تعمیم ضریب کمیک صفحات مستطیلی تحت بارهای میانی و انتهاپی داخل صفحه بهروش نوار محدود اسپلاین

محمدهادی انفرادی* و مجتبی ازهری**
دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان

چکیده - هدف اصلی این مقاله بررسی کمیک موضعی صفحات مستطیلی تحت بارهای میانی و انتهاپی (داخل صفحه) است. در این صفحات علاوه بر بارهایی که در دو انتهای هستند، بارهای میانی نیز مواری به های بارگذاری شده وارد می‌شود که باعث پیدایش ترشندی در شیار کمیک این صفحات می‌شود. با توجه به اینکه جمله‌های صفحات با روشهای مختلف بارگذاری شده و در بعضی مواری شرایط تکیه کامی و بارگذاری معمول افشان و طولانی است، استفاده از روشهای متمرکز به نظر می‌رسد. برای حل این مسئله، با توجه به محدودیت‌های دو روش نوار محدود عناصر و مساحت، روش نوار محدود اسپلاین انتخاب شده است. در این روش از توابع چند جمله‌ای اسپلاین (B3) در جهت طولی و از توابع شکل هرمی در جهت عرضی، برای درون‌یابی مقادیر طول هر جمله استفاده می‌شود. روش نوار محدود اسپلاین به حاخام داشتن درجه آزادی کمتر در گره ها و داده های ورودی کمتر، به روش الگوریتم برتری دارد و سیستم به جواب همگرا می‌شود. برای بعضی نوارها، بارگذاری تکیه کامی نموداری از ترافیک کمیک موضعی صفحات با بارهای میانی و انتهاپی تنظیم شده است. از این ضرایب کمیک در طراحی صفحات قابل‌توجه بکار بردن بارهای میانی (صفحات افقی) منجمله آنها استفاده می‌شود.

واژگان کلیدی: بارهای داخل صفحه، کمیک موضعی، نوار محدود اسپلاین، انتکش

* - دانشجوی کارشناسی ارشد
** - استاد

استقلال، سال ۱۳۸۶، شماره ۱، شهریور ۱۳۸۶

65
Abstract: This paper is concerned with elastic local buckling of rectangular plates subjected to intermediate and end inplane loads. In this application, plates (or walls) may carry intermediate loads (whose direction is parallel to end loads) in addition to end loads. Since closed form solution for buckling analysis of plates with different end conditions and subjected to intermediate loads is complicated, numerical methods are more useful. Because of restrictions on the two finite strip methods (classical method and complex method), the spline finite strip method is used to solve the buckling. In spline finite strip method, the longitudinal B_3 spline expressions combined with conventional transverse shape functions are used as displacement functions. This method is computationally more efficient than the finite element method, more flexible in boundary treatment, and more accurate in dealing with point forces and axial loads than the conventional finite strip method. Local buckling coefficients are presented for plates under intermediate and end inplane loads which are useful for design of steel walls or plates that support intermediate floors/loads.

Keywords: Inplane loads, Local buckling, Spline finite strip, Interaction

<table>
<thead>
<tr>
<th>Term</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability Criteria</td>
<td></td>
</tr>
<tr>
<td>for Rectangular</td>
<td></td>
</tr>
<tr>
<td>Plates Subjected</td>
<td></td>
</tr>
<tr>
<td>to Intermediate and</td>
<td></td>
</tr>
<tr>
<td>End Inplane Loads</td>
<td></td>
</tr>
<tr>
<td>Using Spline</td>
<td></td>
</tr>
<tr>
<td>Finite Strip Method</td>
<td></td>
</tr>
</tbody>
</table>

M.H. Enferadi and M. Azhari
Department of Civil Engineering, Isfahan University of Technology

Fehrest-e Ulum

<table>
<thead>
<tr>
<th>Term</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماتریس هندسی کل ورق</td>
<td>$[K_g]$</td>
</tr>
<tr>
<td>تکیه‌گاه ساده</td>
<td>S</td>
</tr>
<tr>
<td>انرژی ارتجاعی ورق</td>
<td>U_f</td>
</tr>
<tr>
<td>انرژی پتانسیل نیروهای خارجی</td>
<td>V_p</td>
</tr>
<tr>
<td>طول ورق</td>
<td>a</td>
</tr>
<tr>
<td>عرض ورق</td>
<td>b</td>
</tr>
<tr>
<td>عرض نوار</td>
<td>bs</td>
</tr>
<tr>
<td>تابع تغییر مکان روی یک خط گره</td>
<td>f</td>
</tr>
<tr>
<td>فاصله نقطه روی یک خط گره</td>
<td>h</td>
</tr>
<tr>
<td>شماره نقطه روی یک خط گره</td>
<td>i</td>
</tr>
<tr>
<td>ضریب کمانش موضوعی هنگامی که بار میانی وجود نداشت باشد</td>
<td>k</td>
</tr>
<tr>
<td>ضریب کمانش برای بارهای انتهایی k_1</td>
<td></td>
</tr>
<tr>
<td>ضریب کمانش برای بارهای میانی k_2</td>
<td></td>
</tr>
<tr>
<td>ماتریس سختی برای یک نوار $[k_f]$</td>
<td></td>
</tr>
<tr>
<td>ماتریس هندسی برای یک نوار $[k_g]$</td>
<td></td>
</tr>
<tr>
<td>تعداد تفکیه‌های روی یک خط گره</td>
<td>m</td>
</tr>
<tr>
<td>ضخامت ورق</td>
<td>t</td>
</tr>
<tr>
<td>تغییر مکان جانبی ورق</td>
<td>w</td>
</tr>
</tbody>
</table>
این صفحات را نشنال می‌دهد.

