Inverse Kinematics Resolution of Redundant Cooperative Manipulators Using Optimal Control Theory

A. Hosseini, M. Keshmiri, and M. J. Sadigh
Department of Mechanical Engineering, Massachusetts Institute of Technology
Department of Mechanical Engineering, Isfahan University of Technology

Abstract: The optimal path planning of cooperative manipulators is studied in the present research. Optimal Control Theory is employed to calculate the optimal path of each joint choosing an appropriate index of the system to be minimized and taking the kinematics equations as the constraints. The formulation has been derived using Pontryagin Minimum Principle and...
به‌همکاری بین ربات‌ها برای انجام یک کار به صورت مشترک، منجر به پیاده‌سازی سیستمی جدیدی در عرصه علم رباتیک شده است که از آن به عنوان ربات‌های همکاری باید می‌شود. تنها این نوع سیستم‌ها در انجام کارهایی که به لحاظ پیچیدگی، کارایی و یا دقت از عهدی یک ربات خارج است توجه محققان را به خود جلب کرده است. علاوه بر یک به کارگیری افزودگی در جابجا در بازوهای مکانیکی به دلیل قابلیت‌های متفاوت آن از قبیل افزایش سطح، مفتاح و دوری جست و افتراق منفرد در فضای کار نیز مورد توجه محققان قرار دارد. از طرفی نامعنی سیستم‌هایی که همانگونه به کارکرده قبلاً به عنوان سیستم‌ها را با مشکلات همراه می‌سازد.

برای حل دستگاه معرفی کرده است، روشی مشابه به حل مسائل سیستم‌های مکانیکی در سطح سرعت مفصل به کمک شبه مکانیک ماریس یک نوع منفرد مفصل ایجاد کرده [1 و 2]. این کرد هر امکان پیوست در فضای کار، به یک سیستم بسته در فضای مفصل منجر نمی‌شود [3]. کلین و کی نیشان داده که در نظر گرفتن حفظ فضای بچه، می‌توان روش قلمی را اصلاح کرد و به نتیجه کنترل بانزی ناامنی را ملاحظه کرد [4]. در حل دستگاه‌های مکانیکی نامعنی ملاحظات مختلفی در نظر گرفته شده است که از جمله آنها به حداکثر مرزهای سرعت مفصل توسط ویژگی‌های تمامی مفصل‌ها توسط لجیس، اجتناب از نقاط منفرد توسط پشیبان، اجتناب از مواضع توسط کلیه و مکانیک‌های حداکثر نشان می‌شود یک کرده پنل توسط راهکار و اکثری می‌توان اشاره کرد [1-7].

پنل توسط راهکار و اکثری می‌توان اشاره کرد [1-7].

پنل توسط راهکار و اکثری می‌توان اشاره کرد [1-7].
جملات اول و دوم در (3) به ترتیب جواب‌های خاصی و
عکسی معادله (3) به شمار می‌رود که اولی از فضای مکمل
متغیرهای بینار روند زاکوئین، و دومی از فضای پیش‌آمد
ماتریسی اختیاری شده‌اند. β بردار Kی است. این
است که اگر J ضریب اس ای‌�‌جی در نظر
می‌گیریم، در واقع
جمله دوم قابلیت افزودن درجات آزادی بازوهای می‌شود.
می‌دهد و می‌تواند جواب‌های متفاوت برای \(t \) نیولید کند. این
قابلیت به طراحی اجازه می‌دهد تا برای انجام یک عملیات
مشخص، یک اندازه را نیز بهینه کند.
به‌طور مثال اندازه P زیر را در نظر می‌گیریم:
\[P = \int_{t_0}^{T} q(t) \, dt \]
در این صورت، مستقیم به‌پیش‌آمد دو نسخه q(\(t \)) (و یا در
واقع β) به‌کمک می‌شود که علاوه بر اراضی معادلات
سینماییک، اندازه را بهینه کند.
یک موضوع را می‌توان با روشهای کنترل بهینه بررسی کرد.
از جمله این روشهای استفاده از اصل مینیمم سازی پونتریگن
است[19].

