Grafting of Maleic Anhydride onto Co(propylene-b-ethylene) by Extrusion Process: Measurement of Adhesion to Steel Surface

H. Khabbazi, R. Bagheri, and M.A Golozar
Department of Chemical Engineering, Isfahan University of Technology, Isfahan
Department of Materials Engineering, Isfahan University of Technology, Isfahan

Abstract: Polypropylene (PP) has poor adhesion to metals and other surfaces for its chemical structure. Hence, chemical
modification of PP is necessary for metal surface coating application. In this research, grafting of maleic anhydride (MA) onto co (propylene-b-ethylene) in the presence of a dicumyl peroxide (DCP) was accomplished in a single screw extruder. Characteristics of the modified polymer were determined by Infra-red Spectroscopy (IR), Scanning Electron Microscopy (SEM), and adhesion test. Maximum grafting of MA was found to be 1.2832% for 1.5 pph of MA. Adhesion test showed that the samples containing 1 pph of MA (degree of grafting is 0.5816%) had better adhesion to steel surface (17.25 kgf).

Keywords: Polypropylene, Chemical modification, Maleic anhydride, Extrusion.

هدف از این تحقیق، پوستن ایندیروی مالئیک به کوپلایمر بی‌خراسی پروپیلن- استات در حضور آغازگر دی کوپیل پراکسید با استفاده از بیک اکستروداسیون نک مارچیجه است که در آن با تغییر گلنوش ایندیروی مالئیک، بیشترین چسبندگی بین سطح فولات ساده کریستال به‌دست آید.

1- مقدمه

هدف از این تحقیق، پوستن ایندیروی مالئیک به کوپلایمر بی‌خراسی پروپیلن- استات در حضور آغازگر دی کوپیل پراکسید با استفاده از بیک اکستروداسیون نک مارچیجه است که در آن با تغییر گلنوش ایندیروی مالئیک، بیشترین چسبندگی بین سطح فولات ساده کریستال به‌دست آید.

2- مواد و روش کار

2-1 مواد

در این تحقیق، از کوپلایمر قطعه‌ای پروپیلن- استات EPD 60R پرتوشیمی‌ای اراك با نام تجاری (MF10) (پایدارکننده) حمایتی بنا نمای تجاری (MFI=10/5g-r/min، 230°C، 2.16/4kg) حاوی 10 وسیله و سیس و سیسی با ترکیب آن دارا است. اکستراکس آغازگر ارامگر دی کوپیل پراکسید و ایندیروی مالئیک به ترتیب از شرکت‌های مرکب و ریدل آلمان، و تریوژنیک از پرتوشیمی اصفهان استفاده شد.

استقلال، سال 26، شماره 1، شهريور 1386

134
جدول ۱ - مشخصات اکسترودر تک ماریپچه مورد استفاده

<table>
<thead>
<tr>
<th>مقدار</th>
<th>نام مشخصه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵</td>
<td>نسبت طول به قطر ماریپچه (L/D)</td>
</tr>
<tr>
<td>۱۹/۱ mm</td>
<td>قطر ماریپچه</td>
</tr>
<tr>
<td>بروفایل دما در اکسترودر</td>
<td>دما درجه سانتیگراد</td>
</tr>
<tr>
<td>۱۲ دور بر دقیقه</td>
<td>دور ماریپچه</td>
</tr>
</tbody>
</table>

جدول ۲ - آزمایشات انجام شده برای تعیین بهترین میزان ایندیدر مالئیک در ترکیب پلی‌پروپیلن

<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>پلی‌پروپیلن (pph)</th>
<th>ایندیدر مالئیک (pph)</th>
<th>آگازگر دی‌کومیل پروپاکسید (pph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۵۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۲</td>
<td>۱۰۰</td>
<td>۱/۱</td>
<td>۱/۱</td>
</tr>
<tr>
<td>۳</td>
<td>۱۰۰</td>
<td>۵/۴</td>
<td>۵/۴</td>
</tr>
<tr>
<td>۴</td>
<td>۱۰۰</td>
<td>۱/۱</td>
<td>۱/۱</td>
</tr>
<tr>
<td>۵</td>
<td>۱۰۰</td>
<td>۱/۱</td>
<td>۱/۱</td>
</tr>
</tbody>
</table>

آزمایشات تأثیر ایندیدر مالئیک را نشان می‌دهد.