با پایداری استیستک این نوع صفحات توسط ژاپنی و همسانی به روش تحلیلی (روش لوی) ارائه شده و نتایج آن برای ورقه‌های مستطیلی از توابعی به شرایط شده ساده برای تکیه‌گاه‌های مواری برای هادار و شرایط لایه ساده، گیری و یا آزاد برای دیگر تنظیم شده است.

حل این صفحات با روش‌های تحلیلی به این ترتیب است که ابتدا صفحه از محل وارد شدن بارهای مبنا به دو قسمت تقسیم شده و با حل مجزای هر قسمت و هم‌سان کردن جای‌گاهی و نتیجه در محل تأثیر بارهای مبنا، جواب نهایی ساده به دست می‌آید. در این روش حجم محاسبات زیاد است و برای شرایط تکیه‌گاه غیر ساده به محاسبات عدید پیچیده تابع است.

با دقت به نمودارهای بیستم و داستان آمده توسط ازهم‌ری و برادر فرد (۱) برای ضرایب آن مجموع صفحات تحت بارهای لبه، میزان تأثیر گره که با تأثیر تکیه‌گاه‌های طولی در تغییر ضریب کمان بیشتر است. به طوری که با زیاد شدن نسبت a/b (طول ورق و 10 عرض ورق) تأثیر تکیه‌گاه بارگذاری سه‌تایی کاهش می‌یابد. از طرفی حل کمان و توقیه با نسبتهای محدود a/b تحت بارهای مبنا و انتها و بر روی تحلیلی (روش ژاپنی) برای تکیه‌گاه‌های طولی ساده، نمی‌تواند حل کامیک باشد. علتهای بر این باوجود این‌که در مواردی می‌توان جواب‌های دقیق معادله حاکم بر رفرنگ کمانی ورق را به‌طور تحلیلی به‌دست آورد، لیکن مشکلات محاسباتی نظیر همگرایی کردن سری‌ها و با معادلات فوق‌العاده در آن نشانه‌ها و مقاطع ساخته شده از آن آن به دیل دارای بودن مقاومت بالا و وزن کم، به طور روزافزون در صنایع هوا فضا، انواع مختلف و دیگر صنایع مهندسی مورد استفاده قرار می‌گیرند.

محله کمان و ریش انتخابی تحت بارهای انتهاه (بارهای که در لبه وارد می‌شوند) یکی از اساسی‌ترین مسائل پایداری صفحات است و هنالین آن در سیستم‌های از مقاطع و کبوتری که صفحات مورد استفاده است (د) پس از استخراج مسیر، دفتری کمانی و ریش صفحات توسط و یا نتیجه، محاسبات بسیاری به حل کمان اندک در مراحل، صفحات ضخیم، صفحات از انتخابی و ... تحت حالت‌های مختلف بارگذاری و شرایط لایه را برای شدن در اغلب سیستم‌های حل شده فرض بر این بهداشت که این به دلیله ورق وارد شوند. اما در بعضی حالت‌ها ممکن است بارهای داخل صفحات تحت قسمت از طول ورق وارد شوند. معمولاً این نوع بارگذاری در صفحات قائم که به شکل صفحه افقی به آنها مختصات جهت وجود می‌آید. این حالت را می‌توان نسبت به خارجی با دقت سنتون دادن که در قسمت از طول آن‌ها بارهای فشاری وارد می‌شوند.

گیپ و کانتر ضرب آن بارهای کمانی و اندرکنش بین بارهای مبنا و انتهاه مستند است بی‌شمار متغیر و تحت شرایط نکته‌گاه‌های مختلف را به‌دست آورده و جدال و نمودارهای بارای استفاده مهندسی اثرات کرده‌اند (۲) در رابطه با مسئله کمانی صفحات نیز می‌توان نتایج تأثیر بارهای مبنا، علله به بر بارهای انتهاه نیز در نظر گرفت. شکل (۱) ناحیه بارگذاری می‌باشد.

