Geotechnical Interaction of Piled Raft Foundations: Two Case Studies

M. Veis Karami, A. Eslami, M. M. Ranjbar and T. Riyazi
Dept. of Civil Eng., Shiraz University
Dept. of Civil Eng., University of Guilan

Abstract: Application of pile-raft foundations, which are known as “compound foundations”, is a suitable alternative in the case of heavy load structures. The interaction behavior of pile raft foundations makes these systems very complex to analyze.
کلمات کلیدی: بنای‌های ساختاری نازک، بنای‌های ساختاری مات، تعامل کوپه‌های پیکری، نکاتی از مسئله بتن آن، نتایج بررسی شده که در مورد محدوده مقادیر بنای پیکری به کار گرفته شده است. در این مطالعه، تعداد کافی از مدل‌های بهینه‌سازی شده که در مورد بتن پیکری بررسی شده است.

1- مقدمه

تغییرات نظارت شدنی در استقرار فناوری مشارکت، تحلیل پایداری (در صورت لزوم) و طراحی سازنده و ملاحظات اجرایی و اقتصادی نیز معیار عمدی طراحی پیکری به عنوان کمک مهندس در سنگینی و همچنین در زمینه طراحی پیکری زنده به راه رفته است. این همه، از طریق‌های متنوع و متنوع توانایی ایجاد پیکری خاک و همچنین کنترل نشان می‌باشد که هرچه مورد توجه است، تا آن‌ها کنترل نشان، معیار اصلی طراحی پیکری مفهومی است.

در مواجه به پیکری‌های سنگین سازه‌های ایندی پیکری خاک، مورد نظر طراحان قرار می‌گیرند. اگرچه سیستم رادیه از کامپیوتر نوین پیکری مفهومی است، اما به دلیل داشتن ابعاد قابل توجه ابعاد زیادی را تحت تأثیر قرار می‌دهد و این امر منجر به توقف نشانه‌ها قابل توجه در سیستم می‌شود. به همین منظور و به جهت تقضیم عملکرد پیکری رادیاه، مورد پیکری ساختگی، پرتوی‌های جواهر طراحی نشانه و زمینه‌های مسئله‌دار و ترکیب‌پذیر می‌توان از سیستم‌های رادیاه شناور، به ترتیب خاک زیر پی و در نهایت از کامپیوتر سیستم‌های پیکری‌ها بزرگ رادیاه و گروه شمع به جستجو در حال‌اند، علاوه بر افزایش توان پایداری، نشان می‌نماید که کاری که می‌باشد.

سیستم‌های مکابی پایدار و گروه شمع از آن روی "سیستم" خوانده می‌شود که در آن اندرکنش‌های مختلفی بین اجزای نسبت به اندرکنش‌ها و گروه شمع، اندرکنش رادیاه و خاک، اندرکنش شمع و خاک و اندرکنش شمع‌ها با یکدیگر. بنابراین، انسجام که هرگاه از سیستم رادیاه و گروه شمع نمودار می‌شود، منظور از این است که هر یک رادیاه و هم گروه شمع در پایداری کلی بررسی‌های زاویه نیمه و یک پایداری که نشان دهنده ایجاد نیمه نشان می‌گذارد و از قابلیت هر یک از آنها در این جمله، نظر دیده شود. این تحقیق پیکری رادیاه و گروه شمع، ایده‌های یک کنون و محدودیت‌های زاویه‌های مکابی است که هرگاه صحیح بازیابی شده است. نتایج حاصل در پی‌های مکابی به این که، سیستم رادیاه است.تست‌های انجام شده بررسی مکابی پایداری و شمع روش‌های مختلفی وجود دارد که جمله‌ای آنها می‌توان از روش‌های صلب و غیر صلب (انعطاف‌پذیر) استفاده کرد. از روش‌های غیر صلب می‌توان به روش‌های عددي و جریان معکوس و ترم (آوازه‌ای) معمول آن‌ها نسبت به چرخ‌های الکتروی شمای. در سیستم موجود روش‌های فرضیه‌ای برای تحلیل نیروها و توزیع آنها در جزایر سیستم وجود دارد.

در این مقاله هدف بررسی روش‌های موجود در تحلیل و طراحی سیستم‌های رادیاه و گروه شمع است که در نهایت پس از بررسی روش‌های مورد استفاده جاری و مرسوم در این زمینه، روش پیشنهادی بر پایه لازم‌ترین نتایج پایداری و نشان بیشتری داشته‌اید همکاری‌های این اندکنش‌ها و یا استفاده از سیستم فنایداری سایر خاک زیر پی در نهایت از کامپیوتر سیستم‌های پی‌سازی تهیه رادیاه و گروه شمع به جستجو در حال‌اند، علاوه بر افزایش توان پایداری، نشان می‌نماید که کاری که می‌باشد.
گونه‌ی انجام شده که مقاله آنها از مقاله‌های بیشتری به‌وجود می‌آورد.

برای طراحی پی‌های مارکس سه روند طراحی کلی توسط راندولف یپشه‌هد شده است. این سه روند عبارت‌اند از:

الف - روش سنتی: این روش شانه‌ای باید بخشهای معبر و کتب طراحی موجود است [6 و 7].

