Effects of Valve Closing Law and Unsteady Friction Model on Damping Pressure Waves in a Network

A. Vakil and B. Firoozabadi
Mechanical Engineering Department, Sharif University of Technology

Abstract: Water-hammer is a transient condition which may occur in a network as a result of rapid or slow valve closures, pump failures, changes in turbine loading, etc. It creates high and low pressure waves which travel along the system and decay as...
a result of wall shear stress. Comparison of experimental and theoretical results revealed the failure of steady or quasi-steady models in correctly predicting the damping process of the pressure waves. In fact, the velocity profiles have greater gradients under unsteady conditions which results in higher shear stresses compared to the steady condition. In this paper, the transient network (valve-pipe-tank system) is investigated by implementing one of the unsteady friction models (Brunone model) into the method of characteristics (MOC). Results show that using the unsteady friction model dampens the pressure waves more rapidly, the absence of which may result in disagreement between theoretical and experimental values. In addition, this work shows that pressure rise due to the water hammer phenomenon cannot be correctly determined without effecting the unsteady friction factor. The valve closure law affects pressure rise prediction.

Keywords: Method of characteristics, Transient flow, Unsteady friction models.

Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Friction factor</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>Unsteady friction factor</td>
<td>f_u</td>
<td></td>
</tr>
<tr>
<td>Resistance factor</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>Flow rate</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

References
1. [Aqaba, A., & El-Shenawy, S. (2016). The transient flow in a network (valve-pipe-tank system) is investigated by implementing one of the unsteady friction models (Brunone model) into the method of characteristics (MOC). Results show that using the unsteady friction model dampens the pressure waves more rapidly, the absence of which may result in disagreement between theoretical and experimental values. In addition, this work shows that pressure rise due to the water hammer phenomenon cannot be correctly determined without effecting the unsteady friction factor. The valve closure law affects pressure rise prediction.

Equation

1. \(\Delta P = \frac{1}{2} \rho V^2 + f \frac{V^2}{2g} \)

2. \(\frac{\partial P}{\partial t} + \nabla \cdot (P \mathbf{V}) = 0 \)
شده را نشان می‌دهد. از طرف دیگر، مدل‌های یک بعدی قابل اعمال در روش مشخصه‌ها (MOC) هستند.

در مدل‌های دو بعدی و سه بعدی تخمین سرعت واقعی در سطح مقطع مورد توجه قرار می‌گیرد و جریان‌های کاذب با دقت بالاتری قابل شناسایی اند. این مدل‌ها با فیزیک موج و دیفرانسیل سازگاری‌ترند. در این حالت معادلات حاکم بر

جریان‌های آشفته گذاشته شده‌اند، یک مجموعه معادلات دیفرانسیل‌پاره‌ای

هذلولوی - سهمی را ایجاد می‌کند که در حالت کلی به صورت تحلیلی قابل حل تبدیل و فقط برای حالت‌های خاص جریان‌های آرام نا می‌توان حل تحلیلی برای تخمین سرعت به دست آورد. بنابراین، در حالت‌های مختلف که وجود دارد می‌توان به دو شیوه اصلی که در مدل‌های دو بعدی (MOC)

1. حل عددی اوردین‌کردن [16] و روش مشخصه‌های آن که قسمت هذلولوی معادلات حاکم به روش مشخصه‌ها (FD) و قسمت سهمی به روش تفاصل محدود (MOC) مدل می‌شود. در حالت به‌خوبی را به روش مشخصه‌ها و در بخش دیفرانسیل به روش تفاصل محدود مدل می‌کنند.

2. حل ۲های [13] که از روش‌های منکش به FD به منظور حل

سرعت در قسمت هذلولوی و سهمی معادلات حاکم استفاده می‌کنند.

در این مقاله ابتدا به معادلات حاکم بر شرایط کاذب (بخش

دوم) و روش حل آن‌ها توسط روش مشخصه‌ها (بخش سوم) و

شرایط مرزی ساده مجز و شباهت ابزاری شده در بخش چهارم

مدل اکتشافی برونیون، ضریب اکتشافی واریدی و تغییر خطوط مشخصه‌ها به عنوان جمله اکتشافی یک مانی‌ان‌های می‌شود. در بخش

انریز نیز از بررسی انتقال کد رایانه‌ای نوشتاری نشده در بخش

مجزا - لوله - شرایط معیاری تابع تابعی مربع [2] جگانگی

تأثیر مدل اکتشافی یک مانی در نتایج بررسی قرار می‌شود.