ماتریس نیروهای خارجی وارد بر ورق

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>π</td>
</tr>
</tbody>
</table>

ضرایب پایداری ناحیه سیستم‌های اسپلاین

<table>
<thead>
<tr>
<th>α</th>
</tr>
</thead>
</table>

دوران نقطه حول محور طولی نوارها

<table>
<thead>
<tr>
<th>β</th>
</tr>
</thead>
</table>
شکل ۱ - ورق تحت بارهای مبایی و انتهایی داخل صفحه

عملی مهم است افزایش می‌دهد. در این مقاله نیز به حل عدیدی
روش نوار محدود اسپلایین (کامپیوتری و وردهای تحت
بارهای مبایی و انتهایی و تبعین اندرکنش بین بارهای مبایی و
انتهایی برخاسته می‌شد.

۲ - روش نوار محدود اسپلایین
یکی از روشهای تحلیل و بررسی کامپیوتری صفحات و
پوسته استفاده از روش قدست مورد نیاز محدود است. با این
روش می‌توان با استفاده از توابع ساده، مسائل دو بعدی را به
صورت یک بعدی تحلیل کرده و معادلات دیفرانسیل جزیی
(پارایاز) و روش‌ها را حالت کرد. رابطه سازی‌های نوشتار
محدود براساس فرضی نیز تغییر شکل است. روشهای اولیه معقول
با فرض یک نهایی دسته‌جمعی ساده در جهت غیر محیط نیز و
توابع مثلثی پوسته به سری توابع هندسی مثلثی در جهت
طول‌نوردان تحلیل را انجام می‌دهند. شکل نهایی تابع
تغییر مکانیکن حاصل از ضرب چند جمله‌ای و سرین و اهورتی‌های
در حالت کلی همان سری‌های که ضابطه در عراق شرایط مرزی را
در لبه‌های نوار برآوردگذاری کنند، قابل کاربردند.

انتحاب توابع ذینوپری مانند برای نوار براساس فرضیه
جداسازی متغیرها، یکی از مراحل مهم در تحلیل است. انتخاب
نادرست آن ممکن است موجب نسبت به جواب‌های نادرست
و یا عدم همگرایی رودی، با تنویع آن برای روشهای اسپلایین و
نوارهای با توابع شکل محاسباتی، این امکان فراهم‌شده که
به‌جای سری‌های مثلثی و هایپربولیک برای توابع اسپلایین استفاده
یپچیده باعث می‌شود که در حل مسائل صفحات به‌جای
روشهای تحلیلی از روشهای عدیدی استفاده کنیم.

مراجع مربوط به تحلیل اپیداری صفحات تحت بارهای مبایی
و انتهایی برای لبه‌های بارگذاری نشده مشارکت در راستای
طولی، به صورت فارگری باور نمی‌شوند. برای تعیین ضرب
کامپیون این صفحات با هر نوع شرط لبه‌ای می‌توان از روش نوار
محدود اسپلایین استفاده کرد. روش نوار محدود اولین بار توسط
چونگ ارائه شد که انتقا آن عبارت‌اند از نوار محدود عادی، نوار
محدود مختلط و نوار محدود اسپلایین. تفاوت این سه روش نوار
محدود در نحوه درون‌بایی فاصله در راستای طولی است.
هم یک از این روش‌ها به نوع عناصری که در طرف‌ها و
پارازهای اسپلایین به کمکهای به‌خصوص این می‌باشند، ماهیت توابع
اسپلایین به گونه‌ای است که قادر به ساخت کردن انتخاب
مرزی همراه با تکه‌گاه‌های انتخاب است.

در ارتباط با عملکرد کامپیوتری صفحات (بار مبایی وجود داشته
باشد)، تحلیل و بررسی‌های ارائه‌ای با استفاده از انتگرال روشهای
نوار محدود انگشت به طوری که می‌توان این روش را بهترین
راه حل برای مسائل صفحات دانست. به عنوان نمونه می‌توان به
تاریخ و بررسی‌های ازبی و برادرید [۵] (نوار محدود عادی و
مختلط) و دار [۶] (نوار محدود اسپلایین) اشاره کرد.

همان‌طور که قبلی هم گفته شد، برای تحلیل کامپیوتری
صفحات تحت بارهای مبایی و انتهایی با هر نوع شرط لبه‌ای،
می‌توان از روش نوار محدود استفاده کرد. استفاده از شیوه‌های
عددی توانایی محدودساز را در حل مسائل طراحی که از نظر
۶۸
استقلال، سال ۳۶، شماره ۱، شهریور ۱۳۸۶
شکل 2- ورق تفییم‌بندی شده به روش توزیع محدود اسپیلاین

