی تکیه‌گاه ساده عبارتند از:}
\]

\[
\begin{align*}
\psi_0 &= \frac{1}{h^4} \frac{3h^2}{2} (S_1 - S_2) \\
\psi_1 &= \frac{1}{h^4} \frac{3h^2}{2} (S_2 - S_3) \\
\psi_m &= \frac{1}{h^4} \frac{3h^2}{2} (S_m - S_{m+1}) \\
\psi_{m+1} &= \frac{1}{h^4} \frac{3h^2}{2} (S_{m+1} - S_{m+2})
\end{align*}
\]

\[
\begin{align*}
\psi_{m-2} \leq y \leq \psi_{m-1} \\
\psi_{m-1} \leq y \leq \psi_m \\
\psi_m \leq y \leq \psi_{m+1} \\
\psi_{m+1} \leq y \leq \psi_{m+2}
\end{align*}
\]

در معادله فوق، \(\alpha\) و \(\beta\) ها به‌ترتیب تغییرات قائم دری از طرف یک خصوصیت هر یک خصوصیت دری از طرف یک خصوصیت

\[
\{\delta_i\}^T = \{\alpha_{-i}, \alpha_0, \ldots, \alpha_{m+1}, \theta_{-i}, \theta_0, \ldots, \theta_{m+1}\}
\]

\[
\alpha_{-i}, \alpha_i, \ldots, \alpha_{m+1}, \theta_{-i}, \theta_0, \ldots, \theta_{m+1}\}_{4x4(m+3)}
\]
جدول 1 - اصلاح توابع استیلاین برای اعمال شرایط مرزی هگامی که نگیشته در ابتدا نوار باشد

<table>
<thead>
<tr>
<th>Ψ_{-1}</th>
<th>Ψ_0</th>
<th>Ψ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ_{-1}</td>
<td>Ψ_0</td>
<td>Ψ_1</td>
</tr>
<tr>
<td>نگیشته آزاد</td>
<td>حلق</td>
<td>حلق</td>
</tr>
<tr>
<td>نکهیب سادات</td>
<td>حلق</td>
<td>حلق</td>
</tr>
<tr>
<td>نکهیب پیوسته</td>
<td>حلق</td>
<td>حلق</td>
</tr>
</tbody>
</table>

$w(y) = -\alpha_1 \Psi_{-1} + 0 \times \Psi_0 + \alpha_1 \Psi_1 + \cdots$
$+ \alpha_{m-1} \Psi_{m-1} + \alpha_m \Psi_m + \alpha_{m+1} \Psi_{m+1}$
$\Rightarrow \Psi(y) = \alpha_1 \Psi_{-1}(y) - \Psi(y) + \alpha_2 \Psi_2(y) + \cdots$
$+ \alpha_{m-1} \Psi_{m-1}(y) + \alpha_m \Psi_m(y) + \alpha_{m+1} \Psi_{m+1}(y)$

اگر فرض کنیم $\Psi = \Psi_{-1}$ آنگاه:

$w(y) = \alpha_1 \Psi_{-1} + \alpha_2 \Psi_2 + \cdots + \alpha_{m-1} \Psi_{m-1}$
$+ \alpha_m \Psi_m + \alpha_{m+1} \Psi_{m+1}$

$w(y) = \sum_{i=-1}^{m+1} \alpha_i \Psi_i(y)$

برای یک خط گره این دو شرط را نوشته و در توابع استیلاین جایگزین کنیم. سپس معادله (7) عبارت است از:

$w(y) = \alpha_{-1} \Psi_{-1} + \alpha_0 \Psi_0 + \alpha_1 \Psi_1 + \cdots + \alpha_{m-1} \Psi_{m-1}$
$+ \alpha_m \Psi_m + \alpha_{m+1} \Psi_{m+1}$

با توجه به دو شرط نگیشته که در نوار نظری نمی‌توان به همین ترتیب عمل کرد. جدول 1 توابع استیلاین اصلاح شده را برای شرایط لیهای مختلف نشان می‌دهد.

مطابق با تابع نگیشته مکان انتصاب شده W (می‌توان در ایرانیات همراهی تاخیر و هندسی کل ورق را با استفاده از اصل حداقل انرژی پتانسیل کل استخراج کرد و با حل یک مسئله مقدار ویژه بر کمکی برای مشخصه‌ی نازیکی به دست آورد.