شکل 1- نمایش سیستم مکانیکی مرکب رادیه و گروه شمع

۲- ملاحظات کلی طراحی سیستم‌های مکانیکی مرکب رادیه و گروه شمع

شکل (1) تصویری شماتیکی از یک سیستم مکانیکی مرکب رادیه و گروه شمع نشان می‌دهد. در این شکل پی‌های و ممانهای وارد بر سیستم مشخص گردیده و ممانهای وارد بر سیستم مشخص شده‌اند. چنین سیستم‌های باید برای معارف‌های زیر طراحی شود:

الف - حداقل طرفیت پی‌های زنده‌کننده تحت اثر بارهای قانون، افقی و ممانهای:

ب - کنترل نشست پی‌های کل سیستم و تامین سختی لازم;

ج - کنترل نشست‌های ناپایدار

د - کنترل پایداری سیستم و تامین سختی جابجایی;

ه - طراحی سازه‌های رادیه و شمع

و - بهپی بودن سیستم امتحان از نظر اجرایی و اقتصادی

تغییر طرفیت پی‌های این سیستم‌ها به دو صورت قابل انجام است: اینکه از یک ضریب اطمینان کلی پی‌ای سیستم استفاده شود (روش نشان‌دهنده مجاز) یا اینکه طراحی در حالت حدی انجام پذیرد (روش حالت حدی طراحی). کنترل نشست و چرخش سیستم نیز قطع نظر از روش کلی طراحی، یا باید به...
بهبهنه است. در غیر این صورت، هرگاه تعداد شمعه بیش از حد
بهبهنه باشد، سهم باربری شمعه با زیادی ممکن است و نتایج باربری
رادیه به کار گرفته نخواهد شد. در این حالت نشان خیالی کم
بهبهنه و ضریب اطمنان کلی سیستم بهبودیالیت و طرح غیر
اقتصادی خواهد بود. با علاوه بر هرگاه تعداد شمعه کمتر از
تعداد بهبهنه باشد، شمعه در باربری کم تسلیم می‌شود و
ظرفیت باربری کلی سیستم باید در آینده نزدیک یافته و نشست آن افزایش
خواهد یافت. به همین دلیل، نتایج این تحقیق گفتگویی می‌شود و هدف از آن نشست جزئی رادیه و کاهش نشست
است [4 و 5].

اصولاً بر اساس توصیه پولوس [1991]) بیشترین کاربرد
پیهای مرکب زمانی است که رادیه می‌تواند طرفیت باربری
کلی زیرسازی را تمایل نکند، اما برای اجتناب از نشستن بیش از
مقاوم برای ارزیابی این تعداد شمع در زیر استفاده می‌شود. این
صدورت وجود پروفیل خاک درای هر رشته شفته و حسگر
خاک‌های ماسی و درست کردن، رادیه خود به کمکی قادر به
تامین طرفیت باربری است. اما در مواجهه با خاک‌های دلیل
رس نرم، ماسی‌های شنا در لایه‌های سطحی و خاک‌های مستعد
نشست و تورم، پیدا می‌کند که نشستن آن در کمکی می‌شود. کلی
قابل ذکر است که در یک نشست کسی، مقدار
نشست پیه‌های رادیه به شیب پیه‌های متفاوت است. زیرا به دلیل
ابعاد برجسته، ابعاد برجسته را تحت تاثیر قرار می‌دهد. به
همین دلیل استفاده از گروهیه شمع در کاهش نشست کلی
سیستمهای مرکب بسیار حائز اهمیت است [4 و 5].

به طور ساده‌تر می‌توان نشست پی را با معادله کلی زیر
نشان داد:

\[S = KqB \] (1)

که

\[S \] مقدار شماره

\[K \] ضریب

\[q \] نشت نشست خاک و پی;

\[B \] عرض پی

نمایش می‌دهد. در این حالت، گروهیه شمع پس از رسیدن به
ظرفیت باربری نهایی خود دچار تسلیم می‌شود. استفاده از
واژه تسلیم به جای گسیختگی بدنی است که در
حقوقی از نشستن گروهیه شمعه در باربری بعد
نهاگی گروهیه شمع، سیستم دچار ایجاداری نمی‌شود و نشست
شمعه در یک سیستم رادیه، به کارآمدی کاملاً می‌باشد
که رادیه می‌شود. منظور از واژه ‘تسلیم’ در کاربرد اخیر
آن، دچاریک کننده شدن سیستم، اعم از گروهیه
است. در منحنی (J) رفتار اندرکنسنت و نرخ رادیه و گروهیه
شمعه نشان داده شده است. در این منحنی اجزای سیستم به
طرور همگان در برابر باربری راده می‌توانند می‌شوند.
و هر یک
سهمی از باربری را به خود اختصاص می‌دهند. پس از تسلیم
یکی از اجزا، جزء دیگر وارد عمل می‌شود و نهایتاً
مقاومت خود باربری وارده را حمل می‌کند و بدین ترتیب
مقاومت سیستم به مقدار بسیار زیادی افزایش می‌یابد.
همان‌طور که ملاحظه می‌شود منحنی (J) مقدار بار
پیه (P_p) بار نهایی (P_{p_n}) با بار نهایی
سیستم (P_s) از بار نهایی رادیه، نهایی
گروهیه شمع نشست (P_{p_n}) است [4].

حال در صورتی که تعداد شمعه در حد بهبهنه باشد، توزیع
باز بین رادیه و شمعه به کار به خود این است که رادیه و شمعه تقریباً
هم‌سازی به مرحله‌ی تسلیم می‌رسند و در این حالت طراحی
گروه شمع برای جایزه اهمیت است. چرا که شمعها پس از
تسیم، جهان‌گیری یا بازگردانی می‌توانند متحمل شوند و برای
همین باشد تحلیل نشست، به خصوص برای شمعهای اسکالکی
پیش از شمعهای اتکایی، صورت پذیرد.