شکل 3- خط گره یک نوار در روش توزیع محدود اسپیلاین برای ورق مستطیلی به طول a

که در آن \(y_i \) یک تابع اسپیلاین موضعی است و \(y_i \) می‌باشد که تابع \(y_i \) را تخمین می‌زنند. تخمین جایگاهی روی یک خط گره طبق معادله (1) برای هنگامی است که طول نوار را به \(m \) قسمت تقسیم شده باشد (شکل 3). علی‌رغم بر این دو گره نیز در دو انتهای هر خط گره برای اعمال شرایط لبه و اصلاح توابع اسپیلاین در نظر گرفته می‌شود. توابع اسپیلاین براساس درجه چند جمله‌ای یکی از بهترین انتخاب برای حل مسائل صحافی و پویش‌های ساده، پیوسته‌گی مسائل صحافی و پویش‌های ساده است. پیوستگی مسائل صحافی و پویش‌های ساده در نوع 2 است و یک چند جمله‌ای درجه 3 \(y \) به راحتی می‌توانند این پیوستگی را ایجاد کنند (\(y \) شکل‌های 4 و 5) به ترتیب تابع اسپیلاین محلی و ترکیب خطی توابع اسپیلاین را برای یک خط گره نشان می‌دهند.

هر تابع اسپیلاین محلی در چهار مقطع متوالی مقدار تابع \(y \) در نقطه \(y \) نوشته می‌شود. تابع اسپیلاین \(h = \frac{a}{m} \) در شکل 3 به که تقسیم بندی آن ثابت است (\(B_3 \)) صورت زیر در نظر گرفته می‌شود.

\[
\sum_{i=1}^{m+1} a_i \psi_i(y) = f(y)
\]
در معادله فوق، α_i و α ها به ترتیب تغییر مکان قائم گره‌ها روي خط گره آواز و θ_i ها به ترتیب دوران گره‌ها حول محور θ روي خط گره آواز هستند.

dar in a review of the length of the curve to make a matter in an action

(model). مخرب ارزشی که لازم به ذکر است که شرایط لبه‌هایی که مواری خط گره‌ها

قرار دارد (اکثریت مسیرهای طولی)، هنگام سواز کردن

ماتریس اعمال می‌شود. در این قسمت نحوه اعمال شرط

teh curve of matter in a review of the length of the curve to make a matter in an action

فرض می‌کنیم در ابتدا نوار از شرایط لبه‌ها به‌صورت ساده باشد.

دو شرط اصلی برای تکیه‌گاه ساده عبارتند از:

$$\frac{\partial^2 w}{\partial y^2} = 0 \quad \text{و} \quad w = 0 \quad \text{در} \quad y = 0$$

(5)
جدول ۱ - اصلاح توابع اسپلین برای اعمال شرایط مرزی هنگامی که نکته‌گاه در ابتدا نوار باشد

<table>
<thead>
<tr>
<th>ψ_1</th>
<th>ψ_0</th>
<th>ψ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_0</td>
<td>ψ_0</td>
<td>ψ_1</td>
</tr>
<tr>
<td>ψ_{-1}</td>
<td>ψ_{-1}</td>
<td>$\psi_1 - 0.5 \psi_0 + \psi_{-1}$</td>
</tr>
<tr>
<td>ψ_{-1}</td>
<td>ψ_0</td>
<td>$\psi_1 - 0.25 \psi_0$</td>
</tr>
</tbody>
</table>

$w(y) = -\alpha_1 \psi_{-1} + 0 \times \psi_0 + \alpha_1 \psi_1 + \cdots + \alpha_{m-1} \psi_{m-1} + \alpha_m \psi_m + \alpha_{m+1} \psi_{m+1}$

$\Rightarrow w(y) = \alpha_1 \psi_1(y) - \psi_{-1}(y) + \alpha_2 \psi_2(y) + \cdots + \alpha_m \psi_m(y) + \alpha_{m+1} \psi_{m+1}(y)$

اگر فرض کنیم $\psi_i = \psi_{-1}$ آنگاه:

$w(y) = \alpha_1 \psi_{-1} + \alpha_2 \psi_2 + \cdots + \alpha_m \psi_m - \alpha_{m+1} \psi_{m+1}$

$\Rightarrow w(y) = \sum_{i=-1}^{m+1} \alpha_i \psi_i(y)$

برای یک خط گره این یک سطح را نوشته و در توابع اسپلین‌های جایگزین می‌کنیم. سپس معادله (۷) عبارت است از:

$w(y) = \alpha_{-1} \psi_{-1} + \alpha_0 \psi_0 + \alpha_1 \psi_1 + \cdots + \alpha_{m-1} \psi_{m-1}$

$+ \alpha_m \psi_m + \alpha_{m+1} \psi_{m+1}$

با توجه به در شرایط نکته‌گاهی برای نکته‌گاه ساده می‌توان توشت:

$w(0) = 0 = \alpha_{-1} \psi_{-1}(0) + \alpha_0 \psi_0(0) + \alpha_1 \psi_1(0) + \cdots + \alpha_{m-1} \psi_{m-1}(0)$

$+ \alpha_m \psi_m(0) + \alpha_{m+1} \psi_{m+1}(0)$

$\Rightarrow 0 = \alpha_{-1} \psi_{-1}(0) + \alpha_0 \frac{4}{6} + \alpha_1 \frac{1}{6} + 0 + 0 + \cdots + 0$