3 - استخراج ایرانیات سختی و هندسی

یک سازه استیک (خاک و یا غیر خاکی) زمانی در حالت تعادل است که در آن نگیشته این گروه تغییر در مقدار انرژی پتانسیل کل آن بید نشود. اگر U نشان دهنده انرژی تغییر شکل قصة ورق در محصول استیک (انرژی الاستیک) و U_{P} انرژی پتانسیل نیروهای خارجی باشد، مجموع این دو کمیت (II) به نام نیمایی بینان ریاضی قلمی است. این است و به صورت زیر استفاده می‌شود:

$w(y) = \sum_{i=-1}^{m+1} \alpha_i \Psi_i(y)$

$\frac{\partial^2 w}{\partial y^2} |_{y=0} = 0$
$\Rightarrow 0 = \alpha_{-1} \Psi_{-1}(0) + \alpha_0 \Psi_0(0) + \alpha_1 \Psi_1(0) + \cdots$
$+ \alpha_{m-1} \Psi_{m-1}(0) + \alpha_m \Psi_m(0) + \alpha_{m+1} \Psi_{m+1}(0)$

$\Rightarrow 0 = \alpha_{-1} \frac{1}{h^2} + \alpha_0 \frac{2}{h^2} + \alpha_1 \frac{1}{h^2} + 0 + 0 + \cdots + 0$

$\Rightarrow \alpha_{-1} + 2 \alpha_0 + \alpha_1 = 0$

(7)

α_0 می‌توان با استفاده از معادلات (9) و (10) مقادیر α_{-1} و α_1 را بر حسب α_1 به صورت زیر به دست آورده:

$\alpha_{-1} = -\alpha_1$
$\alpha_0 = 0$

(9)

(10)

(11)

با جایگزین کردن مقادیر α_{-1} و α_1 در معادله (8) معادله زیر به دست می‌آید.
در معادله فوق [\(D_1\) ماتریس صلیبی الاستیکی ورق است که پرازوردهای ایزوتروپیک به‌صورت زیر است.

\[
[D_1] = \frac{\sigma_1^3}{12(1-\mu^2)} \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1-\mu^2
\end{bmatrix}
\]

(20)

که در آن \(E\) مدول الاستیسیتی، \(\mu\) ضخامت ورق و \(\nu\) ضریب درمانده است.

(\(V\) پاژیر پلاستیک نیروی بین‌یابی بالاستیک ورق و ضریب \(D\) به‌صورت زیر است:

\[
U_f = \frac{1}{2} \int \left[\{\delta_f\}^T [B_f]^T [D_f] [B_f] \{\delta_f\} \right] dx dy
\]

بای خارج کرد \(\{\delta_f\}\) از داخل انتگرال خواهیم داشت:

\[
U_f = \frac{1}{2} \{\delta_f\}^T \left[\int \{B_f\}^T [D_f] [B_f] \right] \{\delta_f\} dx dy
\]

(21)

پاژیر پلاستیک را می‌توان به‌صورت زیر بیان کرد:

\[
U_f = \frac{1}{2} \{\delta_f\}^T \{k_f\} \{\delta_f\}
\]

(22)

که در آن \(k_f\) ماتریس سختی خصوصی پلاستیک است.

\[
k_f = \int \{B_f\}^T [D_f] [B_f] \; dx dy
\]

(23)

برای ورق تحت بارهای فشاری و نرمال بر چسبی و نیروی بر چسبی و \(N_x\) و \(N_y\) نرودی بر (یک بارهای فشاری و نرودی بر) است. معادله زیر به‌دست می‌آید.

\[
V_p = -\frac{1}{2} \int \left[N_x \left(\frac{\partial \omega}{\partial x} \right)^2 + N_y \left(\frac{\partial \omega}{\partial y} \right)^2 \right] dx dy
\]

\[+ 2N_{xy} \left(\frac{\partial \omega}{\partial x} \right) \left(\frac{\partial \omega}{\partial y} \right) \] dx dy

(24)