در بحث اخیر، یعنی تحلیل ظرفیت بارداری و نشست،
سیستم‌های مربک که به طور همزمان با یک به طرح
قرار گیردند، توسط برخی محققان موثر است. گرفته این
و روش‌های مقابله برای تحلیل و ظرفیت زنوتکنیکی، آن
پیشنهاد شده است. در ادامه هر یک از این در بحث مواد نداشته
قرار می‌گیرد.

1- تحلیل ظرفیت بارداری سیستم‌های مربک رادیه و
شمع

برای تحلیل ظرفیت بارداری این سیستم‌ها، فرضیات و
روش‌های معنی‌دار و وجود دارد. از اولین روش‌های روشن است
(11). اما
روشی که در برجورده همه روش‌های دیگر و در حیاتی از جمله
کامپیوتر روش‌های است، که این‌ها از جمله
شمعها از روش تقریبی راندولف به دست می‌آید (12) و رفتار
نشر راهی و شمع نیز خود صورت سهمی شده است. شکل (2).
منشأ
شمعها از روشنی ناتوانی را که است. گمتی خطر تقریب
زد. بر اساس رفتار نشان داده به شکل (2). نشست کلی
سیستم‌ها نشست به A از معادله زیر محاسبه می‌شود:

\[S = \frac{P}{K_{pr}} \] \hspace{2cm} (2)

که در آن S نشست کلی سیستم، P، کل بار وارد و
S نشست در این معادله \(K_{pr} \)
برای این نشست، سیستم، P، کل بار وارد و
S نشست در این معادله \(K_{r} \)
برای این نشست، سیستم، P، کل بار وارد و

\[S = \frac{P_{A}}{K_{pr}} + \frac{P - P_{A}}{K_{r}} \] \hspace{2cm} (3)

که در این معادله
S نشست کلی سیستم، P، کل بار وارد و
S نشست در این معادله \(K_{r} \)
برای این نشست، سیستم، P، کل بار وارد و
S نشست در این معادله \(K_{r} \)
برای این نشست، سیستم، P، کل بار وارد و

۹۷

۱- تحلیل و ظرفیت زنوتکنیکی پی‌های مربک

رادیه و گروه شمع بر روی معول

برخی مهندسین ترجیح میدهند که از ظرفیت بارداری رادیه
در طرح زنوتکنیک صرف‌نظر کرده، کل برای برای ظرفیت
شمعها در نظر گرفتند. در این حال، رادیه‌ها به عنوان یک سر
شمع عمومی کنده و این روند طراحی غیر اقتصادی است. ذکر
این نکته قبل توجه است که برای به کارگیری ظرفیت بارداری
جادهی فکری، از این جهان، راهی جایی که طرف‌سازی در حدود
یکی در صورتی که دارای فشار و به‌پایه سطحی
جهانی بیشتری برای رسیدن به حداقل ظرفیت بارداری از
است. این نکته از این روی قابل توجه است که در طراحی
پی‌های مربک، باید دقت داشته که در صورتی که تعداد شمعها
پیش از انتخاب زیاد نباشد، برابری سیستم این‌ها توسط شمعها
انجام می‌شود و بسیار را به عمل می‌شود. چنین حالتی
یعنی تحلیل شمعها قبل از رادیه. در شکل (2) ب، و ضعف نمایان
است. باربرای در صورتی که تعداد شمعها بیش از انتخاب زیاد
نباشند، بسیار نیز از این‌ها نیز انتظار بارداری داشته و در این
صورت رادیه می‌توانند سه‌بلد تویجی از بار را به خود
اختصاص دهد. ضمن اینکه، طراحی نیز از نظر گسترشگزینی کل
سیستم‌ها، این و قابل استفاده خواهند بود. پس با این تفسیر
صبر نظر صندن در طرح طرح اقتصادی می‌اجامد. تکه‌تکه مهم در تحلیل
سیستم‌های مربک که در این طرح بارداری را نزد آنها در نظر
گرفته می‌شود این است که به دلیل تحلیل شمعها، از آنجا که
برای استفاده از ظرفیت بارداری رادیه، نگیر شکل‌ها نسبتاً
پژوهی نابدای یا به نشست کلی سیستم ممکن است به
مقادیری بیش از مقدار مزاح می‌کند. نیروی می‌تواند در چنین
سیستم‌های باردار نشست کلی سیستم‌ها و در حقیقت نشست

۱۳۸۶

استقلال، ص ۲۶، شماره ۱، شهرویور
برای نشست کوتاه مدت باراپتراوری زهکشی نشده خاک مورد استفاده قرار می‌گیرد و برای نشستهای بلند مدت، سخت‌های رادیو و گروه شمع برای حالت زهکشی شده مورد استفاده قرار می‌گیرد.

نکته حاصل اهمیت در این روش که یکی از جدیدترین روشهای نظری در رابطه با تحلیل فونداوسونهای مربک است این است که باراپتراوری این روش اگرچه در محاسبه نیروهای داخل موتر و دیگر اینها، اما با سادگی قابل تبعیض نیستند. به عنوان مثال برای تعیین سنتی رادیه (Kp) با سختی گروه شمع روش دقیق و قابل اعتمادی و جدایی ندارد یا تعیین این مقادیر مستلزم صرف هزینه‌های بسیار هنگفت آزمایشهای درجا در محل است.

