تأثیر کاربرد لانکس پلیمری و دوده سپیلسی در خواص و عملکرد
بنهای تعمیری یاپه سیمانی

علیرضا پاتری، و سیاوش هاشمی
دانشگاه مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده - در این تحقیق تأثیر کاربرد دوده سپیلسی و لانکس پلیمری (SBR) روی خواص و عملکرد بنهای تعمیری یاپه سیمانی مورد ارزیابی قرار گرفته است. خواص فیزیکی و مکانیکی شامل مقاومت فشاری و کششی، مدل الاستیسیته، جمع شدکی و ضریب انتقال حرارتی، مرکب، برگی مایل و کشش مستقیم اندامه گیری اندامه گیری ترک خورده قاچاق، زیر بخشی یکتا ناشی از یک شدکی بین تعمیر روی بین سطح است. این کاربرد دوده سپیلسی باعث افزایش جزئی در جمع شدگی ناشی از خشک شدن بین تعمیر، شدن لیک بهبود در مقاومت کششی و همچنین مقاومت اتصال بین سطح از طریق اتصال پلاستیکی می‌باشد. به‌طور میانی و کسب مقاومت 10 درصد وزن سیمان باعث کاهش مدل الاستیسیته، کاهش بسیار قابل توجه جمع شدکی و به برآورد کشش ترک خورده در مقاومت با بین تعمیری خواص دوده سپیلسی شده است. همچنین کاربرد لانکس باعث بهبود خواص دوده بین تعمیری به‌طور مناسب به‌طور میانی بیش از آنچه برای دوده سپیلسی

واژگان کلیدی: بین تعمیری، مقاومت اتصال، مدل الاستیسیته، جمع شدگی آزاد

** - استادیار
* - کارشناس ارشد

استقرار: سال ۱۳۸۶ شماره ۲ اسفند
Influence of (SBR) Latex and Silica Fume on Properties and Performance of Cement-based Repair Concretes

A.R. Bagheri and S. Hashemi
Department of Civil Engineering, Khaje-Nasir Toosi University of Technology

Abstract: This study was conducted to evaluate the properties of three kinds of repair concretes intended for use at a thickness of 50-70 mm including: cement-based repair concrete, cement-based mix incorporating silica fume, and a polymer modified cement - based repair concrete. Physical and mechanical properties including compressive strength, tensile strength, elastic modulus, drying shrinkage, coefficient of thermal expansion, and capillary water absorption were investigated. Also the performance of repair concretes in protection of steel bars from corrosion was studied. Furthermore, the bonding characteristics of repair concrete to substrate were measured by three different tests, including splitting bond tests, slant shearing test, and direct tensile test. Based on the results obtained, application of silica fume in cement-based repair concrete increases the compressive and tensile strengths of concrete. Also it decreases its permeability but increases its durability. Incorporation of SBR latex to repair concrete mix substantially decreases the drying shrinkage and risk of cracking as a result. Also application of latex decreases the permeability but considerably increases the electrical resistance of concrete. Research results show that application of silica fume or SBR latex can improve the properties of repair concrete to a great extent. Selecting suitable material depends on specific conditions and requirements in each project such as the significance of compatibility of elastic modulus of repair concrete and substrate, condition of stress distribution in bonding zone, and environmental conditions like relative humidity and temperature.

Keywords: Repair concrete, Bonding strength, Elastic modulus, Unrestrained shrinkage.
نقطه قرار گیرد. مقاومت چسبندگی آن به بین اساس است. بین
تعمیر با پایین مقدار مقاومت چسبندگی بالا بیان اساس
باشد تا عملکردی بکاربردی با بین اساس تحت نشانه تابی از
بارگذاری خارجی داشته باشد. بنابراین نتیجه در تعمیرات
سازه‌ای بلکه در تعمیرات غیر سازه‌ای بایستی مدیران قرار
گیرد. سرعت و میزان کسب مقاومت چسبندگی بین تعمیر به
بین اساس باعث کاهش پیشین در تعمیرات سازه‌ای بایستی است.
مقدمات ارتش آمریکا معقدند ضعف ناحیه تالاب بین تعمیر به بین
اکثر موارد به دلیل پایین بودن مقاومت کشی بین تعمیر و
مقاومت اصلی آن به بین اساس نیازه و نکته تفاوت در
کرنشانگیمز دو بین و نیز جمع شدگی بایلی بین تعمیر
با به ضعف ناحیه تالاب به بین تعمیر و اساس می‌شود.8