$= \alpha_{-1} \frac{1}{6} + \alpha_0 \frac{4}{6} + \alpha_1 \frac{1}{6} = 0$

$\Rightarrow \frac{\partial^2 w}{\partial y^2} | _{y=0} = 0$

$= \alpha_{-1} \psi_{-1}''(0) + \alpha_0 \psi_0''(0) + \alpha_1 \psi_1''(0) + \cdots + \alpha_{m-1} \psi_{m-1}''(0)$

$+ \alpha_m \psi_m''(0) + \alpha_{m+1} \psi_{m+1}''(0)$

$\Rightarrow 0 = \alpha_{-1} \frac{1}{h^2} + \alpha_0 \frac{2}{h^2} + \alpha_1 \frac{1}{h^2} + 0 + 0 + \cdots + 0$

$= \alpha_{-1} + 2 \alpha_0 + \alpha_1 = 0$

$\alpha_0 = \alpha_{-1}$

$\alpha_0 = 0$

$\alpha_{-1} = -\alpha_1$

با جایگزین کردن مقادیر α_{-1} و α_0 در معادله (۷) معادله زیر به دست می‌آید:

$\alpha_{-1} = -\alpha_1$

$\alpha_0 = 0$
در معادله فوق [\(\mathbf{D}_f \)] ماتریس صلبیت الکتریکی ورق است که برای ورقهای ایزوتروپیک بهصورت زیر است.

\[
\mathbf{D}_f = \frac{E_t^3}{12(1-\nu^2)} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & (1-\nu)/2 \end{bmatrix}
\]

(20)

که در آن \(E_t \) مدول الکتریسیته ت و-curie و \(\nu \) ضریب Poisson است.

اگر معادلات (17) و (19) را در معادله (22) فزار دهیم، انرژی الکتریسیته ورق بهصورت زیر درمی‌آید.

\[
U_f = \frac{1}{2} \int \{ \mathbf{\delta}_f \}^T \mathbf{B}_f \{ \mathbf{\delta}_f \} \mathrm{d}x \mathrm{d}y
\]

(21)

با خارج کردن \(\{ \mathbf{\delta}_f \} \) از داخل انتگرال خواهیم داشت:

\[
U_f = \frac{1}{2} \{ \mathbf{\delta}_f \}^T \left[\int \{ \mathbf{B}_f \}^T \mathbf{B}_f \right] \{ \mathbf{\delta}_f \} \mathrm{d}x \mathrm{d}y
\]

(22)

معادله فوق را می‌توان بهصورت زیر بازنویسی کرد.

\[
U_f = \frac{1}{2} \{ \mathbf{\delta}_f \}^T \{ \mathbf{k}_f \} \{ \mathbf{\delta}_f \}
\]

(23)

که در آن \(\{ \mathbf{k}_f \} \) ماتریس سختی خم‌شانی الکتریکی است.

اگر \(\mathbf{b}_s \) عرض نوار و \(\mathbf{a} \) طول نوار باشند، آن‌گاه:

\[
[k_f] = \int_0^a \int_0^x \left[\mathbf{B}_f \right]^T \mathbf{B}_f \mathrm{d}y \mathrm{d}x
\]

(24)

برای ورق تحت بارهای فشاری و \(\mathbf{N}_x \) و \(\mathbf{N}_y \) و نیروی برزیلی \(\mathbf{N}_{xy} \) نیروی بارهای خارجی را به‌صورت زیر نوشته می‌باشد.

\[
V_p = -\frac{1}{2} \int \left[\mathbf{N}_x \left(\frac{\partial \mathbf{w}}{\partial x} \right)^2 + \mathbf{N}_y \left(\frac{\partial \mathbf{w}}{\partial y} \right)^2 \right] \mathrm{d}x \mathrm{d}y + 2\mathbf{N}_{xy} \left(\frac{\partial \mathbf{w}}{\partial x} \right) \left(\frac{\partial \mathbf{v}}{\partial y} \right) \mathrm{d}x \mathrm{d}y
\]

(25)

اگر [\(\mathbf{B}_g \)] به‌صورت زیر تعریف شود:

\[
[B_g] = \left[\frac{\partial (\mathbf{N})}{\partial x} \right] \left[\frac{\partial (\mathbf{N})}{\partial y} \right]^T
\]

(26)

آن گاه با استفاده از معادلات (23) و (26)، معادله (25) را می‌توان به‌صورت زیر نوشت:

\[
V_p = -\frac{1}{2} \{ \mathbf{\delta}_f \}^T \left[\mathbf{B}_g \right]^T \{ \mathbf{\sigma} \} \{ \mathbf{\delta}_f \} \mathrm{d}x \mathrm{d}y
\]

(27)

که در آن:

\[
\delta\Pi = \delta (U_f + V_p)
\]

(13)