۲-۹-۲ روش کار
به جهت نمونه‌گیری از ۳ مرحله انجام شد که در ذیل به آنها اشاره شده است.

۲-۹-۱-پیوندزی ایندیدر مالئیک به پلی‌پروپیلن در اکسترودر
برای انجام این کار، ابتدا ایندیدر مالئیک و آگازگر دی‌کومیل پروپاکسید در فرآیند کناری و پلی‌پروپیلن در اکسترودر با استنا اضافه شد. مخلوط حاصل توسط یک همزن مکانیکی به دست آمد. به همراه کار کردن نمونه روی یک سطح صاف در دمای مخصوص، شوید به‌کمک تکتیکی که بوده خروج کامل انجام شد. به‌طور آزمایشات از این‌نام، اکسترودر شد کامل پودر پلی‌پروپیلن به فیل اکسترودر منتقل و اجاق داده شد تا در طی مدت زمان ۲ دقیقه و ۱۰ ثانیه، اتصال ایندیدر مالئیک روزنده پلی‌پروپیلن انجام شود. جدول (۱)، مشخصات هندسی اکسترودر تک ماریپچه و جدول (۳)
صوت گرفت. سپس نمونه‌های پوشش داده شده را در یک آن همراه با چرخ جریان هوا، در دمای 200 درجه سانتی‌گراد و به مدت 15 دقیقه قرار داده تا فیلم‌های حمود و یکنوخت تشکیل شود.

3- اندازه‌گیری

با استفاده از دستگاه طیف‌سنج مادون مرکزی، در شیمادزوشی، یک نمونه از نمونه‌های آزمایشگاهی کربنولیک واکنش نکرده از آنتی‌ور پرتوشیمی ارائه تیزی شد. به توجه به طیف‌های حاصل، مقدار شاخصی کربنوتیل از نسبت A1950/A1600 محاسبه شد (یادداشت 14). میزان جذب در عدد مولی (cm⁻¹)، مراحلی، گروه‌های کربنوتیل مربوط به محله ۵ ضلیع اندریژ و A، مقیاس CH4 جذب در عدد مولی (cm⁻¹)، مراحلی، گروه‌های کربنولیک واکنش نکرده از پلیمر به عناوین شاید باشد. از آنجا که شاخص کربنولیک یک اندازه‌گیری قوی است، با پمیان از نمونه کالیبراسیون برای تعیین میزان واقعی اندریژ واکنش کرده استفاده شود. در اینجا از منحنی کالیبراسیونی مخلوط بین پروپیلن و دوسل سوکسینیک اندریژ وجود دارد.

آزمون نمونه مشابه استاندارد ASTM D 2372، برابر یک معنی‌دار، نمونه‌های ویلولای به ابعاد 25×25×20 سانتی‌متر پوشش داده شدند (حدود 1/5 سانتی‌متر از بالای نمونه بدون پوشش باشد). نمونه ها طوری در دستگاه اندازه‌گیری کربنوتیل قرار داده می شوند که سر حلقه خراش ۳ در تمسی با فسفت بدون پوشش نمونه باشد. در اینجا سطح پرتوشیمی روی نمونه ایجاد شد. در صورت جدا شدن پوشش از سطح، آزمون با وزنه‌های سبک‌تر ادامه یافت. کمترین وزنه‌ای که به آزمایشگاه از روز سطح کنده شود، معیاری از چسبندگی در نظر گرفته شد. لازم به ذکر است که تابع حاصل،

شکل 1- تغییرات شاخص جذب کربنوتیل بر حسب درصد وزن

دو دست سوکسینیک اندریژ (منحنی کالیبراسیون)

اخذ شده از مرجع 14

وارد شد. محصول زل ماندن را توسط حل محل استن به خوبی شامل نمونه‌ها، شستشو داده و برای جداسازی کامل زاینده و همچنین خروج اندریژ واکنش نکرده احتمالاً به مدت 4 روز در یک آن خلا 90 درجه سانتی‌گراد قرار داده شد تا از نشانه نمونه، اطمینان کامل حاصل شود. در نهایت، به دلیل تأثیر بسیار اندک ذرات پودر روی کیفیت نهایی پوشش، ذرات درهم بسته شدن تا مقدار ۲۵ میکرون (با استفاده از پیگمنت) آزمایشگاهی از پودر موجود جدا و پایدار کننده حیراتی برای جلوگیری از تخریب حیراتی پلی پروپیلن اضافه شد. برای این کار، مقدار منفی از پودر پلیمر(25 گرم) با مقدار لازم از طناب گالوانیک (25 گرم) در یک طرف پلاستیکی 0.5 لیتری به کمک میله نشی، برای خوبی به مدت 10 دقیقه به هم زده شد.

