Inverse Kinematics Resolution of Redundant Cooperative Manipulators Using Optimal Control Theory

A. Hosseini, M. Keshmiri, and M. J. Sadigh
Department of Mechanical Engineering, Massachusetts Institute of Technology
Department of Mechanical Engineering, Isfahan University of Technology

Abstract: The optimal path planning of cooperative manipulators is studied in the present research. Optimal Control Theory is employed to calculate the optimal path of each joint choosing an appropriate index of the system to be minimized and taking the kinematics equations as the constraints. The formulation has been derived using Pontryagin Minimum Principle and...
1- مقدمه
همکاری بین ربات‌ها برای انجام یک کار به صورت مشترک، منجر به پیاده‌سازی جدیدی در عرصه علم رباتیک شده است که از آن به عنوان ربات‌های همکار یاد می‌شود. توانایی این نوع سیستم‌ها در انجام کارهایی که به لحاظ پیچیدگی، کارایی و یا دقت از عهد کننده مورد خواسته است، توجه محققان را به خود جلب کرده است. علاوه بر این به کارگیری انرژی در جریان آزادی در بارورهای ماکانیکی به دلیل قابلیت‌های متعدد آن از قبیل انرژی سطح، ماهور و دری از جمله منجر به ملاقات معرب در فضای کار نیز مورد توجه محققان قرار دارد. از طرفی نمونه‌های سیستم‌هایی که بی‌کارگی این نوع سیستم‌ها را با مشکلات مهمی می‌سازد.

برای حل دستگاه‌های سیستم‌های سیستم نامنی، بررسی‌های محدودی انجام گرفته است. ویتنی و لچیس به حل معادلات سیستمی معکوس در سطح سرعت مقاصل به کمک شب عکس مرزی ساختار ایجاد کرده‌اند [1] و [2]. این حالت به جای ساختمان در فضا کاربردی بیشتری از اندازه‌گیری هستند.

در نظر گرفتن حل فضای پرچم، می‌توان روش قلمی را اصلاح کرد و به برخی چنین نامنی را باید ملاحظات کار کردن [3] و [4]. در حل معادلات سیستم‌های نامنی، ملاحظات مختلفی در در نظر گرفتن سطح مکانیکی است که از جمله آنها به حداکثر ممکن سرعت مداوم توسط ویتنی، اعمال محدودیت معکوس توسط لچیس، انتخاب‌های از نقاط منجر توسط ژوکفاگاری، احتمال استفاده از مواد مولکولاری که می‌توانند نمونه آنرژی پتانسیل توسط ناکائو و از اکتیو می‌توان اشاره کرد [1-7].

استفاده از جنگ جمله‌ای منجر به محدودیت مزیتی از زوابه‌پذیری و تبعیض ضرایب مشاهده آن به وسیله اعتماد
جملات اول و دوم در (1) به ترتیب جوامعی خصوصی و عمومی معادله (2) به شمار می‌رود که اولی از فضایه مکمل معادلات فضایی پی بوج ماتریس زاکوونی و دومی از فضای بوج آن ماتریس اختیاری شدهاند. پی برداری کاملاً اختیاری از فضایی است که به نگاشت J از دستگاه NS تصویر می‌شود. در واقع جمله دوم قابلیت افزودنی درجات آزادی بازوهای را نشان می‌دهد و می‌تواند جوامعی متفاوت برابر (1) q تولید کند. این قابلیت به طراحی اجراش می‌دهد تنها برای انجام یک عملیات مشخص، یک انیسی را نیز بهینه کند.

به‌طور مثال انیسی P زیر را در نظر می‌گیریم:

\[P = \int_{I_0}^{1} q(t) \, dt \]

در این صورت، مستله به بیپا کردن مسیر q(t) و یا در واقع \(\beta \) تبدیل می‌شود که علاوه بر اضافه معادلات سینماتیک، انیسی را بهینه کند.

اگر موضوع را می‌توان با روشهای مختل بهره بررسی کرد.