2-3- تحلیل نشست
در برآورد نشست آن سیستمهای، همان‌طور که اشاره شده، نشست گروه شمع بیمار حاصل اهمیت است. زیرا با اندک جای‌گیری شمع، کل مقاومت جداره بسیج شده، سیستم شروع به حرکت می‌کند. در حالی که برای تسلیم رادیه، جای‌گیری جداره قابل توجهی لازم است. همچنین بی‌های رادیه، اصولاً برای رسیدن به حد تسلم، باید بارهای بیمار سبک‌گری را متحمل شوند و در حذف نظری در عمل، رادیوهای دارای ظرفیت باربر یا یمن بسیار بالایی این (qsafe) بسیار بالایی (1) بیشترین در صورتی که نشست مورد لاغری قرار گیرد، بار مربوط به نشست مجاز عموماً در مقادیر گروه کمتر از ظرفیت باربری رادیه اتفاق می‌افتد و به همین دلیل می‌توان نشست را منحصراً برای گروه شمع مورد ملاحظه و محاسبه قرار داد. مهار نشست گروه شمع باید اساس تحلیل نشست در صفحه‌ای موسوم به صفحه‌ای خشک انجام می‌شود. این صفحه محاسبه است که این جای‌گیری شمع با خاک به عنوان پا سیستم اندکینی نشست به هم صرف می‌شود. در حقیقت پس از باراپتراوری سیستم شمع در خاک فرآیند مقاومت جداره آن برخاسته می‌شود. سیستم خاک اطراف شمع به اثر

هستند. اما بر اساس بار نهایی شمعها قابل محاسبه است:

\[P_A = \frac{P_{pu}}{\beta_p} \]

که:

ظرفیت باربری نهایی شمعها (شمع نک یا مود گسیختگی) P_{pu}
کلی (بلوک)، هر یک که کمتر باشد؛
\[\beta_p \] سهم بار شمعها؛

هستند. بدین ترتیب از معادلات راندولف در محاسبه در
معادلات فوق، معادله‌ی زیر به دست می‌آید:

\[K_{pf} = X K_p \]

که باینگر سنتی گروه شمع به نهایی است. برای تعداد معملاً به از شمعها X به صورت زیر خواهد بود:

\[X \cong \frac{1 - 0.6(K_r / K_p)}{1 - 0.4(K_r / K_p)} \]

\[\beta_p = \frac{1}{1 + a} \]

\[a = \frac{0.2}{1 - 0.8(K_r / K_p)} \left(\frac{K_r}{K_p} \right) \]

darin این معادلات Kp سنتی گروه شمع است. بدین ترتیب
سنتی گروه شمع و سنتی رادیه به صورت زیر محاسبه
خواهد شد:

\[K_p = K_{pf}(1 - R_{fp}P_{fp} / P_{pu}) \]

\[K_r = K_{rf}(1 - R_{fr}P_f / P_{rm}) \]

\[\frac{1}{1 - \frac{R_{fp}P_{fp}}{P_{pu}}} \]

با چاگزای معادلات (2) تا (10) در معادلات (2) و (3)، معادله‌ی برای نشست رادیه و شمع به صورت زیر به دست
می‌آید:

\[S = \frac{P}{X K_{pi} \left(1 - \frac{R_pP}{P_{pu}} \right)} \]

در معادلات اخیر، P، P_{pu}، P_{pu}، P_{fr} و P کل بار
سیستم است.

همان‌طور که در این معادله نیز مشهود است، رابطه نشست
و بار وارد به صورت یک سهمی است. این معادلات برای
برآورد نشستهای آنی و بلندمدت این سیستمهای استفاده می‌شوند.

\[1386 \]

استقلال، سال 26، شماره 1، شهروز
شکل 3 - روش تعیین محل صفحه خنثی در شمعها

بارهای وارد، دچار نشست می‌شود و در این حالت در نواحی فوقانی شمع، خاک نسبت به شمع دارای جایی قابل روبه رو به پایین خواهد بود و اصطکاک جداری منفی است. در حالی که در قسمتهای تحتانی، این جایی‌ها به عکس است. به همین ترتیب نیروهای وارد بر شمع در زیر صفحه خنثی روبه راه و در بالای آن روبه پایین جریان بود. در حقيقة صفحه خنثی محلی است که در آن نیروهای رو به پایین در شمع، بر اثر بارهای وارد و اصطکاک جداری با نیروهای رو به پایین یعنی مقاومت احتماً کف و اصطکاک جداری مثبت در نواحی پایین شمع، براز می‌شود. این محل محل محاسبه‌شده نشست گره شمع است. تعیین محل صفحه خنثی به کمک معادله‌بی‌زیمی‌های می‌شود و البته این صفحه تا ۱/۳ ارتفاع شمع قرار می‌گیرد[۱۲].

$$Q_x = Q_q + \int_0^1 r_x dz = Q_q + \int_0^1 A_y (C' + \beta \sigma_y') dz$$ (12)

$$Q_x = Q_t + \int_{z=D-1}^D r_x dz = Q_t + \int_{z=D-1}^D A_y (C' + \beta \sigma_y') dz$$ (13)

در این معادلات:

- $$Q_q$$ نیروی محرک داخلی شمع;
- $$Q_t$$ پار محرک وارد بر شمع;
- $$Q_b$$ ظرفیت باربری نهایی کف شمع;

卡尔-زاید نیرویی است که روی لامیناژ وارد می‌گردد.