انجمن مهندسان ارتش آمریکا از آزمایش کشتی مستقل
برای تعبیر مقاومت اصلی بین تعمیر به بین اساس استفاده
کرده‌اند. طی آزمایشات انگیزه بر روی نمودن‌ها مشاهده
شد که نتایج تعمیر پایه سیمیا مقاومت اصلی بهتری نسبت
به نتایج اصلاح شده با پایین دارا بود. بایان ذکر است در
تحقیق صورتی گرفته به نتایج اساس و تعمیر عموماً دارای
مقاومت ضعیف‌تر از 50 هنبسته. همچنین در زمان
اعمال بین تعمیر بر روی بین اساس سطح بین اساس با ایوکسی
پوشانده شک که به بهبود کیفیت اصلی بین تعمیر پایه سیمیا
کمک کافی توجه می‌کند. در مقاله شیکلیوریدی موجود در
بتعمیر حاوی لانکس اجازه اجرای نوعی ایوکسی به حذف جواب
بین مانیس سیمیا را نداده و از عملکرد ایوکسی در بهبود
مقاومت اتصال گلف‌کری می‌کند.2 در تحقیق حاضر پوشانه
ایوکسی بر روی بین اساس اجرای زمان ندی پایه به مقایسه
صحیح مقاومت اتصال بین تعمیر به بین اساس دست دایم.

مطالب مختلف به تعمیر صفحه‌ای بینی به بارز عرضه
شد. دلیل این نوعی از قابل‌گردهای موانع با پایه سیمیا، موانع با پایه
سیمیا اصلاح شده با پایین و موانع با پایه پلیمر سطح به
می‌شدند.2 در سیستم مواد تعمیری به صورت بسته‌بندی
موفق مواد تعمیری نشانگر اهمیت پایین یافتن جمع شدگی ناشی
از خشک شدن بین تعمیری و مقاومت اتصال خوب آن به بین
اساس بهدید است. آنها در این مقاله نکات داشت مقدار جمع
شدگی بین تعمیر باعث کاهش پیشین در تک خورشیدی می‌باشد.
اگرچه تمام مواد تعمیر مورد استفاده بهتر خروش کشنده‌ی بودن
وی میزان خروش که در مقایسه به مقدار جمع شدگی ناشی از
خشک شدن عوامان اند، است. اثر این نتایج در آزاد کردن مقدار
جمع شدگی ندارد [4-6] این در حالی است که در سایر مراجع
مقدار خشک مناسب بین تعمیر را موفقیت و مکرر آن
تیم می‌کند. حالکه بنیان تعمیری مورد استفاده قرار.
گیرد بهتر است به اندازه بین اساس داشته باشد. در
تحقیق بر اساس این تمرین سههم بهانه که
دومین تعمیر ایونیتی در مقایسه با بهتری آن دارد
توصیه می‌شود از مصالح با خروش با استفاده شوند، که در این
مواد آزاد شدن کرنش در خروش کشنده به کاهش پیشین ترک
خورشیدی می‌اجماد.1] درکی رسماً پیش‌بینی در تحقیق بر روی
بتیح تعمیر جمع شدگی کردن آن را در شرایط گیرداری
مورد بررسی قرار داده است. این سه رشته عبارت است از بین
اساس با سطح صاف، بین اساس با سطح کامل زیر و خشک و
بتین اساس با سطح فرازی به منظور اجرای تعمیر بر روی بین
اساس از سایر تعمیری استفاده شده است که باید متفاوت با
برگیرنده آنها دارد طاق 25/5 میلیمتر و نسبت آب به مواد سیمیا
زیر 4/7 بوده است. سه ماده تعمیر مورد استفاده بین تعمیر
پایه سیمیا. بین تعمیر حاوی دود سیلیس و بین تعمیر حاوی
لانتکس است. ملایمانی شک که ماده تعمیر با پایه
کامترین میزان جمع شدگی‌ها را در شرایط مختلف گیرداری دارا
بوده است بعد از آن ملاء تعمیر پایه سیمیا و در آخر ملاء
تعمیر حاوی دود سیلیس دارای مشترکی میزان جمع شدگی
است. همچنین مایه سه شرایط گیرداری کامترین میزان جمع
شدگی برای بیشتره زیر و به‌آسانی بین اساس با سطح صاف و
در این باسین سطح فرازی گزارش شده است [7].
جدول 1- مشخصات مصالح