3-2-1- پوشش دهی سطح نیل

برای پرداختن و پاشندن ذرات پودر پلی پروپیلن به شده در مرحله ۲-2 (روی سطح یافتن) از دستگاه الکترواستاتیکی، پاشنده ITGW Gema PG1 ساخت آلمان استفاده شد. پوشش دهی بر روی نیل ساده کریستال سطح آن از قبل آماده سازی شده بود، با اعمال وزن‌دار 0.7 کیلو وات.
شکل ۲- طیف مادون قرمز دو تومه: پلی پروپیلن خالص (़خط مستقیم) و پلی پروپیلن اصلاح شده با ۱ ایندیک مالیک (़خط متقاطع)

میانگین آماری ۶ آزمون جنبه‌گذاری انجام شده برای هر هر هنونه است.

برای بررسی مورفولوژی و آنالیز سطح و همچنین سطح متقاطع زیرالای/پوشین (فیل مشترک پوشش - زیرالای) و مشاهده عیوب احتمالی بسیار ریز موجود در پوشش، از میکروسکوب الکترونی رشته‌ساخت شرکت فیلبس هند استفاده شد.

۲- نتایج و بحث

شکل (۲): طیف مادون قرمز مربوط به دو هنونه پلی پروپیلن از کوپلیرپرپیلن-اتیلن خالص و اصلاح شده با ۱ pph اندید مالیک را نشان می‌دهد. همانطور که مشاهده می‌شود، پیک موجود در عدد موجی (cm$^{-1}$) ۱۷۹۰ شانه پیوند ایندید مالیک روی زنجیره پلی پروپیلن اصلاح شده است که چنین پیکی در نمونه مرتبه ی پلی پروپیلن خالص وجود ندارد.

تشکیل چنین پیوندی را می‌توان به صورت زیر توضیح کرد:

اولین مرحله از واکنش پیوند اندید مالیک به پلیمر تجزیه آغاز و تشکیل رادیکال‌های آزاد اولیه است. رادیکال‌های آزاد اولیه ممكن است در دو واکنش کاملاً منتفاوت مصرف شوند.

با توجه به طیف های گرفته شده از هنونه های حاوی مقدار

میانگین آماری ۶ آزمون جنبه‌گذاری انجام شده برای هر هنونه است.

برای بررسی مورفولوژی و آنالیز سطح و همچنین سطح متقاطع زیرالای/پوشین (فیل مشترک پوشش - زیرالای) و مشاهده عیوب احتمالی بسیار ریز موجود در پوشش، از میکروسکوب الکترونی رشته‌ساخت شرکت فیلبس هند استفاده شد.

۲- نتایج و بحث

شکل (۲): طیف مادون قرمز مربوط به دو هنمنه پلی پروپیلن از کوپلیرپرپیلن-اتیلن خالص و اصلاح شده با ۱ pph اندید مالیک را نشان می‌دهد. همانطور که مشاهده می‌شود، پیک موجود در عدد موجی (cm$^{-1}$) ۱۷۹۰ شانه پیوند ایندید مالیک روی زنجیره پلی پروپیلن اصلاح شده است که چنین پیکی در نمونه مرتبه ی پلی پروپیلن خالص وجود ندارد.