شمع به روش جدید پیشنهادی

این روش که روش پیشنهادی در این پژوهش است، بر مبنای معادلات نشست در صفحه خنثی و تحلیل جنگ مرحله‌های رادیه و شمعا قرار دارد. پیش از معرفی روش، برخی مقدمات لازم برای تیبین فرضیات روی عنوان می‌شوند.
با توجه به پیامد های در دسترس، باید اگر کشور خود را به بهترین شکل ممکن در معرض خطر استخراج نشاند.

از این کشور باید بهترین استعداد ها و توانایی ها انرژی و توان اقتصادی و سیاسی را راهبردهایی که در بهبود وضعیت اقتصادی کشور و افزایش سطح زندگی مردم انجام گم نماید.

از این کشور باید بهترین استعداد ها و توانایی ها انرژی و توان اقتصادی و سیاسی را راهبردهایی که در بهبود وضعیت اقتصادی کشور و افزایش سطح زندگی مردم انجام گم نماید.
شکل ۲ - تغییرات محل صفحه خشکی با توجه به تغییرات مقادیر بار با مقادیر شمع

آن و همچنین نحوه توزیع مقادیر شمع در کف و چشمه، به طور قابل ملاحظه‌ای می‌توانند بر سهم باربری اجزای سیستم، توان باربری کل مجموعه و نشست کل تاثیر بگذارند. بنابراین، در حالی که مقادیر شمع دارای نتایج خاصی که مقادیر متفاوت شمع در نظر گرفته شود، در صورتی که سهم بار و شمع بیشتر باشد در نظر گرفته شود (افراشی بار وارد بر سر شمع) اندازه‌گیری می‌تواند که مجموعه دارای نشست قابل توجهی باشد. همین امر به افرادی نشست رادیه می‌انجامد و این افرادی نشست خود به خود بر جای گلیم توسط رادیه (اراده خواهد گذارد: یعنی رادیه با عملکردی اندکی از افزایش بار وارد بر گروه شمع جلوگیری می‌کند و بالعکس. همین مسئله به شکل تحلیل پی‌های مربک در ادامه است. این است. یعنی در صورتی که بتوان سهم باربری هر یک از اجزای سیستم را محاسبه کرد، مقادیر نشست هر یک از آنها هر قابل محاسبه خواهد بود. اما در صورتی که سهم باربری هر یک از اجزا به طور دقیق مشخص شود، مقادیر نشست به دست آمده از تحلیل نشست هر یک از دو جز رادیه نشست گروه شمع و در نتیجه نشست کلی سیستم کم می‌شود.

در نهایت شکل (۴- د) تغییرات محل صفحه خشکی را در حالتی که مقادیر جداری شمع تغییر کند نشان می‌دهد. یعنی در طور که از شکل بر می‌آید، در صورت تابیدن مقادیر کف و بار وارد بر سر شمع، محل صفحه خشکی متفاوت از مقادیر مقادیر کف و بار وارد بر سر شمع نسبت به مقادیر کف و بار وارد بر سر شمع بیشتر به بار می‌آید. اما در حالات حاد، یعنی در حالتی که مقادیر جداری نسبت به مقادیر کف و بار وارد بر سر شمع بیشتر از بار می‌آید، مقادیر نشست داده که محل صفحه خشکی در حوالی وسط توش شمع قرار خواهد گرفت.

در تمام این حالات، فرض بر این است که توزیع نیروی اصطکاک مشابه با اصطکاک جداری منفی (یعنی برای آن پایین) باشد. اصطکاک جداری منفی (یعنی از پایین به بالا) باشد. در غیر این صورت، یعنی اگر عملکرد خلا در اصطکاک جداری منفی و مثبت، به دور دیل نشست باشد محل صفحه خشکی نیز مستحکم تغییراتی خواهد شد که از محل به بحر این محوری خارج است.

نتیجه اینکه تعداد شمع، نوع شمع و همچنین ابعاد هندسی
بازه‌های مختلف بارگذاری، تقریباً به صورت رابطه‌ای مستقیم
باید.
برای شروع، ابتدا منشته‌های بار-نشرت و بار-مقاومت نشان
داده شده در سال (1) مورد برابری قرار می‌گیرد. با توجه به
اینکه محل صفحه عرضه در گروه شمع علامه بر طبقیت بارگذاری
ازونیکی شمعا، و استیس به شدت بر وارد بر مرسوم است،
می‌توان چنین نتیجه گرفت که هرچه سهم بارگذاری شمعا کمتر
باشد، مطابق با شکل (2)، محل صفحه‌ای خاکی "اولین نتیجه،
مقدر نتیجه هر یک. در این حالت چون نتست کل
سیستم برای باشند در این سیستم گرده شمع است، با تولید رادیی نتیجه دارای
نتست نمی‌توان سهم بارگذاری این شمع موجب قرار داد و با
سهمی که پیشتر بارگذاری شمع در نظر گرفته شده است، کنترل
کرد. هرگاه سهم بارگذاری رادیی و گروه شمع مطابق با فرضیات
اولیه در تعیین محل صفحه خاکی باید، در این صورت تحلیل
سیستم به درستی انجام شده است. در غیر این‌داده سهم بارگذاری
رادیی و گروه شمع را تغییر داده، این پیش‌بینی، مفسد است از اول
صورت داد تا با دست آوردن نشستی برای در رادیی و گروه
شمع سهم بارگذاری هر یک به درستی مشخص شود. به علاوه
می‌توان محتفه‌ی بار و مقاومت گروه شمع را با پرونده مختلف
ترمین نمود و در این حالت تعدادی از تکنیک چک شود، می‌توان
مطابق سهم بارگذاری شمع را از این نتیجه تعیین کرد. پس از
آن که توجه به آن نشست، سهم بارگذاری رادیی، بر اساس مقدار
نتست و طبقیت بارگذاری نهایی آن، خود به خود مشخص خواهد
شد. روشی که در ادامه می‌آید، مراحلی که گام‌گذاری را به
صورت تحلیلی نشان می‌دهد.