<table>
<thead>
<tr>
<th>اسم مصالح</th>
<th>جرم حجمی (gr/cm³)</th>
<th>SSD</th>
<th>سنگدانه (تن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>4</td>
<td>1/4</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>2</td>
<td>1/2</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0.5</td>
<td>1/5</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول 2- داده بندي شن و ماسه مصرفی

<table>
<thead>
<tr>
<th>اسم مصالح</th>
<th>جرم حجمی (gr/cm³)</th>
<th>SSD</th>
<th>سنگدانه (تن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>4</td>
<td>1/4</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>2</td>
<td>1/2</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0.5</td>
<td>1/5</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول 3- مشخصات فیزیکی سیمان طبق ASTM C150

<table>
<thead>
<tr>
<th>مقاومت فشار ملات استاندارد ASTM C109-93</th>
<th>مقاومت فشار ملات استاندارد ASTM C191-92</th>
<th>مقاومت فشار ملات استاندارد ASTM C204-94</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MPa)</td>
<td>(MPa)</td>
<td>(MPa)</td>
</tr>
<tr>
<td>295</td>
<td>225</td>
<td>2841</td>
</tr>
</tbody>
</table>

آماده مصری حاوی مواد سیمانی از رشدیهای سیمانی و در مواردی مواد بلومی از آنها می‌شود. تحقیقاتی توسط مقاضات مختلف روش این مواد مورد استفاده است.[2 و 6] با توجه به اینکه عموما نوع دقیق، مقادیر اجرا و نسبت‌های اختلاف آنها در مواد مصرف مشخص نیستند، در این تحقیق بررسی گسسته از محاسبه مواد تعمیری پایه سیمان و تغییر کاربرد دبه سیمانی و با انکس پلمری در انتقاء خواص اینها انجام شده است.

- برنامه آزمایش‌گاهی

- مواد و مصالح مصری

سگدانه‌ها: سنگدانه‌های مصری از معادن رودخانه کن تامین

استلال: سال 1367 شماره 2 استناد 1386
مقدار لم رف و ماده نانو از سیمان دستیابی به کاریابی صورت نخور

در پرح حساب افتاده شد. مقدار اجرایی بیشتری مطالعه در
جدول (۴) ارائه شده است.

مقدار صور ت بوده سیلیسی برای بهبود خواص بتن
معمولاً (۷/۵ تا ۱۰ درصد وزنی سیمان در نظر گرفته می‌شود). در این تحقیق برای تقابل اثرات بین در
ماده نانو از افزایش در آب افزایش جمع
شدگی مقداری (۷/۴۵ در نظر گرفته شد. مقدار لیتکس مصرفی
در بتن بر حسب نسبت وزنی میزان مواد جامد به سیمان بیان
می‌شود. مقدار لیتکس مصرفی مطالعه با توصیه‌های
ACI 548.1R [۱۰] بیه میزان ۱۰ تا ۲۰٪ وزنی سیمان است. در
ین برخورد مقدار مصرفی به میزان ۵٪ در نظر گرفته شده تا
با توجه به هزینه بیای لیتکس بلیمنگریه به وسیله ماده
توجه چپتر باشد. شایان ذکر است که لیتکس مصرفی به
صاروت سوپراسیون بوده و نسبت ماده جامد به آب آن برای
مر ۴۵ در نظر مقدار ۳۷/۲ لیتر آب به همراه
کیلوگرم ماده جامد مصرفی وارد طرح می‌شود. برای اطمینان
مقاومت مواد مصرفی مختلف در نسبت آب به سیمان
برای آب موجود در لیتکس مصرفی در محاسبه مقدار آب مخلوط

لنجش.