تشکیل چنین پیوندی را می‌توان به صورت زیر توضیح کرد:

اولین مرحله از واکنش پیوند اندید مالیک به پلیمر تجزیه آغاز و تشکیل رادیکال‌های آزاد اولیه است. رادیکال‌های آزاد اولیه ممكن است در دو واکنش کاملاً منتفاوت مصرف شوند.
جدول ۳ - درصد وزنی ایندیدگی مالیک واکنش کرده

<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>ظلمت اولیه ایندیدگی مالیک</th>
<th>CI = A_{1790} / A_{1167}</th>
<th>%MA_{c}</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۲</td>
<td>۱/۵</td>
<td>۰/۷۷۰۱</td>
<td>۰/۳۹۱۶</td>
</tr>
<tr>
<td>۳</td>
<td>۱/۱۰</td>
<td>۰/۷۴۰۴</td>
<td>۰/۵۸۱۶</td>
</tr>
<tr>
<td>۴</td>
<td>۱/۱۵</td>
<td>۰/۷۴۹۷</td>
<td>۰/۲۷۳۲</td>
</tr>
<tr>
<td>۵</td>
<td>۲/۰</td>
<td>۰/۱۷۹۸</td>
<td>۱/۰۰۰۲</td>
</tr>
</tbody>
</table>

پوشه، زمینه ایجاد می‌شود، به یکدیگر می‌چسبند. این‌ها یک سطح نام‌کافی در می‌شود و به مانند سازی مکانیکی و شیمیایی به‌وجود می‌آید. بعد از پوسش دهی پلیمر، عمود شیمیایی قطبی در ساختار پلیمر می‌باشد. نیروهایی بین اتمی و بین مولکولی کرده نمی‌تواند به باز هم‌آمیزی قسمت‌های مختلف مالیک واکنش کرده توان می‌دهد. همان‌طور که در جدول (۵) میدانم.

شکل ۳ - تغییرات چسبندگی بر حسب مقدار ایندیدگی اولیه در پوشه پلی پروپیلن به سطح فولاد با استفاده از کیویل برکید

مختلفی از ایندیدگی مالیک، مقدار شاخص کربنیل محاسبه شد و با رجوع به شکل (۱)، مقدار ایندیدگی مالیک واکنش کرده در جدول (۵) آورده شده است. شکل (۳) نشان می‌دهد که با افزایش ظلمت ایندیدگی مالیک در اینجا قدرت چسبندگی افزایش یافته، از یک مقدار حداکثر گذشته و بعد از آن کاهش در مقدار چسبندگی مشاهده می‌شود. پیش‌ترین مقدار چسبندگی (۲/۵) کیلوگرم نیرو) به غلظت ۱ ایندیدگی مالیک مربوط می‌شود.

بر اساس نظریه جذب سطحی، چسبندگی پلیمر به سطح فولاد توجهی می‌شود. این نظریه بیان می‌کند که به سطح رسانیدن به یک تریم مولکولی کافی در سطح مشترک، مواد به علت نیروهای بین اتمی و بین مولکولی که بین اتم‌ها و مولکول‌های
شکل ۴ - تبریزی لازم برای کننده بروزگر حسب درصد وزنی انتخاب مالیکی واکنش کرده

جدول ۴ - جذب آب بر حسب مقدار انتخاب مالیکی واکنش کرده

<table>
<thead>
<tr>
<th>انتخاب مالیکی واکنش کرده (% وزنی)</th>
<th>۱/۸۳۳</th>
<th>۱/۸۲۸</th>
<th>۱/۸۴۶</th>
<th>۱/۸۴۶</th>
<th>۱/۸۶۵</th>
<th>۱/۸۶۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>جذب آب (% وزنی)</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
</tbody>
</table>

جدول ۵ - میزان انتخاب مالیکی واکنش کرده بر حسب غلظت اولیه انتخاب مالیک

<table>
<thead>
<tr>
<th>غلظت انتخاب مالیکی (pph)</th>
<th>۰</th>
<th>۰</th>
<th>۰</th>
<th>۰</th>
<th>۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>انتخاب مالیکی واکنش کرده (% وزنی)</td>
<td>۱/۸۳۳</td>
<td>۱/۸۲۸</td>
<td>۱/۸۴۶</td>
<td>۱/۸۴۶</td>
<td>۱/۸۶۵</td>
</tr>
</tbody>
</table>

هدروپراکسید خمی بیشتر می‌شود. همچنین احتمال تشکیل قطرات ریز پیش‌بینی‌شده از محلول این مواد در ماتریس پلیمر هم وجود دارد. بنابراین، در جنین حالی است که احتمال هموپراکسید انتخاب مالیکی تاًکنون انتخاب مالیکی افزایش می‌یابد. در نتیجه، واکنش پیوند انتخاب مالیکی به زنجیره های مولکولی پلیمر کاهش می‌یابد. اثر دور ماریچی، زمان واکنش در استرودور و مقدار اکستراکس پراکسید بر مقدار انتخاب مالیکی واکنش کرده با پلی‌پروپیلن توسط سایر پژوهشگران بررسی شده است [۶ - ۸].

