Nusselt Number Measurement of Air Flow between Grooved Rotor and Stator of a Generator

A. Nouri, and M. Nili-Ahmadabadi
School of Mechanical Engineering, Sharif University of Technology

Abstract: In this article, turbulent flow heat transfer in the air gap between rotor and stator of a generator under nonhomogenous heat flux is studied experimentally. The rotor consists of four symmetrical triangular grooves. The stator surface is smooth and does not include any grooves. The relative heat flux between the rotor and the stator is 1 to 3. Temperature and heat flux are measured locally at three axial and two angular positions of inner and outer surface. The pressure drop of air flow through the air gap is also measured. In this work, the axial Reynolds number and rotational velocity of the rotor ranges are * - استاد
** - دانشجوی دکترای
The results indicate that increasing the rotational velocity causes the rotor and stator heat transfer coefficient to increase considerably and the respective value to the rotor is higher than that to the stator. In addition, the rotational velocity causes the air flow to be developed sooner.

Keywords: Heat transfer, Turbulent flow, Forced convection, Grooved rotor, Stator.
مشخصه سرعت در عدد ریلندز به‌صورت

\[V_{\text{eff}} = \sqrt{U^2 + 0.25V^2} \]

تعریف می‌شود.

\[U \leq V \]

به‌طور تجربی انتقال گرمایی و افت‌تغییر بین دو استحکام هم محوور با محدوده متفاوت و بدون هیچ‌کاری از آنها در حالت درون استحکام دانلی و ساختار بی‌تریبین در محدوده ریلندز و ریلندز محوور با محدوده استحکام عدد تیوال‌بین تأثیر را ریا افزایش عدد ناسط استحکام

\[\text{خارجی} \]

کوارز [8] به‌طور تجربی انتقال گرمایی حلقی

محوور با استحکام دانلی را بررسی کرد.سقوط استحکام داخلی کلاه‌آیری و استحکام خارجی ساکن و تحت شار گرمایی یک‌پاره‌هایی استحکام دانلی و عدد ناسط استحکام دانلی دمای سطوح استحکام داخلی خارجی به ترتیب افزایش و کاهش یافتن و باعث کاهش‌پذیری محسوسی در پرتوی دمای شعاعی می‌شود. از این رو با افزایش سرعت درونی استحکام داخلی عدد ناسط جریان افزایش می‌یابد.

در یک جریان حلقی بین دو استحکام هم محوور اثر دوران

نهایی از استحکام روی توزیع سرعت و دمای ضریب انتقال گرمایی استحکام خارجی توسط بیر [9] بررسی شده است. در این کار برای استفاده از مدل طول متنوع ساختار پرینت، نظریه گرمای به‌عنوان یافته‌های جریان حلقی به‌کار گرفته شده است. عدد استحکام خارجی

\[Nu \approx Re^{0.8} \]

با (2) جریان‌های حلقی آرام و مغوش بین دو استحکام هم محوور را مورد آزمایش قرار داد. نتایج آزمایش نشان می‌دهد که با دوران استحکام دانلی ورطک‌ها در هر دو جریان آرام و مغوش آمیزه شونده به طوری که در جریان آرام محوور ورطک‌ها عمل ماده درونی و در جریان مغوش این در محوور غیرمتعامد. چندان ساختار [3] گزارش داد که با اضافه شدن جریان محوور به جریان دورانی پایداری جریان حلقی افزایش می‌یابد. در این حالت عدد تیوال‌بین بحرانی هنگامی که عدد ریلندز محوور کوچک باشد، سطح معادله زیر استحکام

\[T_{\text{cr}} = T_{\text{er}} | Re_{0} = 0 + 26.5 Re_{0}^{2} \]

که در آن

\[Re_{0} = \frac{U_{0}(D_{0} - D_{1})}{V} \]

کی و اکثر [4] به‌صورت تجربی میزان محوور و دوران را در یک فاصله‌هایی با دوران استحکام نظارت کردند. مشاهدات آنها نشان می‌دهد که برای \[Re_{0} > 2000 \] چهار رژیم جریان اندازه می‌شود. (الف) جریان آرام (ب) جریان آرام همراه با ورطک‌های تیوال (ج) جریان مغوش (د) جریان مغوش همراه با ورطک‌های تیوال.