عمل آوری نمونه‌های عای شیمایی و پایه سیمانی حاوا
دود سیلیسی به مدت ۲۸ روز در شرایط مرطوب انجام گرفت
وی نمونه‌های به عمل انجام اصلاح شده به بالین به مدت ۴ روز
در شرایط مرطوب و بعد در هوا آزاد عمل آوری شد که به
مظور تشکیل زنجیره‌های بلیمیری است [۱].

و خلوص ۲SiO۲ برای ۹۲٪ است.

فوق روان کندنه: برای دستیابی به نسبت آب به سیمان کم و
کاریابی لازم بتهای تعیمی از فوق روان کندنه با پایه
پلی اکریلیت استفاده شد.

لایکس: مونومر تشکیل درده لیتکس مصرفی استفاده بودن
است. مقدار ماده جامد موجود در سوپراسیون لیتکس
(SBR) درصد و بیشتر آن را تشکیل می‌دهد. جرم حجمی
آن در ۱/۱۰vgr/cm۳ است.

۲- مقایسه اجرای بن اساس و بن نهایت تعیمی

برنامه آزمایشگاهی شامل مطالعه بر روی یک طرح بتن
اساس و سه طرح بن تعیمی بوده است. طرح بن اساس از
شبیه سازی بن مخلوط کاریابی کاکس، با مقامات فشاری
۳۰ و برگردان اندازه سگداسهای برای ۱۹ میلی‌متر نظر
گرفته شد. بن نهایت مولع مطالعه شامل بن تعیمی پایه
سیمانی حاوی ۲۵٪ کیلوگرم سیمانبر اتومد نوع ۲ (طرحRC)
بن تعیمی پایه سیمانی مشابه طرح (RC) لیکن به جای افزایش
ناممایانی یک درصد ماده جامد به دوده سیمکه با کد شناسه طرح
که در ۷۵ درصد مواد مصرفی به طرح (RC) ناممایانی شد و بن تعیمی مشابه با طرح (RC) آن از لیتکس بلیمیری
با وزن ۱۰٪ وزنی سیمان استفاده شد (طرحRL).

در پرح توصیه‌ای ارائه شده برای بن نهایت تعیمی

اندازه ۱/۲ درصد سگداسهای برای ۵/۵mm گرفته شد و نسبت وزنی
مواد سیمکه به مقدار ۲/۳۸ محدود شد [۱] با توجه به هدف یکسان
نگاه داشته نسبت آب به مواد سیمکه در بن نهایت تعیمی از
شکل ۱- آزمایشگاه نمونه‌های استوانه‌ای

شکل ۲- آزمایش بررسی مابیل

شکل ۳- نمونه آزمایش کشش مستقیم

۲- آزمایشات انجام شده

۲-۱- تغییر خصوصیات فیزیکی و مکانیکی بتن اساس و
بنتهای تعمیر

مقدارهای زیر نتیجه شد:

- مقاومت فشاری: مطابق ASTM C39
- مقاومت کششی: مطابق ASTM C496
- جمع شکل‌گیری: مطابق ASTM C157
- مدل استیسیتیه: مطابق ASTM C469
- خصوصیات انسپکت‌گر مابیلی: مطابق ASTM C531

۲-۲- مقاومت اتصال بتن تعمیر به بتن اساس

مقاومت اتصال بتن تعمیر به بتن اساس از طریق آزمایش‌های
زیر ارایه شد:

- مقاومت کششی اتصال نمونه سیلندری مکعب مطابق
- مقاومت بررسی مابیل

۳۸

استقلال، سال ۱۴۰۹، شماره ۲، استادی
روز زیر گونه خیس و نمونه تعمیر اصلاح شده با پلیمر

7 روز، یا گونه خیس عمل آوری شد.

آزمایش کشش مستقیم شامل مستطیل کردن سطح نمونه،
چسباندن دیسک به فشار ۷۵ میلیونر روی نمونه و
مقسه گیری به فشار ۷۵ میلیونر است. شکل (۲) چسب
با دستگاه آزمایش باند مقام مسئله کشش مستقیم مغزه
مذكور اندام گیری شد. شکل (۵) محل شکست مغزه که
مکمل است از نظر اساس و یا تعمیر و یا پایان اتصال و یا
تکمیل از این مورد باشد اهمیت زیادی دارد.