شکل‌های (۹ و (۱۰) به ترتیب تصاویر میکروسکوپی الکترونی روبی از سطح دو نمونه پلی‌پروپیلن اصلاح‌نشده (خالص) و اصلاح شده را نشان می‌دهد. همان طور که مشاهده می‌شود، نمونه پلی‌پروپیلن انتخاب مالیکی با دلیل شاخص جریان مذاب پایین‌تر از نمونه پلی‌پروپیلن انتخاب مالیکی افزایش کرده است.

مشاهده می‌شود، افزایش در غلظت اولیه انتخاب مالیکی از ۱/۵ تا ۱/۷۵ باعث افزایش در مقدار انتخاب مالیکی واکنش کرده شده است. اما اضافه نمودن ۲ انتخاب مالیکی، کاهش در مقدار پیوند به پلیمر را نشان می‌دهد. تغییرات مشاهده شده در پیوند انتخاب مالیکی به پلیمر را می‌توان بر صورت زیر توجیه کرد.

افراش در غلظت اولیه انتخاب مالیکی تا ۱/۵ احتمال برخورد رادیکال انتخاب مالیکی با ماکرونادیکالهای حاصل از پلی‌پروپیلن در اثر گرمایه آن افزایش داده و در نتیجه مقدار انتخاب مالیکی واکنش کرده افزایش می‌یابد. اما، وقتی که غلظت انتخاب مالیکی موجود در پلیمر مذاب از یک مقدار معین بیشتر شود، به علت عدم سازگاری این ترکیب با پلی‌پروپیلن تجمع مولکولهای آن با یکدیگر و با کیمی
جذب فیزیکی این بین، موجب خیس شدن آن سطح می‌شود.

شکل ۶- تصویر میکروسکوپی الکترونی روبشی از سطح پوشش کوبیلمر پرپیلن - اتیلن اصلاح شده با pph ۱ اتیلن مالئیک

شکل ۷- تصویر میکروسکوپی الکترونی روبشی از فصل مشترک پوشش پلیمر اصلاح شده حاوی ۱ اتیلن مالئیک و سطح فولاد

خود، ضمن تشکیل پوشش از سیالیت خویی برخورد نیوتو و سطحی ناپایداری نیاز می‌کند. در صورتی که سطح پوشش به دست آمده، اصلاح شده بسیار صاف و به‌طور صحیح بوده و مداومانه آن ضمن تشکیل فیلم یا سیالیت خویی برخورد بوده است که علت ایمن امر را می‌توان عمداً به اصلاح شیمیایی ساختار پلیمر نسبت داد.

اندیدگی مالئیک پونند شده به پلی پروپیلن حين پوشش دهی و تشکیل فیلم با سطح فولاد سازگاری برقرار کرده و سطح با استفاده...

استقرار، سال ۱۳۸۶، شماره ۱، شهریور
چسبندگی کافی به نظر می‌رسد. عامل دار کربن اضافی حتی منجر به کاهش خاصیت چسبندگی می‌شود. بیشترین و کمترین درصد ایندترید مالئیک و اکثریت کرده در نمونه هایی با غلظت اولیه ایندترید مالئیک به ترتیب برابر یا 1/3820 و 1996 درصد وزنی شد. آزمون چسبندگی به روش عرضه 1 ایندترید مالئیک را به نظر نمایش داده است. مقادیر ایندترید مالئیک و اکثریت کرده برای این نمونه 8/816 درصد وزنی بوده است.

4. تشرک و قدردانی

بدین وسیله از مسئولی محیط از آمایشگاه‌های تحفیقی دانشکده‌های مهندسی شیمی و مواد دانشگاه صنعتی اصفهان که در انجام آزمایشات مورد نیاز همکاری داشته‌اند. قدردانی می‌شود. همچنین از مسئولی محیط از آمایشگاه مرکزی پتروشیمی اراک به منظور بهره‌گیری نیاز از فیلم نیاز مورد نیاز در آزمون طیف سنجه مواد نرم تشرک می‌شود.

مراجع