اگر [\(B_g\) به‌صورت زیر نشان داده شود:

\[
[B_g] = \begin{bmatrix}
\frac{\partial (N_x)}{\partial x} & \frac{\partial (N_y)}{\partial y}
\end{bmatrix}
\]

(25)

آن گاه با استفاده از معادله (5) و (26) معادله (24) را می‌توان به‌صورت زیر نوشته:

\[
V_p = -\frac{1}{2} \{\delta_f\}^T [B_g]^T \{\sigma\} [B_g] \{\delta_f\} dx dy
\]

(27)

که در آن:

\[
\delta f = \delta (U_f + V_p)
\]

(13)

مومول وقیت که یک راه حل دقیق (تحلیلی) برای حل مسائل در دسترس نیست و یک راه حل تحلیلی طولانی و پیچیده وارد باشد. از روش انرژی پانسیل در تحلیل عددی استفاده می‌شود. انرژی پانسیل کل می‌تواند با توجه به تفاوت پانسیل با توانگر پانسیل کل ماکزیمم باشند. تعادل خویشی حالتی است که در آن انرژی پانسیل کل نه ماکزیمم و نه مینیمم است. برای تعیین بار برایی صفحات باید از روش باید راهکننده است. بنابراین بار برایی به‌کمک ورق تحت اثر انرژی پانسیل بین هدر و شکل مستقیم و کمیم شده در حالت تعادل بیان می‌شود. در این حالت عضو در حال تعادل است. (28)

با استفاده از روابط الاستیسیتی (تنش - کرنش و انحنای) می‌توان انرژی الاستیکی و پانسیل به‌کمک ورق تحت بارهای وارد را طبق معادلات زیر به‌دست آورد.

\[
U_f = \frac{1}{2} \{\sigma_f\}^T \{\epsilon_f\} dx dy
\]

(14)

که در آن

\[
\{\sigma_f\} = [M_x; M_y; M_{xy}]^T
\]

(15)

و

\[
\{\epsilon_f\} = \left[\frac{\partial^2 w}{\partial x^2}; \frac{\partial^2 w}{\partial y^2}; \frac{\partial^2 w}{\partial x \partial y} \right]^T
\]

(16)

در معادله فوق \(M_x\) لنگر خصوصی حول محور \(x\) لنگر \(M_y\) نیروی ماده سطح ورق است. و

\[
(L)\text{ و } w\text{ تغییر مکان عموم بر سطح ورق است.}
\]

(17)

(18)

با جایگذاری معادله (3) در (16) می‌توان نوشته:

\[
\{\epsilon_f\} = [B_f] \{\delta_f\}
\]

(19)

که در آن

\[
[B_f] = \begin{bmatrix}
-\frac{\partial^2 (N_x)}{\partial x^2} & -\frac{\partial^2 (N_y)}{\partial y^2} & 2 \frac{\partial^2 (N_{xy})}{\partial x \partial y}
\end{bmatrix}
\]

(20)

(21)

رابطه بین پانسیل و کرنش را نیز می‌توان به‌صورت زیر در نظر گرفت.

\[
\{\sigma_f\} = [D_f] \{\epsilon_f\}
\]

(22)

77

استقلال، سال 26، شماره 1، شهروند 1386
به ذکر است که برای ورود به مسیرهای مبنا و انتهایی با این وضعیت، مقدار دیگر را در هر قسمت از نواز جریان قارد و ماتریس هندسی را در هر قسمت بطور جدایی محاسبه کرد.

ماتریس هندسی کل نوار از مجموع ماتریس‌های هندسی هر قسمت نوار بسته می‌آید.

\[
\begin{bmatrix}
N_x & N_{xy} \\
N_{xy} & N_y
\end{bmatrix}
\]

(28)

با خارج کردن \(\{\delta_f\} \) از داخل انگرال خواهیم داشت:

\[
V_p = -\frac{1}{2} \left(\delta_f \right)^T \int \left[B_g \right]^T \left[\sigma \right] \left[B_g \right] \, dx \, dy \, \left(\delta_f \right)
\]

(29)

معادله فوق را نیز می‌توان به صورت زیر پاپویسی کرد.

\[
V_p = -\frac{1}{2} \left(\delta_f \right)^T \left[k_g \right] \left(\delta_f \right)
\]

(30)

که در آن \(k_g \) ماتریس هندسی با پایداری یک نوار اسپلاین است.