این هدف هدایت شمع برای سیستم در نظر گرفته می‌شود. اگر
بار وارد بر سیستم رادیی و گروه شمع P‌ باشد، با فرض استقلال
رانت رادیی و شمع، این بار بار مقدار رادیی (سهم رادیی = Pim)
و شمع (سهم شمع‌ها = Pm) حاصل می‌شود. در این حالت
نتست‌ها خاکی از بارگذاری برای رادیی S1m به ترتیب
برای گروه شمع در نظر گرفته می‌شود. نشست کرده

2-2 روند پیشنهادی تحلیل سیستم‌های مزک
بر اساس آنچه پیشتر اشاره شد، در فرض معلوم بودن سهم
بارگذاری رادیی و گروه شمع و فرض توییز یکسان بار بر
شمع‌ها، می‌توان نشستی یک دو زیر مجموعه را مورد تحلیل
قرار داد و در نهایت نتست هر یک از بار در مقادیر
مشابهی خواهد یافت. یک فرض اولیه به توجه به انتخاب
بودن رفتار گروه شمع، این است که شمع کنار با یا فاصل
مشابه از پیش‌بینی قرار داده شوند و رادیی نیز از صلابت
ممارسی برای توییز یکسان باشند. اگرچه
علم صحت این یکشاخ بر کلیات روش وارد نمی‌زند، اما
تحلیل مجموعه را پیچیده‌تر می‌کند. یکی که است که کنترل
صلابت رادیی می‌تواند با استفاده از نرمافزارهای اجرایی
محصول انجام پذیرد. بدن صورت که شمع همانند فشرده
با صنعتی دلخواه و مسبقه در زیر رادیی قرار داده شود و
باید یک‌تکانی بر طبقیت بارگذاری اعمال شود. در این حالت در
صورتی که نتیجه به دست آمده در داخل فنرها در پایان تحلیل
تاه حاصل قابل قبولی از نظر مطالعه‌ تهیه‌ی سه‌بازد این
کافی برخورد از است. در روش پیشنهادی اکثر همچنین فرض
می‌شود که رفتار بر آن نشست رادیی و گروه شمع در مقطع و

102

استقلال، سال 26، شماره 1، شهريور 1388

Downloaded from jimm.lut.ac.ir at 13:00 IST on Friday January 4th 2019
شمع در این حالت در صفحه خشی مربوط به تعداد شمع در نظر گرفته شده محاسبه می‌شود. بدين ترتیب مقدار نشست در هر مطحه پارک‌گذاری مناسب با شدت بار وارد به آن مطحه انتخاب شود.

اما از آنجا که سیستم به صورت یکپارچه و نه منطقی عمل می‌کند، نشست‌های رادیه و گروه شمع برابر است. بنابراین داریم:

\[
P_{lm} + P_p = P\]

\[
S_{lm} = S_p\]

به دین ترتیب هرگاه مقدار نشست به دست آمده در دو حالت رادیه و گروه شمع برابر نباشد، می‌توان سهم پارک‌گذاری را تغییر داد و بدين ترتیب با استفاده از فرض مستقيم رفتار باریک‌تر و نشست‌های رادیه و گروه شمع در آن باز پارک‌گذاری، می‌توان مقدار نشست مناسب بر یک از چه سیستم‌ها را محاسبه کرد. بارهای وارد بر سیستم رادیه و گروه شمع در مطلخ دوم به ترتیب

\[
P_{lm} = \frac{P_{lm}}{S_{lm}}\]

\[
P_p = \frac{P_p}{S_p}\]

و نشست‌های مرتبط با آنها به صورت

\[
P_{lm} + P_p = P\]

\[
S_{lm} = S_p\]

\[
P_{lm} = \frac{P_{lm}}{S_{lm}}\]

\[
P_p = \frac{P_p}{S_p}\]

فرض نسبت مستقيم مقدار باریک‌تر نشست برای سهولت در محاسبات دور دوم به کار گرفته می‌شود. در صورتی که در این حالت نشست‌های رادیه و گروه شمع برابر شوند، با توجه به آنچه پیشتر اشاره شد، محاسبات پایان یافته، سهم بار هر یک از دو زیر سیستم مشخص می‌شود. حال در صورتی که نشست به دست آمده در محدوده محاسبه‌ای باشد، تعداد شمع در حالت بهینه قرار دارد، در غیر اینصورت بايد تعداد شمع را افزایش داد تا نشست حاصل کمتر شود. همچنین هرگاه نشست باریک‌تر گرفته شده است، منطقه‌ها نشانگر تعداد شمع بیش از تعداد بهینه در سیستم با استفاده از شمع‌های قطع و عمقی است که می‌تواند کاهش باید.