از جمله این روشهای استفاده از اصل مینیمم سازی پوئنترینگن است.[19]

2-1.2 اصل مینیمم سازی پوئنترینگن

مبنای دینامیکی

\[x(t) = f(x, u) \]

مقرض است. قانون کترلی \(\delta \) متعلق به زیر مجموعه \(\mathcal{U} \) \((m < n) \) در حالت (3) عبارت است از:

\[q(t) = J^T \dot{x}(t) + (I - J^T J) \delta \]

که مربعات ضعیف ماتریس زاکوونی بوده و در وضعیت غیر منفرد از معادله زیر محاسبه می‌شود:

\[J^T(q) = J^T (J J^T)^{-1} J \delta \]

اگر متعلق به فضای سنتی ماتریس زاکوونی بود، آنگاه \(\dot{x} \) به دستگاه (2) خواهد بود. وگرچه بجا با حداکثر مربعات خطای آن‌ها می‌دهد، از آنجا که (3) یک مسئله فیزیکی را مدل می‌کند، بنابراین (1) در فضای کار روابط تعریف می‌شود و (4) جوابی دقت و کارآمدی پاس‌معادلات سینماتیک مستقیم است.

jom@jme.iut.ac.ir دانشگاه آزمایش‌گاهی دانشگاه قزاقستان
\[
\beta = \frac{1}{2} (1 - J^\#) \lambda \\
\dot{\lambda} = \left[\frac{\partial \dot{\lambda}}{\partial \dot{\gamma}} \right]^T (2\dot{\gamma} + \lambda) \\
\dot{\gamma} = f \\
\dot{\gamma} = J^\# X(t) - \frac{1}{2} (1 - J^\#) \lambda \\
\\text{محدود در مشورت اولیه است:} \\
f = J^\# X(t) - \frac{1}{2} (1 - J^\#) \lambda
\]

3-2 شرایط مزد

\[
x^*(t) = \frac{\partial \mathcal{H}(x^*, u^*, \lambda^*)}{\partial \lambda} \\
\dot{\lambda}^*(t) = -\frac{\partial \mathcal{H}(x^*, u^*, \lambda^*)}{\partial u} \\
\frac{\partial \mathcal{H}(x^*, u^*, \lambda^*)}{\partial x} \leq \mathcal{H}(x^*, u^*, \lambda^*)
\]

مشاهده می‌شود که معادلات فوق ترکیبی از معادلات جبری و دیفرانسیلی به صورت کوپل‌اند. بنابراین با حالت 2 عدد معادله جبری (10-1-ج) و محاسبه (10-1-ب) و جابجایی آن در (10-1-الف) و (10-1-ب) مسیر بهینه (10) قابل محاسبه خواهد بود. تعداد این نکته ضروری به نظر می‌رسد که معادلات (10) هنگام بازگشت در مسیر بهینه کردن \mathcal{H}، هستند و امکان دارد مسیری این شرایط را ارضا کند و در جواب بهینه باشد.

معادله جبری خیزکی (10-1-ج) برای تعیین (u^*) در حالت خاص که همیلتونین مشهیر حسب u خطی با سیستم باشد، دارای حل پیش‌بینی است. در غیر این صورت این معادله برای باید در هر گام انگرک‌گیری به طریقه عددی حل شود، اما به دلیل انگرک‌گیری‌های مکرر از نظر محاسباتی فوق العاده سنگین می‌شود.

با در نظر گرفتن معادلات‌های (4) و (6) و تعریف $f(q, \beta) = J^\#(q) X(t) + (1 - J^\#(q) Q(t) \beta$)

\[
\dot{q} = f(q, \beta) \\
P = \int_{t_0}^{t_f} f_0(q, \beta)
\]

که با مقایسه این معادلات با معادلات (7) و (8) می‌توان دید مسیر بهینه طراحی‌شده مسیر بهینه حاضر را می‌توان با استفاده از روش‌های کنترل بهینه حکم که β, q به ترتیب به جای x, u قرار می‌دهند. با استفاده از این روش و توجه به این نکته که در مسیر حاضر مسیر بهینه بر حسب \dot{q} و در نتیجه $\dot{\gamma}$ به شکل سه‌مانتوست می‌توانند داد حسرت معادلات (10) به معادله (10-1-ج) منجر به بی‌پاسخی برای β به شکلی بهینه λ^* و در نتیجه $\dot{\gamma}$ حل این معادله در پیوست‌های ارائه شده است.

استقرار، سال، شماره، پایه 1386
3 - نکات هایی عددي

در روش شیبکشی برای اندازه‌گیری روى مسیر یک داده استفاده می‌شود:

\[e = e_0 \] (شرايط اولیه حسی)

اگر بردار شرايط اولیه حسی را نامينيم با استفاده از بسط تاکنون مقدار س در هر تكرار برای \(e \neq 0 \) با فروم بازگشتی

\[e_{n+1} = e_n - \left(\frac{\partial f}{\partial x} \right)^{-1} \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} \end{pmatrix} e_n \] (20)

اصلاح می‌کنیم تا وقتی که دقت مورد نظر ارضا شود. در این صورت از ترم اول به عنوان شرط خاتمه محاسبات استفاده می‌شود.