شکل ۵- آزمایش کشش مستقیم

دوم در برای خوردگی آرامترش ناشی از نفوذ گاز کر: این
آزمایش مطاقب ASTM G109 برای بررسی دوام بین اساس
و تعییر در برای خوردگی آرامترش داخل آنها تحت شرایط
نفوذ گاز کر انجام شد. نمونه‌های ماکروپیل در ابعاد
۱۱۵×۱۵۰×۸۰۰ میلی‌متر با اکس آرامترش در بالا و دو
آرامترش در پایین) ساخته شد. نمونه پس از کشش
۲۴ ساعت از ساخت و یا برخورد نمونه شده و ۷ روز زیر
گونه خیس عمل آوری شد. سپس خوشه‌های آب نمک
که از جنس پلیکن گلاس ساخته شده‌اند روى نمونه با
چسب سیلیکن چسبانده شدند ؛۱۳ حجم خوشه‌ها
محمول آب نمک کردن سدید ۰.۵ بر. در میان آرامترش
بالا و پایین با یک سیم با مقاومت ۱۰۰ اهم اتصال
برقرار شد و دو آرامترش پایین نیز با یک سیم به یکدیگر
متصل شدند تا مدار ما بین این سه آرامترش کامل شود.

شکل ۶- مغزه گیری از نمونه

۳-۲-۲ آزمایش‌های دوم

با توجه به نقش مهم خواص جذب آب بین روی دوام آن
آزمایش جذب آب مویینه روز نمونه بهره‌مند اساس و تعییر
اندازه گیری شد. همچنین دوام آرامترش در بین اساس و تعییر
در مقابل فرایند شیمیایی خوردگی تحت نفوذ یون کلر مورد
بررسی قرار گرفت.

- جذب آب مویینه: در آزمایش جذب آب مویینه روزنده
جذب به وسیله عقب رفت آب در لوله‌های مویینه در یک
مشاهده شد که فقط ۲ نا در آب مستغرق
است، تعیین می‌شود. افزایش در جرم مشور با زمان ثبت
می‌شود و نمودار افزایش جرم نسبت به جذر زمان رس‌م

شکل ۶- آزمایش جذب آب مویینه
جهانگیری میزان شدت جریان و اختلاف پتانسیل در این آزمایش می‌تواند مقادیر مقدار مقدار الکترینیکی نمونه‌ها نیز معروف پتانسیل نتهایی تعمیر به اساس برای خوردارگی ناشی از نفوذ یون کل است. هر جرای مقدار الکترینیکی بین بالاتر باشد امکان حرکت یون‌ها در محیط الکترولیت (بین) از آن به کانسر شده در نتیجه احتیال وقوع خوردارگی در آرامان کمتر می‌شود. بدین منظور توسط دستگاه پتانسیومتر Galva Pulse نمونه‌ها انتظار گیری شد، شکل (7).

۱-۳-۲- کنترل عرض ترک خوردارگی در محل اتصال بین تعمیر به این سبب با پایین دنده آموزه کنترول ترک و شروع جمع شدگی ناشی از خشک شدن ریسه ترک خوردارگی در مقطع

۱-۳-۱- مقایسه فشاری نتایج آزمایش مقاومت فشاری در جدول (5) ارائه شده است. طبق اندازه‌گیری نتایج به پایین برودن نسبت آب به مواد سیمان در نتایج تعمیری نسبت به این اساس مقاومت تمامی مخلوطهای تعمیر بیشتر از این اساس بوده است. استفاده از 7/5 مخلوطهای مختلف در اتصالات ریسه ترک خوردارگی در مقطع

جدول ۵- نتایج آزمایش تعیین مقاومت فشاری مخلوطهای مختلف

<table>
<thead>
<tr>
<th>نوع بتن</th>
<th>مقاومت فشاری (MPa)</th>
<th>مقاومت کششی (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بتن اساس</td>
<td>33/1</td>
<td>3/53</td>
</tr>
<tr>
<td>بتن تعمیر پایه سیمانی</td>
<td>37/25</td>
<td>3/75</td>
</tr>
<tr>
<td>بتن تعمیر حرارتی سیلیسی</td>
<td>43/75</td>
<td>4/24</td>
</tr>
<tr>
<td>بتن تعمیر اصلاح شده با لاتکس</td>
<td>32/25</td>
<td>3/78</td>
</tr>
</tbody>
</table>