\[
\left[k_g \right] = \int_0^L \left[B_g \right]^T \left[\sigma \right] \left[B_g \right] \, dy \, dx
\]

(31)

ماتریس نیروهای فشاری \(\left[\sigma \right] \) برای ورور تحت بارهای مبنا و انتهایی به صورت زیر است.

\[
0 \leq y \leq l_{Ba} \Rightarrow \left[\sigma_1 \right] = \begin{bmatrix} 0 & 0 \\ 0 & N_1 \end{bmatrix}
\]

(32)

\[
0 \leq y \leq a \Rightarrow \left[\sigma_2 \right] = \begin{bmatrix} 0 & 0 \\ 0 & N_2 + N_1 \end{bmatrix}
\]

(33)

ماتریس‌های سختی خم‌های \(k_f [V] \) و هندسی \(k_g [V] \) هر نوار اسپلاین \(a \) را می‌توان طبق معادلات (22) و (28) به‌دست آورد.

ماتریس سختی خم‌های کل ورودهای \(k_f [V] \) و ماتریس هندسی کل ورودهای \(k_g [V] \) از سوار کردن دارای خاصیت ماتریس‌های سختی و هندسی هم‌نوازی با استثنای در جراحی در اثر قدرت و ارتباط شرایط تعادل و هم‌سازی در مراحل ورودهای زیر است.

\[
\delta R = \delta (U_f - V_p) = \left[\left[k_f [V] \right] - \left[k_g [V] \right] \right] \delta = 0
\]

(32)

در معادله فوق \(k_f [V] \) و \(k_g [V] \) به ترتیب ماتریس‌های سختی و هندسی و \(\{\delta\} \) برای تعیین مکان برای کل ورود است. معادله فوق وقتی برای تمامی تغییرات کمک‌های خاصیتی یا مجکزی برقرار است که دفتر منابع ضرایب صفر باشد.

\[
\left[k_f [V] \right] - \left[k_g [V] \right] = 0
\]

(34)

با حل دفتر منابع فوق می‌توان بر بحرانی را به‌دست آورد. لازم
جدول 2 - ضرایب کمنش ورق CCCC تحت فشار لبه‌ای به دو روش توزیع محدود اسیلاین و روش تحلیلی

<table>
<thead>
<tr>
<th>درصد خطای (٪)</th>
<th>روش تحلیلی</th>
<th>روش توزیع محدود اسیلاین</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{a}{b} = 1)</td>
<td>(10/13)</td>
<td>(10/6)</td>
</tr>
<tr>
<td>(\frac{a}{b} = 2)</td>
<td>(7/432)</td>
<td>(7/499)</td>
</tr>
</tbody>
</table>

جدول 3 - ضرایب کمنش موسعی صفحات تحت بارهای مبتنی پایه نهایی به دو روش تحلیلی و نوار محدود اسیلاین

<table>
<thead>
<tr>
<th>برای ورق SSSS هنگامی که بار انتهایی وجود ندارد باشد (N_1 = 0)</th>
<th>روش تحلیلی [3]</th>
<th>روش توزیع محدود اسیلاین</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B = 0.2)</td>
<td>(5.372)</td>
<td>(5.242)</td>
</tr>
<tr>
<td>(B = 0.5)</td>
<td>(6.379)</td>
<td>(6.396)</td>
</tr>
<tr>
<td>(B = 0.7)</td>
<td>(6.544)</td>
<td>(6.53)</td>
</tr>
</tbody>
</table>

جدول 4 - ضرایب کمنش موسعی صفحات تحت بارهای مبتنی پایه نهایی به دو روش تحلیلی و نوار محدود اسیلاین

<table>
<thead>
<tr>
<th>برای ورق SCSC هنگامی که بار انتهایی وجود ندارد باشد (N_1 = 0)</th>
<th>روش تحلیلی [3]</th>
<th>روش توزیع محدود اسیلاین</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B = 0.2)</td>
<td>(8.237)</td>
<td>(8.298)</td>
</tr>
<tr>
<td>(B = 0.5)</td>
<td>(12.65)</td>
<td>(12.72)</td>
</tr>
<tr>
<td>(B = 0.7)</td>
<td>(13.557)</td>
<td>(13.333)</td>
</tr>
</tbody>
</table>