2 - معادلات حاکم

معادلات یک بعدی حاکم بر جریان‌های کاذب با فرض‌های

در دیدگاه دوم جمله اکتشافی به مقدار نشان‌گیرانه

وایسته است. این مدل‌ها شامل مدل اولیه دیگر و همکاران است.

که در آن اکتشافی یک مانی به سرعت جریان متوسط آن و شباهت

محیط آن وایسته است. بنریون و همکاران [9] مدل توسیع

یافته از مدل روناک انتخاب کرده، که در آن شباهت جایگزین

بانی مدل اولیه انتخاب شده است (گروه به سرعت). مدل برناریون

نتیجه‌ای از وایسته است و تطبیق خوبی بین نتایج اندازه‌گیری و محاسبه

3 - جمله اکتشافی به میانگین سرعت لحظه‌ای در هر مقطع

\(\mathbf{V} \) (\(t \))، شتاب محیطی لحظه‌ای \(\mathbf{V}_x \) و شتاب جابجایی

لحظه‌ای \(\mathbf{V}_y \) وایسته است.

4 - جمله اکتشافی به میانگین سرعت لحظه‌ای در هر مقطع

\(\mathbf{V}^2 \) (\(t \)) و دیفرانسیلی (MOC) وایسته است.

5 - جمله اکتشافی به میانگین سرعت لحظه‌ای در هر

مقطع (\(t \)) و تغییرات تابعی میان‌بندی، شده است.

6 - جمله اکتشافی به توزیع سرعت لحظه‌ای جریان وایسته

است (مدل‌های دو بعدی)

در مدل‌های یک بعدی از لحاظ جبری جمله‌های یک بعدی به

جلوه اکتشافی مانی اضافه می‌شود. در این مدل‌ها وایستگی

آزمایشگاهی به فرانکس به تعریف می‌شود. بنیاد ارائی است و دو دیدگاه (گروه به سرعت و پنجم) به صورت یک

در اولین دیدگاه جمله اکتشافی تا مانی یک بعدی تاریخچه

شناسی محاسبه می‌شود، زیک‌لک [2] مدل باید اکتشافی

وایسته به فرانکس در جریان‌های آرام گذاشته کرده است.

(گروه بینمی). در این مدل جمله اکتشافی به شرایط جریان

متوسط آن و تغییرات تابعی، سرعت و شده وایسته است.

روش زیک‌لک به منظور محاسبه جمله اکتشافی که شامل تغییرات

تاریخچه سرعت وزن شده است به دقت‌های تمام سرعت‌های

محاسبه شده در بازه‌های زمانی بیش از داده‌بایه کاهش زمان

تقریب‌برداری مدل زیک‌لک ارائه داده‌اند.

در دیدگاه دوم جمله اکتشافی به مفاد مشابه شناسای

واسته است. این مدل‌ها شامل مدل اولیه دیگر و همکاران است.

که در آن اکتشافی یک مانی به سرعت جریان متوسط آن و شباهت

محیط آن وایسته است. بنریون و همکاران [9] مدل توسیع

یافته از مدل روناک انتخاب کرده، که در آن شباهت جایگزین

بانی مدل اولیه انتخاب شده است (گروه به سرعت). مدل برناریون

نتیجه‌ای ساده است و تطبیق خوبی بین نتایج اندازه‌گیری و محاسبه

331

استقلال، سال ۶۳، شماره ۱، شهریور ۱۳۸۶
روش مشخص‌ها ترکیبی خطی از معادلات (5) و (6) را با ضریب نامشخص \(\lambda \) به صورت زیر در نظر می‌گیرد:

\[
L = L_1 + \lambda L_2 = \lambda gA \left[\frac{\partial H}{\partial t} + \frac{1}{\lambda} \frac{\partial Q}{\partial x} \right]
+ \left[\frac{\partial Q}{\partial t} + \frac{1}{\lambda^2} \frac{\partial^2 Q}{\partial x^2} \right] + f \frac{Q(t)}{2DA} = 0
\]