معمولاً وقتی که یک راه حل دقیق (تحلیل) برای حل مسائل در دسترس نباشد و یا راه حل تحلیلی طولانی و پیچیده باشد، از روش انرژی پتانسیل در تحلیل عددی استفاده می‌شود. انرژی پتانسیل کل می‌تواند با بررسی حالت تعادل پایدار و انرژی پتانسیل کل ماکزیمم یا مینیمم حالت تعادل ناپایدار است. تعادل خشکی حالتی است که در آن انرژی پتانسیل کل نه ماکزیمم و نه مینیمم است. برای تعیین بار برای اینصافات باید باری را یکدیک کنیم که ورق ت تحت اثر آن بار می‌تواند بین هر دو شکل مستطیلی و کمیت معادله تعادل باشد. در این حالت اعضای در حالت تعادل خشکی است.

با استفاده از روابط الکتریسیته (تنش – کرشن و انحنای) می‌توان انرژی الکتریسیته و پتانسیل بارهای خارجی وارد به طبق معادلات زیر به دست آورد.

\[
U_f = \frac{1}{2} \int \left[\mathbf{\delta}_f \right]^T \{ \mathbf{\sigma} \} \{ \mathbf{\delta}_f \} \mathrm{d}x \mathrm{d}y
\]

(28)

که در آن \(\{ \mathbf{\sigma} \} = \left[\mathbf{M}_x \mathbf{M}_y \mathbf{M}_{xy} \right]^T \)

(29)

و \(\{ \mathbf{\delta}_f \} = \left[\frac{\partial^2 \mathbf{w}}{\partial x^2} \frac{\partial^2 \mathbf{w}}{\partial y^2} \frac{\partial^2 \mathbf{w}}{\partial x \partial y} \right]^T \)

(30)
به ذکر است که برای ورق با بهره‌های مبنا و انتهایی با پایه به محل اثر بارها و مقادیر نیاز به قسمتی از نویسی هندسی کرده و ماتریس هندسی را در هر قسمتی به‌طور جداده مناسب کرده. ماتریس هندسی در کل نواز از مجموع ماتریس‌های هندسی هر قسمت نوار به دست می‌آید.

\[\begin{bmatrix} \sigma \end{bmatrix} = \begin{bmatrix} N_\chi & N_{xy} \\ N_{xy} & N_y \end{bmatrix} \]

(28)

با استفاده از داخل انگرال خواهیم داشت:

\[V_p = \frac{1}{2} \begin{bmatrix} \delta \end{bmatrix}^T \frac{1}{2} \int \left[B_g \right]^T \left[\sigma \right] \left[B_g \right] dx dy \begin{bmatrix} \delta \end{bmatrix} \]

(29)

معادله فوق را نیز می‌توان به‌صورت زیر بازنویسی کرد:

\[V_p = \frac{1}{2} \begin{bmatrix} \delta \end{bmatrix}^T \begin{bmatrix} k_g \end{bmatrix} \begin{bmatrix} \delta \end{bmatrix} \]

(30)

که در آن \(k_g \) ماتریس هندسی با پایداری یک نوار اسپیلاچ است.

\[\begin{bmatrix} k_g \end{bmatrix} = \int_{0}^{b} \int_{0}^{a} \begin{bmatrix} B_g \end{bmatrix}^T \begin{bmatrix} \sigma \end{bmatrix} \begin{bmatrix} B_g \end{bmatrix} dy dx \]

(31)

ماتریس نیروهای فشاری \([\sigma] \) برای ورق تحت بهره‌های مبنا و انتهایی به‌صورت زیر است.

\[0 \leq y \leq Ba \Rightarrow \begin{bmatrix} \sigma_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & N_1 \end{bmatrix} \]

(32)

\[Ba \leq y \leq a \Rightarrow \begin{bmatrix} \sigma_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & N_2 + N_1 \end{bmatrix} \]

(33)

ماتریس‌های سختی خم‌کننده \(k_{fr} \) و هندسی \([k_g] \) هر نوار اسپیلاچ را می‌توان طبق معادلات (22) و (28) به‌دست آورد.

ماتریس سختی خم‌کننده کل ورق \([K_{fr}] \) و ماتریس هندسی کل ورق \([K_g] \) از سوار کردن دوی‌های ماتریس‌های سختی و هندسی هم‌رخ نوارها (بر اساس دو بار مشترک گره و ارضا شرایط تبدیل و همسازی در مرزهای ورق) به‌دست می‌آید. با داشتن ماتریس‌های سختی خم‌کننده و هندسی کل ورق، رابطه آن‌ها تنهاکی کل برای تمام سطح ورق به‌صورت زیر تهیه می‌شود.

\[\delta_{II} = \delta \left(U_f - V_p \right) = \left[[K_{fr}] - [K_g] \right] (\delta) = 0 \]

(34)

