Effects of Valve Closing Law and Unsteady Friction Model on Damping Pressure Waves in a Network

A. Vakil and B. Firoozabadi
Mechanical Engineering Department, Sharif University of Technology

Abstract: Water-hammer is a transient condition which may occur in a network as a result of rapid or slow valve closures, pump failures, changes in turbine loading, etc. It creates high and low pressure waves which travel along the system and decay as...
a result of wall shear stress. Comparison of experimental and theoretical results revealed the failure of steady or quasi-steady models in correctly predicting the damping process of the pressure waves. In fact, the velocity profiles have greater gradients under unsteady conditions which results in higher shear stresses compared to the steady condition. In this paper, the transient network (valve-pipe-tank system) is investigated by implementing one of the unsteady friction models (Brunone model) into the method of characteristics (MOC). Results show that using the unsteady friction model damps the pressure waves more rapidly, the absence of which may result in disagreement between theoretical and experimental values. In addition, this work shows that pressure rise due to the water hammer phenomenon cannot be correctly determined without effecting the unsteady friction factor. The valve closure law affects pressure rise prediction.

Keywords: Method of characteristics, Transient flow, Unsteady friction models.

<table>
<thead>
<tr>
<th>H</th>
<th>سرعت موج فشاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>قفل لوله</td>
</tr>
<tr>
<td>P</td>
<td>ضریب اصطکاک دارسی = وایبیاک</td>
</tr>
<tr>
<td>f</td>
<td>ضریب اصطکاک نا مانا</td>
</tr>
<tr>
<td>Q</td>
<td>ضریب ناب در اصطکاک نا مانا مدل بروتون</td>
</tr>
<tr>
<td>V</td>
<td>ترکیب خلا از معادلات مومنتوم و یوستگی با</td>
</tr>
<tr>
<td>α</td>
<td>ضریب نامشخص</td>
</tr>
</tbody>
</table>

فهرست علائم

1- مقدمه

تلفات انرژی در جریان لوله‌ها همیشه به علت گرانژی سیال است. به طور مرسوم دریبان اصطکاک دیوره‌ها و سیال از معادله جریان با سرعت مسیر داده می‌شود. مقدار اختلاف تجربی و نظری به شرایط حاکم بر جریان (گذری نتیجتاً کنترل جریان آرام مخشنگ) و خواص سیال (لزجت) و استحکام می‌تواند در مدل‌های دو بعدی مورد استفاده قرار گیرد. این فرض برای حالت‌های گذرا که در آنها جریان دیوره مشابه شده می‌باشد قابل قبول است. اما در حالت‌های گذرا نتیجه‌گیری‌های تجربی با تابع محاسباتی مربوط به مدل اصطکاک مانا، اختلاف قابل توجهی به استحکامات نشان داده است. در حقيقة نظرخواهی سرعت در شرایط نا مانا گرادیان‌های شدت منتهی به همزمان در جریان گذرا هم به معنای سرعت نظارتی در هر نقطه و در نتیجه این تناقض در حالت نا مانا بیشتر خواهد بود. در نتیجه دارایی در جریان گذرا هم به معنای سرعت نظارتی در هر نقطه

1- جمله اصطکاک با مانگین سرعت لحظه‌ای در هر نقطه مقطع، $\nabla \cdot \mathbf{V}$، وابسته است.

2- جمله اصطکاک با مانگین سرعت لحظه‌ای در هر نقطه مقطع، $\frac{\partial \nabla \cdot \mathbf{V}}{\partial t}$.
3 - جمله اصطکاکی به میانگین سرعت لحظه‌ای در هر مقطع $\frac{\Delta y}{\Delta t}$، شتاب محیط لحظه‌ای $\frac{\Delta V}{\Delta t}$ و شتاب جابجایی $\frac{\Delta V}{\Delta x}$ لحظه‌ای، وابسته است.

4 - جمله اصطکاکی به میانگین سرعت لحظه‌ای در هر مقطع $\frac{\Delta^2 y}{\Delta t^2}$ و دیفرانسیون، وابسته است.

5 - جمله اصطکاکی به میانگین سرعت لحظه‌ای در هر مقطع $\frac{\Delta^2 V}{\Delta t^2}$ و تغییرات تاریخچه سرعت وزن شده بنا $W(t)$ وابسته است (مدل زیلکه).

6 - جمله اصطکاکی به توزیع سرعت لحظه‌ای جریان وابسته است (مدل بهیانی‌وردی عبوری).