2-1 مدل سازی دارایی

سیستم دینامیکی
\[\dot{x}(t) = f(x, u) \]
مقروض است. قانون کنترلی \(u \) متعلق به زیر مجموعه
\(u \in \mathbb{R}^{n} \)
که حالت \(x \in \mathbb{R}^{n} \)
وادار نماید و ان‌دیس
\[P = \int_{t_0}^{T} p(x, u) \, dt \]
در این صورت، کانون کنترلی به‌ینه می‌پایه
با در نظر گرفتن بردار پیش‌آمد، همین‌طور
را به شکل
\[\psi(x, u, \lambda) = f_0 + \lambda^T f \]
تعیین می‌کنیم. برای آنکه \(\lambda \) کانون کنترلی به‌ینه مستقیمل
از دیگر طرف، خاصیت \(\psi(x, u, \lambda) = f_0 + \lambda^T f \) به این
که اگر X متعلق به فضای سنتی ماتریسی زاکوئین باشد؛ آنگاه
\(\dot{x} \) خواهد بود، و گرچه باند با حالت
مربوط خطا را ارائه می‌دهد. از آنجا که (3) یک مسئله فیزیکی
را مدل می‌کند، بنابراین (4) در فضای کار ربات تعیین
می‌سوزد و (5) جواب‌های دقیق و کلی‌ترین پاس مدل‌های سیستمیک
مستقیم است.

2-2 مدل سازی پونتریگن

که ماتریسی زاکوئین سیستم رباتیک است.
حل دستگاه (3) در شکل کلی عبارت است از
\[q(t) = J_1 \dot{X}(t) + \beta(t) \]
که \(J_1 \) ماکسوس ضعیف ماتریسی زاکوئین بوده و در وضعیت
غیر منفرد، از معادله زیر محاسبه می‌شود:
\[J_1^T (J_1^T)^{-1} \]
این \(\beta(t) \) متعلق به فضای سنتی ماتریسی زاکوئین باشد؛ آنگاه
\(\dot{x} \) خواهد بود، و گرچه باند با حالت
مربوط خطا را ارائه می‌دهد. از آنجا که (3) یک مسئله فیزیکی
را مدل می‌کند، بنابراین (4) در فضای کار ربات تعیین
می‌سوزد و (5) جواب‌های دقیق و کلی‌ترین پاس مدل‌های سیستمیک
مستقیم است.

223
\[\beta = -\frac{1}{2} (1 - J^\# J) \lambda \]
\[\dot{q} = f \]
\[\dot{\lambda} = \left[\frac{\partial f}{\partial q} \right]^T (2f + \lambda) \]
که \(\beta \) به صورت زیر قابل بازنوسی است:
\[f = J^\# x(t) - \frac{1}{2} (1 - J^\# J) \lambda \]

3-2 شرایط مزی

علاوه بر (16-الف) و (14-ب) شرایط دیگر مربوط به مسیر هستند. بنابراین به دست آمده حالت بهینه مشروط به تعیین \text{n} شرایت اولیه است، بی‌ثبات استعفا (2) در نظارت \(I_0 \) باعث برقراری این نکته خاص که همیلتونی مسیر را حسب حالت باشند. در نظر گرفتن مسیر با توجه به افزودنی درجات آزادی، آزادی \(q_I \) شرایط دیگر نیز از شرایط تعادل در انتهای مسیر به دست می‌آید.

\[\lambda (I_f) = 0 \]
\[n-m \]
دمجد مجموعاً \text{n+m} شرایط تعیین می‌کند.

برد \(T_f \) کارهای گرفته‌شده در انتهای مسیر باز هم انجام می‌شود.
\[I_n - J^\# (q_0) \lambda (q_0) (I_f) = 0 \]

و نهایتاً \text{n} شرایت مزی در انتهای مسیر باز هم انجام می‌شود.

با در نظر گرفتن معادلات (2) و (3) و تعیین
\[f(q, \beta) = J^\# (q)x(t) + (1 - J^\# (q))I(q)\beta \]
متغیر بهینه سازی مورد نظر به صورت زیر تعیین می‌شود:
\[\dot{q} = f(q, \beta) \]
\[P = \int_{I_f} f_0 (q, \beta) \]
\[\text{که } f_0 = f^T f \]
\[\text{با ممسنی‌ای این معادلات با معادلات (7) و (8)} \]
\[\text{می‌تواند دید مسیر طراحی بهینه را نشان دهد. با استفاده از روش‌های کنترل بهینه حک می‌کند که } \beta \text{ به ترتیب به } \beta, \lambda, x \text{ قرار می‌دهد. با استفاده از این روش و توجه به این } \beta \text{ نکته که در حالت حاضر ایندیس } P \text{ بر حسب } q \text{ و در نتیجه } \beta \text{ به شکل مسیری است می‌توان نشان داد حالت معادلات (16-ج) منجر به پاسخ تحلیلی برای } \beta \text{ به شکلی بهینه } \text{چگونگی حلت این معادلات در پیوست ارائه شده است.}
3- نکاتیهای عددی

در روش سه گانه برای اندازه‌گیری ریزی مسیر داده شده است.