در معادله فوق \([K_g] \) و \([K_{fr}] \) به‌ترتیب ماتریس‌های سختی و هندسی و \(\delta \) بردار تغییر مکان بزرگی کل ورق است. معادله فوق وقتی برای تمام تغییر مكان‌های اختیاری یا مجازی برقرار است که در میان ضرایب صفر باشد. بنی.:\n
\[[K_{fr}] - [K_g] = 0 \]

(35)

با حل دو میان ضرایب فوق می‌توان بحرانی را به‌دست آورد. لازم استقلال، سال 1387، شماره 2، شماره 2، شماره 2، شماره 2، شماره 2.
جدول 2 - ضرایب کماسی ورق CCSC تحت فشار لبه‌ای دو روش تعداد اسپلایین و روش تحلیلی

<table>
<thead>
<tr>
<th>ضرایب کماسی</th>
<th>روش تعداد اسپلایین</th>
<th>روش تحلیلی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m=4</td>
<td>m=6</td>
</tr>
<tr>
<td>$\frac{a}{b} = 1$</td>
<td>10(13)</td>
<td>10(1)</td>
</tr>
<tr>
<td>$\frac{a}{b} = 2$</td>
<td>10(14)</td>
<td>10(1)</td>
</tr>
</tbody>
</table>

جدول 3 - ضرایب کماسی موقعی صفحات تحت بارهای میانی و انتهایی دو روش تحلیلی و تعداد اسپلایین

برای ورق CCSC هنگامی که بار انتهایی وجود داشته باشد $N_1 = 0$

<table>
<thead>
<tr>
<th>ضرایب کماسی</th>
<th>روش تحلیلی [2]</th>
<th>روش تعداد اسپلایین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B=0.3</td>
<td>B=0.5</td>
</tr>
<tr>
<td></td>
<td>0.324</td>
<td>0.377</td>
</tr>
</tbody>
</table>

جدول 4 - ضرایب کماسی موقعی صفحات تحت بارهای میانی و انتهایی دو روش تحلیلی و تعداد اسپلایین

برای ورق CCSC هنگامی که بار انتهایی وجود داشته باشد $N_1 = 0$

<table>
<thead>
<tr>
<th>ضرایب کماسی</th>
<th>روش تحلیلی [2]</th>
<th>روش تعداد اسپلایین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B=0.3</td>
<td>B=0.5</td>
</tr>
<tr>
<td></td>
<td>0.334</td>
<td>0.377</td>
</tr>
</tbody>
</table>

مزیت مرزی تحقیقات نشان می‌دهد [2] در هر دو روش ضرایب کماسی نسبت به بار میانی محاسبه شده است (بار انتهایی وجود ندارد $N_1 = 0$).

در روش تعداد اسپلایین برای رساندن یک جواب بر دقت خوب می‌باشد تعداد نوار و گره مناسبی انتخاب شود. برای انتخاب نوارهای مختلف، مورد بررسی و مقایسه قرار گرفت. اگر تغییرات خاصی در راستای عرض ورق وجود داشته باشد (مانند تغییر ضخامت ورق) و با وجود تکه‌گاه میانی) با انتخاب 2 نوار می‌توان به یک جواب بی‌توجهی خوب دستیافت. اما تعداد تفکیک‌های ورق در راستای طول (m) بستگی به شرایط لبه‌های ابتدا و انتهای توارهای دارد. به طوری که با افزایش تعداد ابتدا می‌باشد تعداد تفکیک‌های ورق افزایش داده می‌شود. برای انتخاب m معادله با انتخاب 10 می‌توان به یک جواب بی‌توجهی خوب دستیافت. در جدول 2 ضرایب کماسی برای
شکل 6- نمودار تغییرات ضریب کمانش موضعی k نسبت به a/b هنگامی که $N_1 = 0$

علاوه بر این، تا زمانی که شرایط لبه‌های طولی ورتهای تحت بار میانی به صورت ساده باشد، در حال تحلیل می‌توان از روش لواست استفاده کرد. اما اگر شرایط لبه‌های طولی به صورت غیر ساده و یا متفاوت با یکدیگر باشد، می‌باشد از سری‌های مضاعف فوریه که شرایط مرزی را ارضا کند استفاده کرده. این فوریه مضاعف تحلیلی را طولانی و یچیده‌تر خواهد کرد. به طور کلی می‌توان گفت نوار محدود به‌سیار راحتی از روش تحلیلی است. گسترده‌گی حل مسائل تیز بیشتر است و این همه مهم‌ترین اینکه، جواب‌ها از دقت بالایی برخوردارند.