استفاده از فروم بازگشتی (20) برای حل عددي (10) می‌باشد.

کاهش نرخ جواب‌یابی خارج از محدوده مجاز متغیرهای حسی می‌شود. در این گونه موارد باید با حس اولیه جدیدی از داخل باید، تسته را ادامه داد و به همگرایی پاسخ ایجاد نمود برای این معمولا هرچند در حس اولیه به مقدار استرس لازم از نظر نسبت باشد، همگرایی سریع و مطمئن خواهد بود.

4 - مسئله نمونه

قبل از بکارگیری این روش در مجموعه رابتهای همکار، ابتدا مثال ساده‌تری را برای یک ریت مستقل مورد توجه قرار می‌دهیم. شکل (1) باید در بخش بعدی به مسئله در ریت همکار صفحه‌ای مورد بررسی، شکل (2).

الف) یک ریت صفحه‌ای با یک درجه تازعی

ویک چکار به سه درجه آزادی را نشان می‌دهد. که از عوامل مفصل دورانی ایجاد شده‌اند. برای ریت با مختصات \(X = \{ x, y \} \) معرفی می‌شود. برای این سیستم دارای یک درجه تازعی سیستم‌های سیستم‌های مجزا می‌باشد. مقدار طول بازو به جدول (1) آمده است.

\[
\begin{align*}
x(t) &= 0.4 \\
y(t) &= \frac{1}{4} \left[1 - \cos(\pi t) \right] \\
t &\in [0,1]
\end{align*}
\] (21)

ب) مسئله ریت با یک درجه تازعی

\[f(q_0) = X(t_0) \\
\lambda(t_0) = 0 \]

\[e = \left[\frac{n - J(q_0)J(q_0)^T}{} \right] (t_0) = 0 \]

با تکمیل شرایط مرزی در 1 و انگرگسپ‌های پرتو، مقدار \(q_0 \) به دست می‌آید. آنگاه اگر شرط \(C \) برقرار نیبود سه

می‌شود حدس‌ها را به گونه‌ای تعیین کرد که مسئله ای‌دخلا از ارضا

استقلال سال 1386 شماره 13 شماره 1386
شکل ۱ - دو ریت همکار صفحه‌ای با سه درجه آزادی: مسئله نموه (الف)

شکل ۲ - دو ریت همکار صفحه‌ای با پنج درجه آزادی: مسئله نموه (ب)

جدول ۱ - ابعاد طولی پازوهای ریت شکل (۱)

<table>
<thead>
<tr>
<th>شماره پازو</th>
<th>شماره نماد</th>
<th>اندازه (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۲</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۲</td>
<td>۱۱</td>
<td>۰/۳</td>
</tr>
</tbody>
</table>

وqh = qf + qf - qh

با توجه به معادله (۱۸) به رابطه اسکالر تبدیل شده، متغیر (qf) به عنوان شرط اولیه حذف شده و به عنوان یک متغیر به لحاظ محدودیت‌های هندسی در باره مقادیر مجاز به تغییر خواهد بود. این پازه برای ریت شکل (۱) با ابعاد مذکور در جدول (۱) عبارت است از:

qf ∈ [0.406, 2.198]

باید این پازو قابل پمک معلوم حالت qh و به کمک معادلات سیستم‌های مستقیم دو دسته جواب آن را پیدا و آریجین پایین یابد. برای qf معرفی کرد. با تغییر بردارهای qf در بازه مجاز فوق، اندازه P با در حال آریجین بالا و اندازه P با در حال آریجین پایین محاسبه می‌شود.
با مقادیر نشان داده شده در شکل (3) مقایسه کنید. گاهی تصحیح حدس به کمک ص Slayer از این می‌تواند به دست آید. پناهیده که مقدار جدید چرخش در نمونه‌های اصلی انتظار می‌رود، این مقادیر برای نقاط حدسی همگن می‌باشد. این مقادیر به جدول جدید در حس سوم از جدول (2). از شرط خاصه محاسبات 0.09 استفاده شده است. شکل (3) تغییرات این دو اندیس را بر حسب کلیه مقادیر مجاز نشان می‌دهد. مقدار P در نقاط مختلف به پیانهت میل q_{1f} می‌کند. با این شرایط می‌توان از نواحی پایینی شکل‌های (3-اف) و ب) تغییرات منحنی P محاسبه ناپیموده بازتهای انتقالی باره تابعین این مقدار منحنی مجدد در شکل‌های (3-چ و د) رسم شده است.