 Existence 1368, 26, Shemiran, 2, Astanak 1368
2-3 مقاومت کششی

مقایسه مقاومت کششی بین تیتانیوم و بین اساس در
جدول (5) ارائه شده است. همانطور که مشاهده می‌شود با توجه به نسبت آب به مواد سیمانی کمتر، مقاومت تمامی نتیجه تعیین
بیشتر از مقاومت کششی نمونه‌های بین اساس (3/53 MPa) کاربرد دوسته سیلیسی به دلیل مشابه‌ای به آن‌ها برای مقاومت
فشاری ذکر شده است. کاربرد لاکنس پلیمری نیز قابل توجهی
پایه سیمانی شده است. کاربرد لاکنس پلیمری نیز قابل توجهی
در مقاومت کششی بین تیتانیوم پایه سیمانی نداشته است. این امر
از بیکسو به دلیل اثر منفی مدول الاستیسیته کم ماده پلیمری
همانند آنچه برای مقاومت فشاری در فوری ذکر شده و از سوی

درصد دوسته سیلیسی باعث افزایش در مقاومت فشاری بین
تیتانیوم پایه سیمانی از طریق بهبود ریز ساختار خصوصاً در ناحیه
انتقالی شده است. کاربرد لاکنس در بین تیتانیوم باعث
قدرتی کاهش در مقاومت فشاری شده است. با توجه به اینکه
کاربرد لاکنس باعث ایجاد شبکه پلیمری در منافذ بین ماده شود,
با عناїه به مدول الاستیسیته کم این ماده قدری کاهش در
مقاومت فشاری قابل انتظار است.

-3- جمع شدگی آزاد

نتایج جمع شدگی آزاد ناشی از خشک شدن مخلوط‌های
متنوع، جمع شدگی پنهانی تعیین کمتر از بین اساس است. از
آنجایی که مقدار جمع شدگی اندوزه‌گیری شده دربر مجموع
جمع شدگی ناشی از خشک شدن و جمع شدگی
خودی خودی است، ملاحظه می‌شود که کاربرد دوسته سیلیسی
باعث قدری افزایش (حدود 11) در میزان جمع شدگی بین
تیتانیوم سیمانی شده است. کاربرد لاکنس
باعث کاهش شدید جمع شدگی بین تیتانیوم سیمانی (حدود
55) شده است. این پدیده را به این صورت می‌توان توجیه کرد: در
اثر نشیه‌های کششی داخلی، مانند تشنه‌های ناشی از جمع شدگی
به دلیل تبخیر آب اضافه مخلوط، ریز ترکیبی در خمیر
ساخته شده پدید می‌آیند. لذا کاهش‌ها از دو راه به کنشر این
ریزترکیب‌ها کمک می‌کند. توسعه شبکه لاکنس با بینتن و مسدوت
کردن منافذ و مسیرهای مویین، از مقدار و میزان جابجایی و

این می‌باشد. به این صورت می‌توان نتیجه گرفت که کاربرد لاکنس
پایه سیمانی در بین تیتانیوم باعث ایجاد شبکه پلیمری
همانند آنچه برای مقاومت فشاری در فوری ذکر شده و از سوی

41

استقلال، سال 1386، شماره 2، اسفند
جدول ٤- مقدار مودول الاستیسیته و ضریب انبساط گرمایی بتن اساس و تعمیر

<table>
<thead>
<tr>
<th>نوع بتن</th>
<th>مودول الاستیسیته (GPa)</th>
<th>ضریب انبساط گرمایی (و)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بتن اساس</td>
<td>٢٤٧/٣</td>
<td>٧٠٩٠٦</td>
</tr>
<tr>
<td>بتن تعمیر با یا بی سیمانی</td>
<td>٢٨٧٠</td>
<td>٨٠٩٠٦</td>
</tr>
<tr>
<td>بتن تعمیر حاوی دود سیلیسی</td>
<td>٣٣</td>
<td>٩٠٩٠٦</td>
</tr>
<tr>
<td>بتن تعمیر اصلاح شده با لاتکس</td>
<td>٢٧٧٠</td>
<td>٧٠٩٠٦</td>
</tr>
</tbody>
</table>

یعنی تعمیراتی که در تحلیل بر مشارکت نمی‌کند می‌توان از
مصالح تعمیر با مودول الاستیسیته کمترز بتن اساس استفاده کرد.