شود. در واقع هدف ما پیدا کردن ریشه‌های معادله است که
تعریف شده است.

\[e = e (برای حل (20) \text{ با حل عددی } s(0) = 0) \]

که از معادله جواب‌های خارج از حدود مجاز متن‌ها های
حدسی می‌شود. در این جدول، مقدار ها که به دست آمده أوای
داخل یا اتاق، مقدارها را ادامه می‌دهیم و به همگرایی پاسخ اتیک، پایدار بود.

معلوماً هر جفت حدسی و یک در شرایط اولیه به مقدار اکسترمیم آن نزدیکتر
بیشتر همگرایی سریع‌تر و مطلوب‌تر خواهد بود.

4- مسئله حاضر

قبل از به کارگیری این روش در مجموعه رابطه‌های همگرا،
این مثال ساده‌تر را برای یک ریز مسیر مورد توجه قرار
می‌دهیم. شکل (1) سیستم در بخش بعدی به مسئله در ریز
همگرا صفحه‌ای میزبانیم. شکل (2).

الف) یک ریز صفحه‌ای با یک درجه تابعی

شکل (1) یک ریز صفحه‌ای با دو درجه آزادی را نشان
می‌دهد. که از عوامل صفحه‌ای با دو درجه آزادی ایجاد شده‌اند.

بنچم ریزها با مختصات \(X = [x, y] \) معرفی می‌شود. به دنبال
سیستم دارای یک درجه تابعی سیستم‌های خواهد بود. مقدار
طول بازه در جدول (1) آمده است.

\[x(t) = 0.4 \]
\[y(t) = \frac{1}{4} [1 - \cos(\pi t)] \]
\[t \in [0, 1] \]
برای اینکه نامعمی برای به کارگیری معادله (18) به راست‌های اسکالر تبدیل خواهد شد، متغیر (q) به عنوان شرط اولیه حسابی 8 در نظر گرفته می‌شود. این متغیر به لحاظ محدودیت‌های هندسی، در بازه محدودی مجاز به تغییر خواهند بود. این بازه برای ریزی ریزی در جدول (1) با ابعاد مذکور در جدول (1)

عبارت است از:

$$q_{ff} = [-0.406, 2.198]$$

و درجه نامعمی برای به کارگیری معادله (18) به راست‌های اسکالر تبدیل خواهد شد، متغیر (q) به عنوان شرط اولیه حسابی 8 در نظر گرفته می‌شود. این متغیر به لحاظ محدودیت‌های هندسی، در بازه محدودی مجاز به تغییر خواهد بود. این بازه برای ریزی ریزی در جدول (1) با ابعاد مذکور در جدول (1)

عبارت است از:

$$q_{ff} = [-0.406, 2.198]$$

و درجه نامعمی برای به کارگیری معادله (18) به راست‌های اسکالر تبدیل خواهد شد، متغیر (q) به عنوان شرط اولیه حسابی 8 در نظر گرفته می‌شود. این متغیر به لحاظ محدودیت‌های هندسی، در بازه محدودی مجاز به تغییر خواهد بود. این بازه برای ریزی ریزی در جدول (1) با ابعاد مذکور در جدول (1)

عبارت است از:

$$q_{ff} = [-0.406, 2.198]$$

و درجه نامعمی برای به کارگیری معادله (18) به راست‌های اسکالر تبدیل خواهد شد، متغیر (q) به عنوان شرط اولیه حسابی 8 در نظر گرفته می‌شود. این متغیر به لحاظ محدودیت‌های هندسی، در بازه محدودی مجاز به تغییر خواهد بود. این بازه برای ریزی ریزی در جدول (1) با ابعاد مذکور در جدول (1)
جدول ۲- نتایج مسئله نمونه (الف)

<table>
<thead>
<tr>
<th>q_1f (Rad.)</th>
<th>تعداد تکرار</th>
<th>q_10 بهینه (Rad.)</th>
<th>q_20 بهینه (Rad.)</th>
<th>q_30 بهینه (Rad.)</th>
<th>P بهینه (Rad.^2/Sec.)</th>
<th>P (Rad.^2/Sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/728</td>
<td>1/3/184</td>
<td>1/3/255</td>
<td>1/3/655</td>
<td>1/7/085</td>
<td>1/7/274</td>
<td>1/2/998</td>
</tr>
<tr>
<td>2/67</td>
<td>1/5/9</td>
<td>1/5/1</td>
<td>1/5/0</td>
<td>1/5/0</td>
<td>1/5/0</td>
<td>1/5/0</td>
</tr>
</tbody>
</table>

بای مقادیر نشان داده شده در شکل (۳) مقایسه می‌کند.
گاهی۳ تصحیح حدس به گونه‌ای اتفاق می‌افتد که مقادیر بیش از حداکثر افزایش ۳ به دست می‌آید. مقادیر P در نقاط مورد بهبود قابل ملاحظه‌ی‌ی می‌باشد. نقاط حداکثر نرخ زمانی به نقاط انتهایی باره کاملاً مشاهده است. به همین دلیل در حدس سوم از جدول (۲) از شرط خانه محاسبات ۰.۰۹ استفاده شده است.