در مدلایی یک بعدی از لحظه‌گر جریان‌های تناشی به جمله اصطکاکی مانند اضافه می‌شود. در این مدلها وابستگی اصطکاکی به فرکانس ممکن است سیستم جریان و دیدگاه (گروه سوم و پنجم) به صورت زیر است:

2. حالت دوم، اصطکاکی به مانند حالت اولیه، مانند (پاس) فرکانسی به مانند حالت دوم است. در این مثال ابتدا به معادلات حاکم بر شرایط کنار (بخش دوم) و در حال آنها توزیع روش مشخصه (بخش سوم) و شرایط مرزی ساده مخزن و شرایط اضافه می‌شود. در بخش چهارم مدل اصطکاکی بر روی خروجی اصطکاکی واردم و تغییر خطوط مشخصه به علت جمله اصطکاکی نا مانند آزادنی می‌شود. در بخش آخر نیز از بررسی استخراج در شرایط اولیه نوشتارهای شده در شکلی مخزن- لوله- شیر و مکانیکی تأثیر مدل اصطکاکی نا مانند در نتایج بررسی قرار می‌شود.

2 - معادلات حاکم

معادلات بر اساس حاکم بر جریان‌های کنار (پاس) شرایط اولیه و تطبیق خوبی بین نتایج انتقال‌گیری و محاسبه
روش مشخصه‌ها ترکیب خطی از معادلات (۵) و (۶) را با ضریب نامشخص \(\lambda \) به صورت زیر در نظر می‌گیرد:

\[
L = L_1 + \lambda L_2 = \lambda g A \left[\frac{\partial H}{\partial t} + \frac{1}{\lambda} \frac{\partial H}{\partial x} \right] + \left[\frac{\partial Q}{\partial t} + \lambda a \frac{\partial Q}{\partial x} + f \frac{Q(t)}{2DA} \right] = 0
\]

(۵)

با توجه به معادلات (۵) و (۶) در راستای خطوط مشخصه شان، معادلات تفاضل محدودی حاصل می‌شود که با دانستن شرایط (۷) و (۸) در هر گره داخلي شبکه در مقطع \(i \) در معادله‌ای شکل ۱-۲ با طور هم‌زمان برای مقادیر نامعلوم \(H(i,t) \) و \(Q(i,t) \) حل می‌شود و در زمان \(t \) به می‌رسد (شکل ۱):

\[
C^-: \quad H(i,t) = C(i+1,t-\Delta t) + B(i+1,t-\Delta t)Q(i,t)
\]

(۷)

\[
C^+: \quad H(i,t) = C(i-1,t+\Delta t) - B(i-1,t+\Delta t)Q(i,t)
\]

(۸)

در مراحلی فقط یک خط مشخص وجود دارد، در نهایت به یک معادله اضافی بین \(H \) و \(Q \) نیاز داریم. چنین رابطه‌های دیگری را یک شرط مرزی می‌توان.

شکل ۱- شبکه \(xi \) برای حل یک ولتاژ نی‌شکاف

تراکم بندی سیال، الاستیک بودن و توده‌های لوله به طور خطي و ناقص استکارکی مانند بر حسب دو میانگین وابسته سرعت، و نفوذ (۱) و (۲) و دو منظره مسقل می‌باشد طول

\[
V(x,t) + \frac{\partial V}{\partial x} + \frac{1}{2} \frac{\partial Q}{\partial X} + g \sin \alpha + \frac{fV^2}{2D} = 0
\]

(۱)

\[
L_2 = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial x} + \frac{\partial P}{\partial x} = 0
\]

(۲)

شکل ۲- روش حل

معادلات (۱) و (۲) به صورت معادلات دیفرانسیل دیفرانسیل بی‌پانزه‌های سیال و دارای میانگین در حالت کلی به جر روش‌های عددي حل دیگری ندارند. یکی از روش‌های عددي متداول برای حل این معادلات روی مشخصه‌هاست که معادلات دیفرانسیل جزئی را تبدیل به معادلات دیفرانسیل عددي زیر می‌کنند (۲). با

صرف تنظر از جمله جابه‌جایی در معادله‌های خطی، معادلات

\[
H(x,t) + Q(x,t) + \frac{\partial Q}{\partial x} = 0
\]

(۱) و (۲) بر حسب دبی، و به پوزیترونیک، (۳) به صورت زیر باز تریش می‌شوند:

\[
L_1 = \frac{\partial Q}{\partial t} + g A \frac{\partial H}{\partial x} + f \frac{Q(t)}{2DA} = 0
\]