های مختلف اوره شده است. نتایج این جدول گواهی m بسیار خوب روش توزیع محدود اسیلاین را نشان می‌دهد. با مقایسه ضرایب کمنش بهدست آمده به دو روش تحلیلی و روش توزیع محدود اسیلاین، نتایج این چارچوب به حل تحلیلی است. اما برخی از همین دیدگاه‌ها در صفحات تحت بارهای مبتنی تحت بارهای هم‌زمان با هر شرط مزیت را دارند. در حالی که حل تحلیلی به محاسبات عددی پیچیده نیاز دارد و با طولانی‌شدن راه حل، احتمال استفاده از محاسبات نیز بیشتر می‌شود. در حل برخی به دادگان می‌توان اثر ضخامت (ورق‌های با ضخامت ممکن‌با) و یا غیر ضخامت (ورق‌های ارتوپیک) را وارد برناهای کرده در حالی که بررسی این حالات به روش تحلیلی بسیار وقی.shortcuts و طولانی است.
شکل ۶ - نمودار نتایج ضریب کمیشک مویعی

علاءی بر این تا زمانی که شرایط لبه‌های طولی ورتهای تحت بار میانی به صورت ساده باشد، در حل تحلیلی می‌توان از روش لود استفاده کرد. اما اگر شرایط لبه‌های طولی به‌صورت غیر ساده و یا متفاوت با یکدیگر باشد، می‌بایست از سری‌های محاسبه‌ای قابل‌توجه‌های شرایط مرزی را ارائه کن استفاده کرد (استفاده از سری‌های محاسبه‌ای قابل‌توجه تحلیل را طولانی و پیچیده‌تر خواهد کرد). به طور کلی می‌توان گفت روش‌نوار محدود بسیار راحت تر از روش تحلیلی است. گسترده‌سی حل مسائل نیز بیشتر است و از همه مهم ترین اینکه، جواب‌ها از دقت بالایی برخوردارند.

۲-۴ - پایداری مویعی و روش شرکت مرزی مختلف و

بار میانی

نتایج عددی برای در ورتش با شرایط لبه‌های مختلف و نشان داده شده در شکل‌های (۶.۶) و (۶.۷) (۶.۱۲) آورده شده است. برای تعیین ضریب کمیشک ورتهای مستطیلی تحت بارهای میانی و انتها از معادلات زیر استفاده می‌شود.

\[k_1 = \frac{N_1 b^2}{\pi^2 D} \]
\[k_2 = \frac{N_2 b^2}{\pi^2 D} \]

در معادلات فوق \(k_1 \) ضریب کمیشک نسبت به بار انتهای، \(k_2 \) ضریب کمیشک نسبت به بار میانی، \(D \) سختی خمشی ور، \(N_1 \) و \(N_2 \) نیز به ترتیب بارهای انتهای و میانی هستند.

نحوه طراحی شکل (۶) و نحوه مویعی به‌طور کامل در قسمت استخراج روابط و م--+ نوشته‌ها به‌روش نوار اسپلاین توضیح داده شده. تحلیل مسائل پایداری به روش حداکثر ارزی بتناسیب کل. در نهایت به یک مسئله مقدار ویژه با یک معکول منجر می‌شود. اما در هر روش تحت بار میانی و انتها می‌بایست بارهای میانی و انتها بارخست مجهول، را هم مجاز محسوب کرد. برای تعیین اندرکشت (ار تقابل) پایداری بارهای میانی و انتها به طریق زیر عمل می‌شود.

\[N_1 = 0, N_2 = 0 \]

پس از تحلیل پایداری ور، نیروی بحرانی \(N_1 \) به‌دست می‌آید. با استفاده از معادله (۶) می‌توان ضریب کمیشک را تعیین نمود فقط در فاصله (۶) به مختصات \([k_1, 0] \) شکل ۶.
شکل 7- نمودار اندرکش (اثر مقاوم) بارهای میانی و انتهایی

(\(a=b \)) \(k_2 \) و \(k_1 \)

شکل 8- نمودار اندرکش ضرایب کماسن

شکل 9- نمودار اندرکش ضرایب کماسن

(\(a=2b \)) \(k_2 \) و \(k_1 \)