نکته جالب اهمیت این است که باید ظرفیت پارک‌گذاری شمع‌ها

103

استقلال، سال ۳۶، شماره ۱، شهریور ۱۳۶۸
گرفتند و این بررسیها نشان می‌دهد که تقریباً 50% کل بار توسط شمع و مانعی توسط رادیو تحت می‌شود. ضمن آنکه نشست سیسمی نیز به حدود 150 mm تقلیل یافته است. این امر حاکی از آن است که اولاً تعداد مناسب و بهینه‌ای از شمع‌ها در شرایط و تأمین طرفیت باربری سیسمی، به کاهش نشست کلی مجموعه کمک می‌کند و دوم اینکه، با انتخاب این تعداد بهینه و استفاده از طرفیت باربری رادیو در باربری کل مجموعه، صرف‌جویی‌های بسیار زیادی در طراحی و اجرای شمع‌ها شده است. چه بسا استفاده از بیشتر شمع‌ها و صرف‌نظر کردن از طرفیت باربری رادیو، علاوه بر افزایش هزینه‌ها، ناتوانی بر کاهش نشست مجموعه نشان می‌داد. در صورت استفاده از یک آرایش معمول گروه شمع با فواصل معنی‌دار (در حدود 3 تا 4 مترا)، تعداد شمع‌ها به بسیار از 150 تا 155 شمع بالغ می‌شود و در این صورت، سپاه نشست حداقلی به حدود 50 mm تقلیل می‌یابد. این امر به ضرایب اطمینان بسیار بالا و طراحی غیر انتصابی منجر می‌شود.

با عتوان محکم برای روش ارائه شده، این مجموعه به Unipile روی پیشنهادی توسط یک نرم‌افزار تصمیم‌گیری نام (محصول شرکت UNISOFT تحلیل می‌شود. این نرم‌افزار از توانایی محاسبه طرفیت باربری شمع و گروه شمع، تعیین محل صفحه خشکی، نشست گروه شمع، محاسبات نشست گروه شمع با وجود یک صفحه خشکی درجه‌بندی‌های ارائه شده توسط کاربر و همچنین تغییر نشست رادیو با توجه به پروفیل و مشخصات خاک زیر مجموعه را داراست. مقدار نشست در این نرم‌افزار برای منظوره آینه به روش Janho مورد محاسبه قرار گرفته‌اند [14]. در صورت استفاده از روش جدید تحلیل ارائه شده در این مقاله، با استفاده از نرم‌افزار Unipile می‌توان نشستهای رادیو و گروه شمع را محاسبه کرد و با چند سعی و خطای متواضع، نشست کل سیسمی را بر حسب طرفیت باربری واقعی به بست‌آمده یک از دو زیر سیستم (رادیو و گروه شمع) مورد محاسبه قرار داد. بنابراین صورت به معرفی پروفیل خاک عمک استقرار فونداسیون و محل و نحوه استقرار شمع‌ها و همچنین سطح سطح آب زیرزمینی، پس از تحلیل گروه شمع برای سهم باربری واقعی این محل صفحه خشکی در عمق معادل با 25 mm به دست می‌آید. نشست کل سیستم که برای با نشست گروه شمع در صفحه خشک است، برای شرایط نهایی، در حدود 129/0 mm برابر شده است که به مقدار به دست آمده واقع پروفیل نزدیک است. محاسبات اخیر نشان می‌دهد که در صورت استفاده از تحلیل نشست برای رادیو و گروه شمع (در صفحه خشکی) می‌توان نشست باربری هر یک از
شکل 6- ظرفیت باربری و محل صفحه خشکی در نرم‌افزار Unipile

دو زیرمجموعه را به صورت واقعی محاسبه کرد. شکل (6)، نتایج تحلیل حاصل از نرم‌افزار Unipile را برای تعیین ظرفیت باربری هر شمع در گروه و تعیین محل صفحه خشکی نشان می‌دهد.

همان طور که در این شکل ملاحظه می‌شود، محل صفحه خشکی در عملکرد با حدود 26 محاسبه شده است. بر اساس ترتیب مقرارت نسخت مجموعه نیز با توجه به عمق کلی توجه صفحه خشکی به میزان چشمه‌گیری کاهش می‌یابد و مقدار اندازه‌گیری شده نیز صحت این ادعای تأیید می‌کند.

شکل 7- نمودارهای نشست زیر پی مجموعه ساخته‌ای-مسکونی نیگان

شده است. در انتهای ساخت در حدود 80٪ کل بار توسط گره شمع حمل می‌شود و سهم ناجی از بار به رادیه می‌رسد. در نظر از پرتوی خاک با مقایسه اجمالی بین این مجموعه و برخی در فرانکفورت آلمان و با توجه به آنکه صاحب هر دو سازه تقییاً در محدوده پیکانی است، حتی با فرض فشار پیکان زیر M به بار هر دو مجموعه (علی رغم تمامی برگزاری در زیر برخ نسبت به این ساخته‌ای) تعداد 16 می‌باشد، با فشار این ساخته‌ای صورت پذیرفته است. نتایج به نظر مربوط به خصوصیات خاک، نشان می‌دهد که تحلیل ظرفیت باربری و نشست به روش پیشنهادی برای این مجموعه صورت پذیرفته است. نتایج به عبارت استفاده شده است. برخی اصلی تقریباً در مرکز فونداگیون پناه‌گیری در ناحیه توانایی است. شکل (7) نمودارهای نشست در زیر پی را در عمل و برای نقاط مختلف طولی پی نشان می‌دهد.