(۳)

\[
L_2 = a^2 \frac{\partial Q}{\partial x} + g A \frac{\partial H}{\partial x} = 0
\]

(۴)

۳۳۳

استقلال، شماره ۲۶، شماره ۱، شهریور ۱۳۸۶

۱۳۸۶
در اساس مدل برونون ضریب اصطکاک‌ها مانند به صورت زیر است:

\[
f_u = \frac{k_d}{V} \left(\frac{\partial V}{\partial x} - a \frac{\partial V}{\partial x} \right)
\]

ویکوفسکی در حالی که منظور گرفته شده گذشت از این فرمول بلافاصله حمله گام‌پایه به صورت زیر اصلاح کرد:

\[
f_u = \frac{k_d}{V} \left(\frac{\partial V}{\partial x} + \text{asign} \left(\frac{\partial V}{\partial x} \right) \right)
\]

که در آن \(V \) و \(\text{asign} \) مقدار تجربی به صورت زیر تعیین گردیده است:

\[
k = \frac{C^*}{2}
\]

بایان جریان

\[
C^* = \frac{7.41}{\log_{10}(143)}
\]

و حاشیه حامله ماکسپل پری زیر

\[
Q = \frac{Q_0}{\sqrt{H_0}} \times \Delta H
\]

این شرط مزایای بین می‌کند که در آن

\[H_{(l,1)} = H_R \]

ارتفاع سطح خنک بالای این سطح تراز است. با حالت هم‌مان در مدل سازگاری آن

\[H_{(l,1)} = Q_{(l,1)} \]

در دو زمان‌های دو حاصل می‌شود.

\[H_{(l,1)} = \frac{Q_0^2}{2H_0} \]

در مدل اصطکاک‌های پری

\[L = \frac{Q_0}{2DA} + k(Q_1 + \omega A \phi A \phi_x) = 0 \]

که در آن \(k = +1 \) و

\[VV_x = +1 \]

است. مدل در (5) داریم:

\[
L = H_{(l,1)} + g A \frac{Q_0}{\lambda} + \frac{Q_0}{2DA} + k(Q_1 + \omega A \phi A \phi_x) = 0
\]

و با توجه به تعیین مشتق کانوئه داشت:

\[
\frac{dx}{dt} = \frac{g A}{\lambda} \left(\frac{\omega A^2 + g A \phi A \phi_x}{1 + k} \right)
\]
جدول 1- مشخصات فیزیکی مسئله [2] و قانونهای بستن شیر

<table>
<thead>
<tr>
<th>طول لوله (m)</th>
<th>سرعت صوت (m/s)</th>
<th>قطر لوله (m)</th>
<th>ضریب اصطکاکی دارسی</th>
<th>هد تانک بالا دست (m)</th>
<th>قانون بستن شیر بهطور توانی</th>
<th>قانون بستن شیر بهطور خطی</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>1200</td>
<td>0/5</td>
<td>0/0/18</td>
<td>150</td>
<td>$E_m = 1/15$</td>
<td>$t_e = 2/15$</td>
</tr>
</tbody>
</table>

که در آن:

$$
\lambda = -\frac{gA_k}{2a} \phi_A \pm \frac{gA}{2a} (k + 2)
$$

پس مشاهده می‌شود که با اضافه کردن جمله اصطکاکی نا مانا زاویه حخطوط مشخصه از $a \pm \frac{a}{1+k}$ تغییر می‌کند. حال

با انتگرال گیری روز حخطوط مشخصه جدید معادلات تفاصل

محدود اصلاح شده حاصل می‌شود.

5- اعتبار بخشی به کد رابه‌نیا و ارائه تناج

به منظور اعتبار بخشیدن به کد رابه‌نیا حاضر، از ساده

ترین و شاید اساسی‌ترین محل برای توضیح شرایط گذرا،

مسطحه شیر- لوله- تابه، استفاده شده که در مرحله [2] آمده

است. در شکل (2) شماتیکی از هندسه مسئله مشاهده می‌شود

که شیر با علاطم T نشان داده شده است. مشخصات فیزیکی

مسطحه و قانون بستن شیر در جدول (1) مشخص شده‌اند.