شکل 10- نمودار تغییرات ضرایب کماسن

\(a/b \) نسبت به \(k=k_2 \) هنگامی که \(N_1=0 \)

بدین ترتیب نقاط مختلف محاسبه‌ای اندرکش نیروهای میانی و انتهایی به‌دست می‌آید. بی‌دهی است نقطه 3 در شکل (7) برای حالتی است که اثر تحت تأثیر نیروی محوری قرار داشته و \(N_1=0 \) است. شکل‌های (8) و (9) به ترتیب اندرکش بین بارهای میانی و میان‌بود، نقطه 2 در شکل (7) به مختصات \(\alpha k_1 k_2 \) می‌شود.

2- با فرض \(\alpha < 1 > 0 \) است می‌توان از معادله \(N_1 \) را تعیین کرد.

3- با معلوم بودن نیروی \(N_1 \) و بار بحرانی \(N_2 \) را از تحلیل پایداری ورق تعیین کرد. می‌توان از معادله \(k_2 \) محاسبه \(\alpha k_1 k_2 \) به مختصات \(\alpha k_1, k_2 \).
انهایی در برای ورق با شرایط مرزی مشخص شده در نمودارها، و برای نسبت‌های $1 \leq \frac{a}{b} \leq 2$ و $\frac{a}{b} \leq 0.7$ نشان می‌دهد. واضح است که با طولی تر شدن ورق با (1->$\frac{a}{b}$) انتخابی نمودارها کاهش می‌یابد.

شکل (10) نیز تغییرات ضرایب کماسی را نشان به شده SSRC، مختلف برای ورق با از نمودارهای (11) و (12) انتخابی بین بازه‌های میانی و انتهايی در برای ورق با شرایط مرزی SSRC و مشخصات هندسی مشخص شده در نمودارها، نشان می‌دهد.

5- بحث و نتیجه‌گیری
تحلیل پایداری ورق، تحت اثر بازارهای میانی و انتهايی با شرایط مرزی مختلف، با استفاده از روش‌های تحلیلی معمولا طولانی و وقتی است. در این مقاله نشان داده شد که با استفاده از روش عدید نوار محدود اسپیلین، می‌توان پایداری ورق تحت بازارهای میانی و انتهايی با هر شرط مرزی را تحلیل کرد. در این تحقیق پایداری صفحات تحت بازارهای میانی و انتهايی برای شرایط لبه و نسبت طول به عرض‌ها مختلف مورد بررسی قرار گرفت. نمودارهای ضرایب کماسی و

شکل 11 - نمودار اندرکنش ضرایب کماسی

شکل 12 - نمودار اندرکنش ضرایب کماسی

نمودارهای اندرکنش بازارهای میانی و انتهايی با ضرایب نیز برای این صفحات تخمین گردد. از این نمودارها می‌توان در طراحی ورقهای قائمی که ورقهای افقی به آنها منفصل اندازه‌گیری کرد. با توجه به نتایج به دست آمده برای شرایط لبه و هندسی مختلف می‌توان گفت، با یکسان شدن نسبت طول به عرض صفحات تأثیر محل اعمال باز يعدای از تبعیض ضریب کماسی صفحات کاهش می‌یابد.

هنگامی که ورق تحت بار میانی قرار دارد (بار انتهايی وجود نداشته باشد)، با کم شدن فاصله بار میانی از لبه تخت فشار بر حالت افزایش یافته و به سمت بین‌هایش می‌کند. در ورق‌های تحت بار میانی (بار انتهايی وجود نداشته باشد) با کاهش نسبت طول به عرض صفحات، تغییر معدود کماسی در نمودارهای ضریب کماسی، افزایش می‌یابد. در طراحی این ورق‌های می‌توان ضرایب قسمتی از ورق را که تحت فشار قرار نمی‌گیرد، کمتر در نظر گرفت.

در ورق‌های تحت بار میانی و انتهايی در صورتی که بتوان بازارهای میانی را در فاصله نزدیکتری نسبت به لبه تحت فشار اعمال کرد و یا در مسأله طراحی طول ورق را کمتر در نظر گرفت، بار بحرانی ورق افزایش یافته و باعث افت‌می‌شود. تحقیق می‌شود.