جدول 2- نتایج مسئله نمونه (اف)

<table>
<thead>
<tr>
<th>شکل (3)</th>
<th>P (Rad/2/Sec.)</th>
<th>P بهره (Rad/2/Sec.)</th>
<th>P بهره 20 (Rad.)</th>
<th>P بهره 10 (Rad.)</th>
<th>P بهره 1f (Rad.)</th>
<th>تعداد تکرار</th>
<th>حدسی q_{1f} (Rad.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1968</td>
<td>1/2944</td>
<td>1/377</td>
<td>1/377</td>
<td>1/377</td>
<td>1/377</td>
<td>1/377</td>
<td>1/377</td>
</tr>
<tr>
<td>1/3854</td>
<td>1/628</td>
<td>1/818</td>
<td>1/818</td>
<td>1/818</td>
<td>1/818</td>
<td>1/818</td>
<td>1/818</td>
</tr>
</tbody>
</table>

شکل (3) تغییرات این دو اندیس را بر حسب کلیه مقادیر مجاز نشان می‌دهد. مقدار P در نقاط مختلف به پیانهت میل q_{1f} می‌کند. با این شرایط می‌توان از نواحی پایینی شکل‌های (3-اف) و ب) تغییرات منحنی P محاسبه ناپیموده بازتهای انتقالی باره تابعین این مقدار منحنی مجدد در شکل‌های (3-چ و د) رسم شده است.

جدول 2- نتایج مسئله نمونه (اف)

<table>
<thead>
<tr>
<th>شکل (3)</th>
<th>P (Rad/2/Sec.)</th>
<th>P بهره (Rad/2/Sec.)</th>
<th>P بهره 20 (Rad.)</th>
<th>P بهره 10 (Rad.)</th>
<th>P بهره 1f (Rad.)</th>
<th>تعداد تکرار</th>
<th>حدسی q_{1f} (Rad.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1968</td>
<td>1/2944</td>
<td>1/377</td>
<td>1/377</td>
<td>1/377</td>
<td>1/377</td>
<td>1/377</td>
<td>1/377</td>
</tr>
<tr>
<td>1/3854</td>
<td>1/628</td>
<td>1/818</td>
<td>1/818</td>
<td>1/818</td>
<td>1/818</td>
<td>1/818</td>
<td>1/818</td>
</tr>
</tbody>
</table>

شکل (3) تغییرات این دو اندیس را بر حسب کلیه مقادیر مجاز نشان می‌دهد. مقدار P در نقاط مختلف به پیانهت میل q_{1f} می‌کند. با این شرایط می‌توان از نواحی پایینی شکل‌های (3-اف) و ب) تغییرات منحنی P محاسبه ناپیموده بازتهای انتقالی باره تابعین این مقدار منحنی مجدد در شکل‌های (3-چ و د) رسم شده است.
شکل ۲ - مسیر یا به فضا مفصل - منحنی نمونه اول

$X = [x(t), y(t), \theta(t)]^T$

متغیرهای فوق در چارچوب مرجع، می‌شوند. راستای محورهای x و θ به ترتیب در راستای میز کار و عمود بر آن و در آزمایشگاه‌ها، با خط وصل دو لولا به محور افقی چاپ‌شده تعریف می‌شود.

هریک از دو سیستم ربات و جسم دارای سه درجه آزادی هستند که مجموعاً ۹ پارامتر غیر مستقل برای معرفی این ربات‌های همکار که یک جسم را در فضای دکارتی حکمرانی می‌کند. هریک از دو ربات از نوع سری پایه‌ای با سه درجه آزادی در دو دستگاه ایجاد شده‌اند. جسم مورد نظر با اتصال لولایی به انتهای دو ربات متصل است. مسیر حرکت مربوط جرم یا بافت در فضای دکارتی کاملاً معلوم است.

شکل ۱ (الف) و (ب) ربات در فضای کار آن برای حذف سوم که حداقل مقادیر عددی برای P را بیشتر می‌کند. به ترتیب در شکل (۳) رسم شده است.