ضریب انبساط گرمایی

نتایج آزمایش‌های انجام شده در جدول (٤) ارائه شده است.
همانطور که ملاحظه می‌شود، ضریب انبساط گرمایی بتن تعمیر
با یا سیمانی اختلاف چندانی با ضریب انبساط گرمایی بتن
تعمیر حاوی دود سیلیسی ندارد، در حالی که بتن تعمیر حاوی
لاتکس درای ضریب انبساط گرمایی بالاتر است. شایان ذکر
است که می‌تواند به این ترتیب مناسب یا باید بتن لاتکس
ضریب انبساط گرمایی کمتر از محدوده مورد انظار از
بتنهای یا بتن سیمانی (٩٠٩٠٦-٧٠٩٠٦) قرار دارد. وجود اختلاف
زیاد مابین ضریب انبساط گرمایی بتن اساس و تعمیر امکان
پذیر تغییر شکل و تنش‌های گرمایی را افزایش می‌دهد و از
عبر تغییر اتصال بتن می‌کاهد. لذا در مواردی که استفاده از
ضریب انبساط گرمایی نزدیک به ضریب انبساط
گرمایی بتن اساس استفاده کرد [١٠]

برای پنهای تعمیر با یا بی مقدار ضریب انبساط گرمایی
۱۵/١۵ تا ۵ بایر مقدار ضریب انبساط گرمایی بتن یا بی سیمانی
گزارش شده است [١٢]

مقدار اتصال

نتایج آزمایش‌های مختلف انجام شده برای بررسی مقدار اتصال
بتن‌های تعمیری به بتن اساس در جدول (٧) ارائه شده است.

۲٢

استلال، شماره ٢، اسفند ١٣٨٦
جدول 7 - مقاومت اتصال بین تعمیر به بتن اساس

<table>
<thead>
<tr>
<th>نوع بتن</th>
<th>مقاومت در شکست (MPa)</th>
<th>نحوه شکست در آزمایش برش مایل</th>
<th>کشش مستقیم (MPa)</th>
<th>محل شکست</th>
</tr>
</thead>
<tbody>
<tr>
<td>بتن تعمیر بالا سپیلیسی + اساس</td>
<td>2/25</td>
<td>9/85</td>
<td>3/33</td>
<td>پاند</td>
</tr>
<tr>
<td>بتن تعمیر حاوی دوده سپیلیسی + اساس</td>
<td>2/75</td>
<td>1/24</td>
<td>3/75</td>
<td>پاند و قسمت از بتن اساس</td>
</tr>
<tr>
<td>بتن تعمیر اصلاح شده با لاکنش سپیلیسی</td>
<td>2/4</td>
<td>12/9</td>
<td>2/55</td>
<td>پاند</td>
</tr>
</tbody>
</table>

جدول 8 - ضریب جذب مویه

<table>
<thead>
<tr>
<th>نوع بتن</th>
<th>S (mm/min0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بتن اساس</td>
<td>0/298</td>
</tr>
<tr>
<td>بتن تعمیر بالا سپیلیسی</td>
<td>0/331</td>
</tr>
<tr>
<td>بتن تعمیر حاوی دوده سپیلیسی</td>
<td>0/184</td>
</tr>
<tr>
<td>بتن تعمیر حاوی لاکنش سپیلیسی</td>
<td>0/174</td>
</tr>
</tbody>
</table>

نتایج نشانگر این است که کاربرد دوده سپیلیسی باعث بهبود قابل توجه (22 تا 50 درصد) مقاومت کششی اتصال بین تعمیر بالا سپیلیسی به بتن اساس شده است. تاثیر دوده سپیلیسی در افزایش مقاومت برخی اتصال نسبتاً کم بوده است. لیکن کاربرد لاکنش سپیلیسی تأثیر نسبتاً کمی در مقاومتهای کششی اتصال با بتن اساس داشته است. در این امر این است که دوده سپیلیسی به دلیل ریزی بسیار زیاد ابعاد آن باعث بهبود کیفیت خیمر سیمان در ناحیه اتصال با بتن اساس می‌شود. مکانیزم بهبود ساختار را می‌توان مشاهده با عملکرد دوده سپیلیسی در بهبود ناحیه اتصال خیمر سیمان با سنتگانه دانست.