شكل (3) تغییرات دي در سیستم خط لوله، شکل (4) نمایش گذار

و هید در محل شیر، شکل (3-ب) را نسبت به زمان بدون اعمال

332

استقلال، سال 36، شماره 1. شیرور 1386
شکل ۳- مقایسه نتایج با مرجع [۷، الف] در هد پشت شیر (قانون بسن شیر به صورت خطی)

شکل ۴- مقایسه تأثیر اعمال جمله اصطکاک نامانا (مدل پروتون) و بدون آن در استهلال نوسانات
در هد پشت شیر (قانون بسن شیر به صورت خطی)

خط لوله مشاهده می‌شود. در حالت $k = 0.03$ دامنه نوسانات کمتر و در حالت $k = 0.07$ دامنه نوسانات استهلال بیشتری را نسبت به ضرب واردی نشان می‌دهد. در این مثال $k = 0.045$ دقیقاً بر روی نتایج مربوط به ضرب واردی منطبق بوده و k همتوابی خوی را با ضرب واردی نشان می‌دهد. ضرب اصطکاک مانا علاوه بر بیش بینی حداقل فشار بیشتر، نمی تواند نوسانات را نیز به آسانی مستهلک کند. تعداد ذکر شد مقدار k در مدل پروتون من تواند مستقیماً به طور تجربی و با توسط ضرب واردی معین شود. این امر در شکل‌های (۵) و (۶) به ترتیب برای هد پشت شیر و هند وسط
شکل 5- مقایسه مقادیر مختلف ضریب k در مدل پرونون با ضریب واردی در هد پشت شیر (قانون پشت شیر به صورت تمامی)

شکل 6- مقایسه مقادیر مختلف ضریب k در مدل پرونون با ضریب واردی در هد وسط لوله (قانون ن پشت شیر به صورت تمامی)

پیانگر مقدار جمله اصطکاک تا مانا است؛ یعنی هرچه که این مقدار افزایش یابد، اثرات جمله اصطکاک تا مانا افزایش یافته و در نتیجه تنش برخی دیوار افزایش می‌یابد. هر چه مقدار k زیرکت انتخاب شود دامنه نوسانات سریعتر مستهلك می‌شود.

همچنین با افزایش مقدار k پیک موج فشاری انتقال بیشتری از خود نشان می‌دهد. مقایسه نتایج بین مقادیر مختلف k در شکل‌های (5) و (6) در چکنگی استفاده نوسانات گوشه بر این
شکل 7- مقایسه مقدار مختلف ضربی k در مدل بروتون با ضرب واردی در هد پشت شیر (قانون بستن شیر به صورت خطی) به معنی عدم عمل جمله اصطکاک ناماست.

$\text{در مدل بروتون با ضرب واردی در هد وسط لوله (قانون بستن شیر به صورت خطی) به معنی عدم عمل جمله اصطکاک ناماست.}$

$\text{در مدل بروتون با ضرب واردی در هد وسط لوله (قانون بستن شیر به صورت خطی) به معنی عدم عمل جمله اصطکاک ناماست.}$

$\text{سریعتر بسته می‌شود، المان‌های سیال فرست کمتری برای وقت دادن خود با تغییر شرایط دارند. در نتیجه دانه‌های نوسانات و فرکانس نوسانات بیشتر شده و اثرات ضربه‌های بسیار شدیدتر خواهد بود. به عنوان مثال اولین پیک فشاری در شکل (7) معادل 270 و در شکل (7) برای 450 است. در}$

شکل‌های (7) و (8) مقایسه بین ضرب واردی و مقادیر مختلف k نیز آورده شده است. مشاهده می‌شود که بدون جمله اصطکاک نا مانا (در $k = 0$) میزانی کمی وجود داشته و با افزایش مقدار میزانی بیشتری مشاهده می‌شود. در این حالت $k = 0.033$ تطابق بهتری با ضرب واردی نشان می‌دهد.
مقادیر بزرگ این ضریب استخلاک نوسانات سرعتخواهند بود. رسیدن به مقدار مطلوب برای این ضریب بی‌نیاز از نتایج نجیبی نیست که این امر نیاز به طرفی هست لذا برای نتایج آگاهانه از این نتایج استفاده شود. بنابراین مهم است که در تعیین حالت گذراپیوی و جامدی نشان داده که با بستن شیر به طور خطی و سرعتی نشانده نشانده نوسانات شدیدتر و اثرات گذراپیوی سیار مخبرتر خواهد بود. لذا مدل‌سازی به ویژه در حالت بستن شیر به صورت خطی و بدون اعمال جمله استخلاک عقب مانند نتایج کاملاً دور و واقعی‌تر را بیش‌تینی خواهد کرد.

مراجع