(5)

با تعريف مشتق کلی و برای قرار دادن ضرایب و
\[
\frac{\partial H}{\partial t} = \frac{1}{\lambda} \frac{\partial Q}{\partial x}
\]

(6)

خطوط مشخصه مشت و منفی به صورت زیر حاصل می‌شود:

\[
\frac{dx}{dt} = \frac{1}{\lambda} + \frac{dx}{dt} = \pm a
\]

(7)

با جایگذاری مقادیر \(\lambda \) در معادله (5) دو جفت معادلات که به هم وابسته‌اند به دست می‌آید:

\[
C^-: \quad \frac{gA}{a} \frac{\partial H}{\partial t} + \frac{\partial Q}{\partial t} + f \frac{Q(t)}{2DA} = 0
\]

(8)

\[
C^+: \quad \frac{gA}{a} \frac{\partial H}{\partial t} + \frac{\partial Q}{\partial t} + f \frac{Q(t)}{2DA} = 0
\]

حال با انگرال کردن معادلات (7) در راستای خطوط مشخصه شان، معادلات تفاضل محدودی حاصل می‌شود که با دانستن شرایط (i) \(i \leq 1 \) و (i) \(i \geq 1 \) در هر گره داخلی شیبک در مقطع \(t \) دو معادله سازگاری (8) به طور همزمان برای مقادیر نامعلوم \(H(i,t) \) و \(Q(i,t) \) حل می‌شود و در زمان بر می‌رویم (شکل 1):

\[
C^-: \quad H(i,t) = C(i+1,t-\Delta t) + B(i+1,t-\Delta t)Q(i,t)
\]

(9)

\[
C^+: \quad H(i,t) = C(i-1,t+\Delta t) - B(i-1,t+\Delta t)Q(i,t)
\]

(10)

در مرزها فقط یک خط مشخص وجود دارد، در نتیجه به یک معادله اضافی بین \(H \) و \(Q \) نیاز داریم. چنین رابطه‌های دیسی را یک شرط مرزی می‌نامیم.

3-1- شرط مرزی مخزن بالای دست

در یک مخزن بزرگ در بالا دست چربان، معمولاً می‌شوند

شاک-loop 1- شکل 1- برای حل این لوله‌ها

تراکم پذیری سیال، الاستیک بودن دیواره‌های لوله به طور خنی و تلقی اصطکاکی مانند بر حسب دو متغیر وابسته مولفه، \(V(x,t) \) و فشار، \(P(x,t) \) و دو متغیر مستقل مکان در طول لوله، \(x \) و زمان، \(t \) به صورت هستند (11):

\[
L_1 = \frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} + \frac{1}{2} \frac{\partial P}{\partial x} + g \sin \alpha + \frac{\partial |V|^2}{2D} = 0
\]

(11)

\[
L_2 = \frac{\partial P}{\partial t} + V \frac{\partial P}{\partial x} + \rho a^2 \frac{\partial V}{\partial x} = 0
\]

(12)

3- روش حل

معادلات (1) و (2) به صورت معادلات دیفرانسیل بارهای هدایتی غیر خطی هستند و در حال حاضری به جای روش‌های عددی حل دیگری توانایی دارد. یکی از روش‌های عددی متد موردنظر برای حل این معادلات روش مشخصه‌های که معادلات دیفرانسیل جزئی را تبدیل به معادلات دیفرانسیل عددی می‌کنند (12) با صرف نظر از جمله جای‌گاهی در معادله نکات خطي، معادلات \(H(x,t) \) و (2) بر حسب دبی، \(Q(x,t) \) و هد پیزومتریک، (1) به صورت زیر باز نویسی می‌شوند:

\[
L_1 = \frac{\partial Q}{\partial t} + gA \frac{\partial H}{\partial x} + f \frac{Q(t)}{2DA} = 0
\]