با مقادیر نشان داده شده در شکل (۳) مقایسه می‌کند.
گاهی۳ تصحیح حدس به گونه‌ای اتفاق می‌افتد که مقادیر بیش از حداکثر افزایش ۳ به دست می‌آید. مقادیر P در نقاط مورد بهبود قابل ملاحظه‌ی‌ی می‌باشد. نقاط حداکثر نرخ زمانی به نقاط انتهایی باره کاملاً مشاهده است. به همین دلیل در حدس سوم از جدول (۲) از شرط خانه محاسبات ۰.۰۹ استفاده شده است.

شکل (۳) تغییرات این دو انديس را بر حسب کلیه مقادیر مجاز نشان می‌دهد. مقادیر P در نقاط مورد بهبود قابل مشاهده می‌باشد. نقاط حداکثر نرخ زمانی به نقاط انتهایی باره کاملاً مشاهده است. به همین دلیل در شکل‌های (۳-ج و د) رسم شده است.

جدول ۲- نتایج حاصل از چند مورد حدس اولیه برای q_1f و استفاده از حسل مسئله کنترل بهینه را نشان داده و آنها را
نمتحنی مسیر بهینه مقاصل و همچنین شماتیک مسیر حرکت ربات در فضای کار آن برای حذف سوم که حداکثر مقادیر عددی برای P را پیش بینی می‌کند، به ترتیب در شکل (4) رسم شده است.

ب) در ربات صفحه‌ای با دور درجه نامیده، حالا در ربات صفحه‌ای را مطابق شکل (2) در نظر می‌گیریم که به طور مشترک جسمی را در فضای دکارتی حکمت می‌دهند. هرکی از دو ربات از نوع سری و پایه نامی دارای سر دورانی شده‌اند که از سه عضو صلب با مقاصل دو ربات ایجاد شده‌اند. جسم مورد نظر با اتصال لولایی به انها در ربات متصل است. مسیر حرکت مرکز جرم جسم واسط در فضای دکارتی کاملاً معلوم است.

شکل 4 - مسیر بهینه در فضای مقاصل - سننله نمونه اول

\[X = [x(t), y(t), \theta(t)]^T \]

متغیرهای فوق در چارچوب مرجع، مشابه به پایه ربات 1 تعریف می‌شوند. راستای محورهای x و θ به ترتیب در راستای میز کار و عضوی بر آن و 0 زاویه خط وصل دو لولا با محور افقی چارچوب فوق تعریف می‌شوند.

هرکی از دو سیستم ربات و جسم دارای سه درجه آزادی هستند که مجموعاً 9 پارامتر غیر مستقل برای معرفی این رباتها همگرا که بی ک جسم را گرفته‌اند. بازی دارند. از طرفی در نقطه اتصال جسم به دو ربات، برای محورهای x و θ مجموعاً 4 کید ایجاد می‌شود. بنابراین تعداد درجه آزادی کل سیستم برای 5 است. از آنجا که جسم هدف در دارای 3 درجه آزادی است، مستلح از نظر سینماتیکی دارای 2 درجه نامی‌ی است.
جدول ۳- ابعاد طولی باروهای ریت شکل ۲

<table>
<thead>
<tr>
<th>شماره بارو</th>
<th>ریت ۲</th>
<th>ریت ۳</th>
<th>ریت ۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶</td>
<td>۲</td>
<td>۱</td>
<td>۳</td>
</tr>
<tr>
<td>۵</td>
<td>۲</td>
<td>۱</td>
<td>۴</td>
</tr>
<tr>
<td>۴</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>تعداد نکرده</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اندازه (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹.۳</td>
<td>۴.۳</td>
<td>۱.۸</td>
<td>۸.۵</td>
</tr>
<tr>
<td>۴.۶</td>
<td>۲.۵</td>
<td>۲.۱</td>
<td>۴.۵</td>
</tr>
<tr>
<td>۲.۵</td>
<td>۵.۴</td>
<td>۶.۳</td>
<td>۲.۵</td>
</tr>
<tr>
<td>۶.۳</td>
<td>۵.۴</td>
<td>۳.۲</td>
<td>۲.۵</td>
</tr>
</tbody>
</table>

جسم متصل به پنجه‌ها، میله‌ای به طول 20 سانتی‌متر فرض شده است که در ابتدا مسیر خود روی میز کار بوده و مرکز جرم آن در مختصات (0, 0, 0) نسبت به چارچوب مرجع قرار گرفته و هم در پنجه روی خط مبتنی جسم به آن لولا شده‌اند. فاصله پایه‌های دو ریت 1 متر در نظر گرفته شده‌اند. مقادیر طول باروهای در جدول ۴ آمده است.