نشان می‌دهدکه در جریان محوور با سرعت کم هسته‌های تیوال به‌صورت گرد تولید شده و با افزایش سرعت محوور ساختار هسته ورطک‌ها به‌طور تصادفی از پرتو و با افزایش بیشتر آنها هسته ورطک‌ها

به‌کلی فائل روتینی

گزی [6] آزمایش‌های خود را در انتقال گرمایی جریان

حلقی آرام به‌فناوری هواپیمایی/ویژه و شعاع روتور 63.5 میلیمتر در هر حالت با روتور شیاردار و بدون شیار انجام داد. شیارها از نوع سنتی‌الی و دارای با ابعاد کوچکی بودند. سرعت درونی روتور و سرعت محوور یا به‌ترتیب در محدوده \[V < 70 \text{rpm} \] و \[U < 5 \text{m/s} \]

در حالت این آزمایش‌ها معادله زیر را برای عدد ناسط پیشنهاد

\[\text{کند.} \]

استقبال سال 26، شماره 1، شهریور 1386

211
نتایج کارهای قبلی انتقال خوبی را نشان می‌دهد.

دوقی [16] به‌طور تجربی انتقال گرمایی جریان هوای مغناطیسی روند و استاتور با شیارهای شعاعی داخلی و پربری کرد.

در کار حاضر سطح انتقال داخلی دارای شیارهای مثلثی بوده و همچنین هر دو استاتور داخلی و خارجی تحت شار گرماپی و بوده است.

۲- شرح دستگاه آزمایشی

شکل (1) شماتیک دستگاه آزمایشی شامل موتور، زنترانور، واردب‌برای تنظیم دور موتور، پولیسیستم جمع آوری داده‌ها، فلومتر و نظارت بر ترکیب زنترانور. دمای نشان می‌دهد. شکل (2) شماتیک زنترانور شامل روتور و استاتور را نشان می‌دهد. روتور و استاتور هرم کدام دارای تعداد شیارهای طولی است که سیم پچه‌ای مربوط به ایجاد میدان‌های مغناطیسی در آنها می‌گردد. روتور یا استاتور داخلی از جنس آلومینیم به طول 240 mm قطر 4 cm دارای چهار صورت مثلثی به طول 6 mm در اطراف می‌حارث آن به‌طور متقابل ساخته شده است. شکل (3). استاتور یا استاتور خارجی نیز از جنس آلومینیم با همان طول روتور، قطر داخلی 216 mm قطر خارجی 300 mm ساخته شده است. مقاصله هواپیمایی بین دو استاتور زنترانور مانند جای‌گذاری یک‌دسته داخل‌سوراخ‌هایی که به‌طور طلایی و متقابل در داخل‌سازمان‌های شما و به‌طور کلیکی گرم می‌شود استفاده شده است. انتقال گرمایی الکتریکی به‌عنوان مثال از استحکام تسلیحات اصولی‌گر در گرماپی کشیده‌شده در روتور و استاتور گزارش شده است. واردبک (دستگاه نظام ولتاژ) به‌طور گسترده و همچنین در گزارش‌های بیشتر به دقت ± 1/2 درجه بهره‌برداری گرم می‌شود. می‌گردد گرماپی و بوده است. میزان دما و شار گرماپی سطح استاتوراها به‌کمک ترکیب گزارش‌های نوع kW بنا داده می‌گردد که در دو هوا و موتور نیز کاری ساختمان است. پایداری به‌طور تجربی برسی کرد.