(13)

\[
L_2 = a^2 \frac{\partial Q}{\partial x} + gA \frac{\partial H}{\partial t} = 0
\]

(14)

شماره 1386
استقلال، سال 26، شماره 1، شهریور 1386

333
بر اساس مدل برنون ضریب اصطکاک ناپدیده با صورت زیر است:

\[f_u = \frac{kD}{V^2} \left(\frac{\partial V}{\partial t} - a \frac{\partial V}{\partial x} \right) \]

ویکوفسکی فرمول بالا را به منظور گرفتن علامت جمله جابجایی به صورت زیر اصلاح کرد:

\[f_u = \frac{kD}{V^2} \left(\frac{\partial V}{\partial t} + a \text{sign}(V) \frac{\partial V}{\partial x} \right) \]

که در آن \(V = 1 \) و \(V = -1 \) ضریب که هم سنگین‌با به صورت تجربی به دست می‌آید و هم واریانس توزیع ضریب اتفاق. \(C^* \) به صورت زیر تعیین می‌شود:

\[k = \frac{C^*}{2} \]

یکی از جبران‌ها \(C^* = 0.00476 \)

\[\tau = \frac{C_d A_G}{(C_d A_G)_0} \]

\[Q(N+1, i) = -B(N, i-\Delta)C_v + \sqrt{B(N, i-\Delta)C_v^2 + 2C_vC(N, i-\Delta)_0} \]

\[Q = \frac{Q_0}{\sqrt{H_0}} + \frac{\Delta H}{H_0} \]

\[\text{مراجع} \]

8. مقدار تجربی \(k \) را بین 0.5 و 1.5 ذکر کرد.

3-4- معادلات مشخص‌بندی اصطکاک ناپدیده

به منظور نگرش جمله اصطکاک ناپدیده به مدل اصلاح شده برنون به صورت زیر قابل بازویی است:

\[L_1 = Q_t + gA_H_x + \frac{rQ_0}{2DA} + k(Q_t + u\phi_A Q_x) = 0 \]

که در آن \(A = +1 \)

\[\text{با توجه به تعویض مشتق کلی، خواصی داشت:} \]

\[\frac{dx}{dt} = \frac{gA}{\lambda} \left(\frac{\partial^2 V}{\partial t} + gA \lambda k \right) \]
جدول 1- مختصات فیزیکی مسئله [2] و قانونهای پسن‌دیر

<table>
<thead>
<tr>
<th>طول لوله (m)</th>
<th>سرعت صوت (m/s)</th>
<th>قطر لوله (m)</th>
<th>ضریب اصطکاک</th>
<th>هد تانک بالا دست (m)</th>
<th>قانون پستن شیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1200</td>
<td>0/18</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\tau = \left(1 - \frac{t}{t_c} \right) E_m \]

\[\lambda = -\frac{gA_k}{2a} \frac{\theta_A}{\phi_A} \frac{k + 2}{2a} \]

5- اعتبار بخشی به کد رابه‌نای و ارائه تناج

به منظور اعتبار بخشیدن به کد رابه‌نای، از ساده ترین و شاید اساسی‌ترین محل برای توضیح شرایط‌گذاری، مسئله شیر-لوله-تکه‌ها استفاده کرده که در مرحله [2] آمده است. در شکل (2) شماتیکی از هندسه مسئله مشاهده می‌شود که شیر با علامت 3 نشان داده شده است. منشی‌هاشناسی مسئله ولکن قانون پستن شیر در جدول (1) مشخص شده‌اند. شکل (3) تغییرات دی در سیستم خط لوله، شکل (4-ا) و هد در محل شیر، شکل (4-ب) را نشان می‌دهد باعث می‌شود.
شکل 3- مقایسه نتایج با مرجع [1]. (الف) دری و (ب) هد در پشت شیر (قانون بستن شیر به صورت خطی)

شکل 4- مقایسه تأثیر اعمال جمله اصطکاک نامانا (مدل برخوردار) و بدون آن در استهلاک نوسانات در هد پشت شیر (قانون بستن شیر: به صورت خطی)

اصطکاک مانا علاوه بر پیش بینی حداکثر فشار بیشتر، نقیض تواده نوسانات را نیز به آسانی مستهلك کنده.