شیب‌پذیری نشست کل مجموعه در حدود 24mm و شیب‌پذیری اختلاف نشست در حدود 11mm است. تحولات متعاقب شمع که در این پروژه به کار رفته است باعث افزایش سهم شمعها در باربری مجموعه و کاهش نشست کل سیستم

- مورد عملی ۲ مجموعه ساخته‌ای-مسکونی هتل اداری-

این سازه با طبقه، به ارتفاع 175m، در این مساحت با عرض 3300 m² در پلان است. در این سیستم از 176 شمع درجه یک پیک سیستم را به مقدار در حدود 0.1m نیا در زیر یک سیستم رادیه استفاده شده است. برخی اصلی تقریباً در مرکز فونداگیون پناه‌گیری در ناحیه توانایی است. شکل (7) نمودارهای نشست در زیر پی را در عمل و برای نقاط مختلف طولی پی نشان می‌دهد.
نتیجه گیری نهایی می‌تواند به‌طور زیر ارائه شود:

1- در صورت عدم حذف رادیوجیوهانه و عنوان یکی از کامپیوترین پی‌های سطحی از توان بازی‌های دیجیتال و هم‌زمان ظرفیت بازی‌های بازی‌های مدرن، عملکرد به‌طور کلی به‌طور مناسب می‌باشد به‌طور کلی به‌طور مناسب می‌باشد.

2- در طراحی گروه شمع با پایین‌تری توجه داشته که در صورت توزیع میان بین شمع‌ها و رادیویی در دو بالین اندکا نقش بازی‌های سطحی از توان بازی‌های دیجیتال و هم‌زمان ظرفیت بازی‌های بازی‌های مدرن، عملکرد به‌طور کلی به‌طور مناسب می‌باشد به‌طور کلی به‌طور مناسب می‌باشد.

3- در پیام‌های رادیویی بازی‌های اندکا نقش بازی‌های سطحی از توان بازی‌های دیجیتال و هم‌زمان ظرفیت بازی‌های بازی‌های مدرن، عملکرد به‌طور کلی به‌طور مناسب می‌باشد به‌طور کلی به‌طور مناسب می‌باشد.

4- در طراحی گروه شمع با پایین‌تری توجه داشته که در صورت توزیع میان بین شمع‌ها و رادیویی در دو بالین اندکا نقش بازی‌های سطحی از توان بازی‌های دیجیتال و هم‌زمان ظرفیت بازی‌های بازی‌های مدرن، عملکرد به‌طور کلی به‌طور مناسب می‌باشد به‌طور کلی به‌طور مناسب می‌باشد.

5- در طراحی گروه شمع با پایین‌تری توجه داشته که در صورت توزیع میان بین شمع‌ها و رادیویی در دو بالین اندکا نقش بازی‌های سطحی از توان بازی‌های دیجیتال و هم‌زمان ظرفیت بازی‌های بازی‌های مدرن، عملکرد به‌طور کلی به‌طور مناسب می‌باشد به‌طور کلی به‌طور مناسب می‌باشد.

6- در طراحی گروه شمع با پایین‌تری توجه داشته که در صورت توزیع میان بین شمع‌ها و رادیویی در دو بالین اندکا نقش بازی‌های سطحی از توان بازی‌های دیجیتال و هم‌زمان ظرفیت بازی‌های بازی‌های مدرن، عملکرد به‌طور کلی به‌طور مناسب می‌باشد به‌طور کلی به‌طور مناسب می‌باشد.
پیهای مکب رادیه و گروه شعما. در صورت نشت
یک‌واخت‌بی‌گیری، اجزای نشت‌های بی‌شعلی را نیز به
سیستم داده، طریق انتخابی و بهینه را در ضمن داشته
سرویس مناسبی به دست آورد.

2- در همه روش‌های ارائه شده از روش‌های جدید در
این رابطه به روش پلپویس و دیپسی در تحلیل و طراحی
پیه‌های مکب، پایه به عمک‌کردن و استحکام به هم اجزای سیستم
و در حقیقت اندرکنش آنها (شعما – رادیه و خاک) توجه
داشتیم و این اجرا به صورت مجزا قبل به‌نیستند.
همچنین از این روش و روش‌های مشابه، پارامترهای مورد
استفاده؛ فراکس فرآیند که به سادگی قابل تعيین با
اندازه‌گیری نیستند. مانند سختی گرده را گروه شعما که در
عمل محاسبه آنها با منگلات فراوان همراه برده، راه حل
و از وکالتین نیز، برای آن وجود ندارد. به علاوه اینکه
این روش‌ها عمداً در مواجه‌با این پارامترهای مورد
توخیم انتخاب آنها سکوت کرده و مسئله را به صورت
یک فضای محدودی در شکلی می‌رود که به کردن. با این‌که
استفاده از این روش‌ها به‌نیزه به لحاظ نظری یا در موارد خاص
و یا چگونه اکتشاف پردازی است. در حالت‌که برخی مهدسیان
طراح عموّاً از طرفیت تا رادیه در پارزی کل سیستم
صرف نظر می‌کنند. از آنجا که استفاده از سهم رادیه در
طراحی، به طرفیت پیش‌بینی شدن، بهینه و ایمن متحمل
می‌گردد. پارامتر به‌نیزه فراوانی اثر نیز رادیه و گروه
شعما. می‌توان با روش‌هایی از روان پارزی رادیه نیز در کل

واژه نامه

1. bearing capacity
2. stability analysis
3. mat foundations
4. buoyant (Floatation) foundation
5. block foundation
6. limit state design
7. tilting
8. Randolph
9. conventional method
10. creeping pile
11. interaction
12. pile enhanced (piled raft) foundation
13. Poulos
14. neutral