4-2- پایداری موضعی ورک با شرایط مرزی مختلف و بار میانی

نتایج عدید برای دو ورک با شرایط لبه‌های مختلف و نشان داده شده در شکل‌های (8 و 9) و (10 - 12) آورده شده است. برای تبعیض ضریب کمانش ورتهای مستطیلی که به همراه میانی و انتهایی باید تغییر اثر انتزاعی (تر متقابل) پایداری بارهای میانی و انتهایی به طریق زیر عمل می‌شود:

\[k_1 = \frac{N_1 b^2}{\pi^2 D} \]

\[k_2 = \frac{N_2 b^2}{\pi^2 D} \]

در معادلات فوق k_1 ضریب کمانش نسبت به بار انتهایی، k_2 ضریب کمانش نسبت به بار میانی، D تغییر خمش ورک.
شکل 7 - نمودار اندرکش (اثر مقابل) بر این عناصر و انتهای

(\(a=b \)) \(k_2 \) و \(k_1 \)

شکل 8 - نمودار اندرکش ضریب کماسی

(\(a=2b \)) \(k_2 \) و \(k_1 \)

شکل 10 - نمودار تغییرات ضریب کماسی

\(N_1 = 0 \) هنگامی که \(k = k_2 \) \(k \)

بدین ترتیب نقاط مختلف مهندسی‌های اندرکش نیروهای ماینی و انتهایی به‌دست می‌آید. بین‌های این نقطه 3 در شیک (7) برای حالتی است که ورق تحت تأثیر نیروی محوری \(k_1 \) قرار داشته و \(N_1 = 0 \) است. شکل‌های (8) و (9) به ترتیب اندرکش بین بارهای ماینی و مسیر نیروی محوری را تغییر می‌کند.

- با فرض \(\alpha k_1 \) در آن \(\alpha > 0 \) است می‌توان از معادله (35) نیروی \(N_1 \) را تعیین کرد.

- با معلوم‌کردن نیروی \(N_1 \) و در بحراشی \(N_2 \) را با تحلیل پایداری و روش تعیین کرده و از معادله (36) \(k_2 \) محاسبه می‌شود. نقطه 2 در شکل (7) به مختصات \([\alpha k_1, k_2] \) محدوده.
نمودارهای اندرکنش بارهای میانی و انتهایی برحسب نیز برای
این صفحات ترجمه گردید. از این نمودارها می‌توان در طراحی
ورقهای قائمی که وقوعی افقی به آنها منطبق استفاده کرد.
با توجه به تابیه به دست آمده برای شرایط لبه و هندسی
مختلفی می‌توان گفت، با ریاد شدن نسبت طول به عرض
صفحات تاثیر محل عامل بار میانی در تعیین ضریب کماس
صفحات کاهش می‌یابد.

هنگامی که ورق تحت بار میانی ضریب دارد (بار انتهایی
وجود نداشته باشد)، با کم شدن فاصله بار میانی از لبه تحت
فشار، بار بحرانی افزایش یافته و به سمت داخلی نیز می‌کند.
بر ورقهای تحت بار میانی (بار انتهایی و وجود نداشته باشد)، با
کاهش نسبت طول به عرض صفحات، تغییر مهدای کماسی در
نمودارهای ضریب کماسی، افزایش می‌یابد. در طراحی این
ورقهای می‌توان ضخامت قسمتی از ورق را که تحت فشار قرار
نمی‌گیرد، کمتر در نظر گرفت.

در ورقهای تحت بار میانی و انتهایی در صورتی که بتوان
بارهای میانی را در فاصله یافته نیز در نسبت به لبه تحت فشار
اعمال کرد و یا در مسائل طراحی طول ورق را کمتر در نظر
گرفت، بار بحرانی ورق افزایش یافته و باعث اقتصادی شدن
طرح می‌شود.

انهایی را برای دو ورق با شرایط مزئی مشخص شده در
نمودارها، و برای نسبتهای $\frac{a}{b} = 1$ و $\frac{a}{b} = 2$ نشان می‌دهند.

 واضح است که با طول نر در ورقهای (1$<\frac{a}{b}$) برای حالت‌های
انحای نمودارها کاهش می‌یابد.

شکل (10) نیز تغییرات ضریب کماسی را نسبت به $\frac{a}{b}$
مختلفی برای ورق SSCC نشان می‌دهد. شکل‌های (11) و (12)
اندرکنش بین بارهای میانی و انتهایی را برای دو ورق با شرایط
مرزی SSCC و مشخصات هندسی مشخص شده در نمودارها،
نشان می‌دهند.

5- بحث و نتایج

تحلیل پایداری ورقت، تحت اثر بارهای میانی و انتهایی با
شرایط مزئی مختلف، با استفاده از روشهای تحلیلی معول
طولانی و طولانی است. در این مقاله نشان داده شد که با استفاده
از روش عده‌ای نوار محدود اسپن در، می‌توان پایداری ورق
تحت بارهای میانی و انتهایی با هر شرایط مزئی را تحلیل کرد.

در این تحقیق پایداری صفحات تحت بارهای میانی و
انهایی برای شرایط لبه و نسبت طول به عرضی مختلف
مورد بررسی قرار گرفت. نمودارهای ضریب کماسی و

شماره 26 شماره 1 شهریور 1386

استخلال