اکثر انتقال گرمایی متوسط توسط پرتو همبسته تشخیص‌دهنده کم و به‌طور بخشی بیشتر توسط Nu < 0.318(Re) β < 0.04000 است. در محدوده Nu < 0.04000 می‌گردد و به‌طور بخشی بیشتر نمود. مقایسه این نتایج نبا

1386

استقلال، سال ۲۶، شماره ۱، شهریور ۱۳۸۶

212
شکل ۱ - شماتیک دستگاه ازماش همزمانه موتور الکتریکی و تجهیزات جانبی آن

شکل ۲ - ایف (الف) شماتیک روتور و استاندارد یک زیرآور با شیارهای محوری در اطراف آن
ب) شماتیک روتور و محل نصب نرمکوله‌های آن
دوشنبه 3 خرداد 1386

3 - خطای داده‌های اندازه‌گیری

وسایل اندازه‌گیری در این آزمایش شامل لوله پیوتو دیجیتالی با \(c = 0.1 \) m/s و اندازه‌گیری توان مصرفی اندازه‌گیری گرمایی و توان روتر و استاندارد 20 rpm که توان مکانیکی با خطای ± 1 rpm و توانگیرکردن می‌باشد. آزمایش‌ها در سه دور مختلف ± 1 درجه سانتی‌گراد انجام شده است. گرمایی توان‌های مصرفی اندازه‌گیری در روتر \(w \) و در استاندارد \(200 \) rpm داشته باشد.

سومی، 1386 شماره ۶ اعتمادیه
شکل ۳ - تغییرات محوری عدد ناسالت در بخش کم‌تودر روتور در رینولدز‌های مختلف با دور

۹۰۰ rpm

که در آن

de\left(\frac{Z}{L} \right) \over L
T_r - T_{ai} - (T_{ao} - T_{ai}) \frac{Z}{L}

با توجه به دقت کمیتهای اندازه‌گیری، طبق معادله فوق، خطای

حدود ۱۸ درصد است.

۴- نتایج و بحث

۴-۱ عدد ناسالت محوری موضعی

برای جهان از رینولدز محوری مختلف نشان می‌دهد. ملاحظه می‌شود که تغییرات عدد ناسالت در ناحیه ورودی

جیران، یک روند کاهشی دارد و با توسعه یافتن جیران به مقدار

ثانی می‌کند. مقدار عدد ناسالت به عدد رینولدز محوری

بستگی دارد. به دلیل مکوس بودن رابطه بین عدد ناسالت و

ضخامت لایه مرزی، عدد ناسالت در اندزه‌های هواپی

حداکثر است. مشاهده می‌شود که با کاهش شدن عدد

رینولدز محوری، عدد ناسالت به سرعت یک‌واخت می‌شود. به

عبرت دیگر جیران زودتر توسه می‌پایند. در واقع کاهش عدد

رینولدز محوری سبب تضعیف مومت محوری در برابر موتور

شروع شده و در نتیجه لایه مرزی در عرض فاصله هواپی

زودتر رشد کرده و جیران زودتر توسه می‌پایند.

ضرایب انتقال حرارت موشی و متوسط سطح روتور به‌ترین

برابر است با:

\[h_r = \frac{q'}{T_r - T_a} \] \hspace{1cm} (12)

\[\bar{h}_r = \frac{1}{L} \int_0^L h_r \, dz \] \hspace{1cm} (13)

برای تعیین دقت ضریب انتقال حرارت متوسط سطح روتور،

ابتدا با معادله (11) در معادله (12) و نتیجه آن در معادله

(13) خواهش داشته.

\[\bar{h}_r = \frac{1}{L} \int_0^L q' \, dz \] \hspace{1cm} (14)

\[\bar{h}_r = \frac{1}{L} \int_0^L q' \, dz \] \hspace{1cm} (15)

با استفاده از نتایج تجربی کلاین [15]، دقت ضریب انتقال

گرمای متوسط سطح روتور بر حسب خطای کمیتهای

اندازه‌گیری شده برابر است با:

\[\left(\frac{\Delta h_r}{\bar{h}_r} \right)^2 = \left(\frac{\Delta q'}{q'} \right)^2 + \left[\frac{\partial \text{Ln} t}{\partial (T_r - T_a)} \cdot d(T_r - T_a) \right]^2 \] \hspace{1cm} (16)

استقبال، سال ۱۳۸۶، شماره ۱، شهریور
شکل 2 - تغییرات محوری ضریب انتقال گرما بر روی بخش کمکی روتور در ریوندلز 18000 با دورهای مختلف