به منظور مقایسه نتایج با مسئله نمونه اول، مسیر مرکز جرم میله به صورت زیر در نظر گرفته شده است:

\[x(t) = 0.5 \]
\[y(t) = \frac{1}{4} [1 - \cos(\pi t)] \quad (25) \]
\[\theta(t) = 0 \quad \text{t} \in [0, 1] \]

به عبارت دیگر، جسم مذکور از حالت سکون از مسیر کار یک بار بکشیده و به طور موازی با آن به موقعیت سکون جدید می‌رسد.

منی‌به‌هایی را به عنوان مولفه‌های ۵ در نظر می‌گیریم. مسیر تغییر شده برابر جسم نسبت به ربات‌های ۱ و ۲ دارای تقارن است. با انتخاب شرایط حدسی متفاوت:

\[q_{4f} = q_{4f} - q_{1f} \]
\[q_{5f} = q_{5f} - q_{2f} \]
\[q_{6f} = q_{6f} - q_{3f} \]

جدول ۴- نتایج مسئله نمونه (ب)

<table>
<thead>
<tr>
<th>P</th>
<th>qe بهینه (Rad/۲Sec.)</th>
<th>qf بهینه (Rad.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۵۸۵۲</td>
<td>۲/۵۸۵۲</td>
<td>۲/۵۸۵۲</td>
<td>۲/۵۸۵۲</td>
<td>۲/۵۸۵۲</td>
<td>۲/۵۸۵۲</td>
<td>۲/۵۸۵۲</td>
<td>۲/۵۸۵۲</td>
</tr>
<tr>
<td>۲/۵۷۸۱</td>
<td>۲/۵۷۸۱</td>
<td>۲/۵۷۸۱</td>
<td>۲/۵۷۸۱</td>
<td>۲/۵۷۸۱</td>
<td>۲/۵۷۸۱</td>
<td>۲/۵۷۸۱</td>
<td>۲/۵۷۸۱</td>
</tr>
</tbody>
</table>

۴۲۹

استقلال، سال ۲۶، شماره ۱، شهریور ۱۳۸۶
روش شیک، معادله‌ای جذب به مجموعه رابط همکاری مسئول همکار در فضای کار برای مسئول معادله (۲۲) مقدار بهینه برای شکل (۵) عبارت است از:

\[
q_{t} = -0.107 \text{ (Rad)} \\
q_{4} = -2.491 \text{ (Rad)} \\
P = 4.2493 \text{ (Rad/sec)}
\]

۵- نتیجه‌گیری

رابطه‌های همکاری زنجیره‌های بسته سینماتیکی ایجاد می‌کند که معمولاً از نظر سینماتیکی و دینامیکی دارای افزودگی در جهت آزادی هستند. استفاده از نظریه کنترل بهینه برای حل مشکل سینماتیک معکوس رابطه‌های همکار، توام با بهینه کردن یک اندیس سینماتیکی مورد بررسی قرار گرفت. با کارگیری

فهرست نامه

1. Pontryagin
2. conservative
3. spline
4. calculus of variation
5. manipulability
6. compliance
7. weak inverse
8. orthonormal compliment of null space (OCNS)
9. null space (NS)
10. adjoint
11. Hamiltonian
12. fixed time, free end state problem
13. two point boundary value problem (TPBVP)
14. shooting method
15. elbow up
16. elbow down

مراجع

۱۳۸۶ استقلال، سال ۲۶، شماره ۱، شهریور

\[\beta = -(B^T B) B^T [c + \frac{1}{2} \lambda] \]

(الف-4)

از تعریف ماتریس \(B\) و شیب معکوس یک ماتریس می‌توان خواص زیر را تحقیق کرد:

i) \(BB = B\)
ii) \(B^T = B\)
iii) \(B^\# = B\)
iv) \(Bc = 0\)

(الف-5)

با چاپ گذاری (الف-5) در (الف-4) فاصله کنترلی به شکل نهایی زیر ساده می‌شود.

(الف-6)