می‌گیریم که به طور مشترک جسم را در فضای دکارتی حکمرانی می‌کنیم. هریک از دو ربات از نوع سری پایه‌ای با سه درجه آزادی در دو دستگاه ایجاد شده‌اند. جسم مورد نظر با اتصال لولایی به انتهای دو ربات متصل است. مسیر حرکت مربوط جرم یا بافت در فضای دکارتی کاملاً معلوم است.
جدول ۳- ابعاد طولی باروهای ریای شکل ۲

<table>
<thead>
<tr>
<th>ریاه</th>
<th>شماره بارو</th>
<th>ناماد</th>
<th>اندازه (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱</td>
<td>I۱</td>
<td>۰.۵۷۷۱</td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td>I۲</td>
<td>۰.۵۷۷۱</td>
</tr>
<tr>
<td>۳</td>
<td>۲</td>
<td>I۲</td>
<td>۰.۵۷۷۱</td>
</tr>
</tbody>
</table>

جدول ۴- نتایج مسئله نموده (ب)

<table>
<thead>
<tr>
<th>P بهره (Rad²/Sec.)</th>
<th>q۴f بهره (Rad.)</th>
<th>q۱f بهره (Rad.)</th>
<th>تعداد نیروگاه</th>
<th>q۴f هدیسه (Rad.)</th>
<th>q۱f هدیسه (Rad.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳.۸۵۷۴</td>
<td>۰.۴۱۹۸</td>
<td>۰.۱۴۹۴</td>
<td>۲۰۰۰۰۰</td>
<td>۰.۱۵۰۴</td>
<td>۰.۰۴۱۹۴۹</td>
</tr>
</tbody>
</table>

جسم متحد به پنجه‌ها، میله‌ای به طول ۲۰ سانتی‌متر قرار گرفته است که در ابتدای مسیر خود روی میز کار بوده و مرکز جرم آن در مختصات (۵، ۵) قرار گرفته و هر دو پنجه روي خط مبنا جسم به آن لولا شده‌اند.

فصل پایه‌ای دو ریاه ۱ متر در نظر گرفته شده‌اند. مقادیر طول باروهای در جدول ۳ آمده است.

به منظور مقایسه نتایج با مسئله نموده اول، مسیر مرکز جرم میله به صورت زیر در نظر گرفته شده است:

\[x(t) = 0.5 \]

\[y(t) = \frac{1}{4} [1 - \cos(\pi t)] \]

\[\theta(t) = 0 \quad t \in [0.1] \]

به عبارت دیگر جسم مذکور از حالت سکون از سطح میز کار بنا به شدت به طور موازی با آن به موقعیت سکون جدید یا قله‌سکون می‌رسد.

مگره‌های q۴f = q۴(t) و q۱f = q۱(t) را به عنوان مولفه‌های در نظر می‌گیریم. مسیر تعیین شده برای جسم نسبت به ریاه ۱ و ۲ دارای تقارن است. با انتخاب شرایط

\[\begin{align*}
q_{4f} &= \pi - q_{1f} \\
q_{5f} &= -q_{2f} \\
q_{6f} &= -q_{3f}
\end{align*} \]

۲۲۹

استقلال، سال ۲۶، شماره ۱، شهریور ۱۳۸۶
مشابه شکل 5، مسیر حرکت ربات‌های همکار در فضای کار برای مسیر معادل (22)

مناطق برای شکل 5 (ع) عبارت است از:

\[q_{1f} = -0.107 \text{ (Rad)} \]
\[q_{4f} = -2.491 \text{ (Rad)} \]
\[P = 4.2493 \text{ (Rad/sec)} \]

۵- نتیجه‌گیری

روش‌های همکار زنجیره‌های سیستم‌های همکار ایجاد می‌کند که معمولاً از نظر سیستم‌های دینامیکی دارای افزودگی درجات آزادی هستند. استفاده از نظریه کنترل بهینه برای حل مسئله سیستم‌های مکانیکی ربات‌های همکار، توأم با بهینه‌کردن یک اندیس سیستم‌های مورد بررسی قرار گرفت. با به کارگیری

واژه‌نامه

1. Pontryagin
2. conservative
3. spline
4. calculus of variation
5. manipulability
6. compliance
7. weak inverse
8. or thonormal compliment of null space (OCNS)
9. null space (NS)
10. adjoint
11. Hamiltonian
12. fixed time, free end state problem
13. two point boundary value problem (TPBVP)
14. shooting method
15. elbow up
16. elbow down

مراجع

\[\beta = -(B^T B)^\# B^T [c + \frac{1}{2} \lambda] \]

(الف-4)

از تعريف ماتريس \(B \) و شب مفعومات ماتريس ماتريس وظایف زیر را تحقق کرد:

i) \(BB = B \)

ii) \(B^T = B \)

iii) \(B^\# = B \)

iv) \(Bc = 0 \)

\[\beta = -\frac{1}{2} (I - J^\# J) \lambda \]

(الف-6)

با جایگذاری (الف-5) در (الف-4) قانون کنترلی به شکل نهایی زیر ساده می‌شود.

(الف-5)