شکل 3 - تغییرات محوری دما

شکل‌های (6) و (7) توزیع محوری دما سطح روتور و استاندارد را نشان می‌دهد. این تغییرات تقریباً حتماً است که خود مؤید پکناخت بودن ترکیب شار گرمایی مطرح مربوط است. همچنین افزایش دور سبب کاهش دما می‌شود. محور قائم هر دو شکل اساس معادله (7) بدون حد شده است:

\[
\theta_j = \frac{T_j - T_{ai}}{q_j D_h k} \quad j = r, s
\]

3-4 عدد نسلت متوسط

در شکل (8) تغییرات عدد نسلت متوسط سطح روتور بر اساس معادله (13) بر حسب عدد ریوندلز در دورهای مختلف آرائه شده است.

\[
\overline{Nu_r} = \frac{F_r D_h}{k}
\]

شکل 4 - توزیع محوری عدد نسلت سطح روتور در سه دور مختلف با ازای عدد ریوندلز 18000 گزارش می‌کند. مشاهده می‌شود که روند تغییرات آن شبیه روند تغییرات عدد نسلت روتور در شکل قبلی است، با این تفاوت که تغییرات عدد نسلت استاندارد در ناحیه ورودی دارای شیب کمتری نسبت به عدد نسلت روتور است. همچنین عدد افزایش ناگهانی عدد نسلت استاندارد در انفجاری آن و در دور 150rpm بیانگر برگشت جریان در تزدیک سطح روتور است.

1386

156
۷ - تغییرات دماي سطح روتور در رینولدز ۱۵۰۰۰ با دوره‌های مختلف

۸ - تغییرات عدد ناسالت متوسط روتور بر حسب عدد رینولدز محوری با دوره‌های مختلف

در ناحیه آزمایشی مقایسه‌های بین آنها در دوره‌های ۳۰۰rpm و ۴۰۰rpm انجام شده که به ترتیب در شکل‌های (۱۰) و (۱۱) ارائه شده است. مقایسه این دو شکل نشان می‌دهد که عدد ناسالت سطح روتور با افزایش دور بیشتر از استاندارد چرا که با افزایش دور سرعت نسبی بین سطح روتور و هوا بیشتر از سرعت نسبی بین استاندارد و هوا افزایش می‌یابد. این افزایش نسبی سرعت برای روتور به عنوان است.

۸ - تغییرات عدد ناسالت متوسط سطح استاندارد را بر حسب عدد رینولدز محوری در دوره‌های مختلف نشان می‌دهد. همان‌طور که مشاهده می‌شود عدد ناسالت سطح استاندارد شیب روند تغییرات سطح روتور نسبت به عدد رینولدز محوری است. با این تفاوت که تأثیر دور روی ضریب انتقال گرمایی روتور بیشتر از تأثیر آن روی ضریب انتقال گرمایی استاندارد به ازای عدد رینولدز محوری یکسان است.
شکل 10- مقایسه تغییرات عدد ناسیت متوسط روتور و استاتور بر حسب عدد ریتولدز محوری با دور 1500rpm

شکل 11- مقایسه تغییرات عدد ناسیت متوسط روتور و استاتور بر حسب عدد ریتولدز محوری با دور 2000rpm

شکل 12- تغییرات افت فشار جیرین هوا در عبور از فاصله هوایی بر حسب عدد ریتولدز

4-1 افت فشار

در شکل (۱۲) تغییرات افت فشار جیرین هوا در عبور از فاصله هوایی بر حسب عدد ریتولدز در دورهای مختلف ارائه شده است. افت فشار با افزایش عدد ریتولدز تقریباً به طور سهمی افزایش می‌یابد که افت فشار با توان دوم سرعت محوری مناسب است. همچنین افزایش دور باعث افزایش بیشتر افت فشار می‌شود. این افزایش به‌علت وجوه مویی مشعاعی است که مقاومت در برابر جیرین محوری را افزایش می‌دهد. از طرف دیگر شیب افت فشار با افزایش دور افزایش می‌یابد.

5- نتیجه‌گیری

نتایج این تحقیق عبارت‌اند از:

1- با افزایش دور روتور از 1500rpm تا 2000rpm ضریب...

استسلام، سال ۱۳۸۶، شماره ۱، شهروند