چنانچه چکش پدیداری ک مدل برخوردار می‌تواند مستقیماً به طور تجربی و با توانائی ضریب واردی معیین شود. این امر در شکل‌های (5) و (6) به ترتیب برای هد پشت شیر و هد وسط 1386 استقلالی، سال 26، شماره 1، شهریور
شکل 5- مقایسه مقادیر مختلف ضریب k در مدل برونون با ضریب واردی در هد پشت شیر (قانون یستن شیر به صورت نمایی)

شکل 6- مقایسه مقادیر مختلف ضریب k در مدل برونون با ضریب واردی در هد وسط لوله (قانون یستن شیر به صورت نمایی)

مدعاست. پس اعتبار یک مقادیر مناسب k در مدل برونون بهبود مهم بوده و نیازمند تجربی مشابه است و این تکنیک به عنوان ضعیفی در مدل برونون مشهود است، زیرا با توجه به سیستم خط انقبال می‌تواند تغییر کند. در شکلهای (7) و (8) هد در پشت شیر و در وسط خط لوله به صورت تابعی از زمان در حالتی که شیر به طور خطی (0.1 = c_1) به سمت می‌شود، نشان داده شده است، از آنجا که شیر بانگر مقدار جمله اصطکاکرا نه مانا است؛ یعنی هرچه که این مقدار افزایش یابد، اثرات جمله اصطکاک را مانا افزایش یافته و k در نتیجه تنش برشی در حالی است که کمتر از k مقدار پرتره انتخاب شود دانه نوسانات سریعتر مستهلک می‌شود. همچنین با افزایش مقادیر k پیک موج فشاری انقبال بیشتری از خود نشان می‌دهد. مقایسه نتایج بین مقادیر مختلف k شکلهای (5) و (6) در چگونگی استفاده نوسانات گواه بر این
سربازی شده می‌شود، این‌ها به کمک‌کردن برای وفق دادن خود با تغییر شرایط دارند. در تجربه دانش‌نامه‌ای و فرکانس نوسانات بیشتر شده و اثرات ضربه فوق بسیار شدیدتر خواهد بود. به عنوان مثال اولین پیک فشاری در شکل (4) معادله 270 m و در شکل (7) پراپر 450 m است. در

شکل‌های (7) و (8) مقایسه بین ضربه واردی و مقدار مختلف k نیز آورده شده است. مشاهده می‌شود که بدون جمله اصطکاک‌های نا مانا (k = 0) می‌تواند کمی وجود داشته و با افزایش مقدار می‌تواند بهتری مشاهده می‌شود. در این حالت k تطالب بهتری با ضربه واردی نشان می‌دهد.

شکل 7- مقایسه مقدار مختلف ضربه k در مدل پرونون با ضربه واردی در هد پشت شیر (قانون پستن شیر به صورت خطي) به معنی عدم عمل جمله اصطکاک ثاناییت

k = 0

شکل 8- مقایسه مقدار مختلف ضربه k در مدل پرونون با ضربه واردی در هد وسط لوله (قانون پستن شیر به صورت خطي) به معنی عدم عمل جمله اصطکاک ثاناییت

k = 0

استقلال سال 26 شماره 1 شهریور 1386
6- نتایج گیری

در این مقاله اثر جمله اصطکاک نا مانا و نحوه ی پیکر نیز در شیوه سازی گذراپیکر یک خط لوله ساده بررسی شده است. نتایج گهوا بر این مدعاسمت که در مدلسازی حالت گذرای سیال در لوله، نش برشی مانا و یا شیب مانا توانایی استفاده از نوسانات و تغییرات نیز به اصلاح نش برشی است. یکی از ساده ترین روشهای برای در نظر گرفتن اثرات نا مانا بودن گذری، مدل اصطکاک نا مانا مدل پرونون است که در بازه وسیعی از اعداد ریولز مکانیک است. مقدار ثابت k در این مدل مستقیماً به صورت تجربی و یا از طریق ضریب واردی قابل اعمال است. نتایج نشان می‌دهد که با انتخاب

مراجع