لیکن کاربرد لاکنش سپیلیسی باعث بهبود قابل توجه در مقاومت برخی اتصال شده است (جدول 30). در این امر این است که آزمایش تبیین مقاومت برخی مایل باعث افزایش نیروهای فشاری و برخی روز صفحه مایل اتصال بتن تعمیری

نتایج نشانگر این است که کاربرد دوده سپیلیسی باعث بهبود قابل توجه (22 تا 50 درصد) مقاومت کششی اتصال بین تعمیر بالا سپیلیسی به بتن اساس شده است. تاثیر دوده سپیلیسی در افزایش مقاومت برخی اتصال نسبتاً کم بوده است. لیکن کاربرد لاکنش سپیلیسی تأثیر نسبتاً کمی در مقاومتهای کششی اتصال با بتن اساس داشته است. در این امر این است که دوده سپیلیسی به دلیل ریزی بسیار زیاد ابعاد آن باعث بهبود کیفیت خیمر سیمان در ناحیه اتصال با بتن اساس می‌شود. مکانیزم بهبود ساختار را می‌توان مشاهده با عملکرد دوده سپیلیسی در بهبود ناحیه اتصال خیمر سیمان با سنتگانه دانست.

نتایج نشانگر این است که کاربرد دوده سپیلیسی باعث بهبود قابل توجه (22 تا 50 درصد) مقاومت کششی اتصال بین تعمیر بالا سپیلیسی به بتن اساس شده است. تاثیر دوده سپیلیسی در افزایش مقاومت برخی اتصال نسبتاً کم بوده است. لیکن کاربرد لاکنش سپیلیسی تأثیر نسبتاً کمی در مقاومتهای کششی اتصال با بتن اساس داشته است. در این امر این است که دوده سپیلیسی به دلیل ریزی بسیار زیاد ابعاد آن باعث بهبود کیفیت خیمر سیمان در ناحیه اتصال با بتن اساس می‌شود. مکانیزم بهبود ساختار را می‌توان مشاهده با عملکرد دوده سپیلیسی در بهبود ناحیه اتصال خیمر سیمان با سنتگانه دانست.

نتایج نشانگر این است که کاربرد دوده سپیلیسی باعث بهبود قابل توجه (22 تا 50 درصد) مقاومت کششی اتصال بین تعمیر بالا سپیلیسی به بتن اساس شده است. تاثیر دوده سپیلیسی در افزایش مقاومت برخی اتصال نسبتاً کم بوده است. لیکن کاربرد لاکنش سپیلیسی تأثیر نسبتاً کمی در مقاومتهای کششی اتصال با بتن اساس داشته است. در این امر این است که دوده سپیلیسی به دلیل ریزی بسیار زیاد ابعاد آن باعث بهبود کیفیت خیمر سیمان در ناحیه اتصال با بتن اساس می‌شود. مکانیزم بهبود ساختار را می‌توان مشاهده با عملکرد دوده سپیلیسی در بهبود ناحیه اتصال خیمر سیمان با سنتگانه دانست.

نتایج نشانگر این است که کاربرد دوده سپیلیسی باعث بهبود قابل توجه (22 تا 50 درصد) مقاومت کششی اتصال بین تعمیر بالا سپیلیسی به بتن اساس شده است. تاثیر دوده سپیلیسی در افزایش مقاومت برخی اتصال نسبتاً کم بوده است. لیکن کاربرد لاکنش سپیلیسی تأثیر نسبتاً کمی در مقاومتهای کششی اتصال با بتن اساس داشته است. در این امر این است که دوده سپیلیسی به دلیل ریزی بسیار زیاد ابعاد آن باعث بهبود کیفیت خیمر سیمان در ناحیه اتصال با بتن اساس می‌شود. مکانیزم بهبود ساختار را می‌توان مشاهده با عملکرد دوده سپیلیسی در بهبود ناحیه اتصال خیمر سیمان با سنتگانه دانست.

نتایج نشانگر این است که کاربرد دوده سپیلیسی باعث بهبود قابل توجه (22 تا 50 درصد) مقاومت کششی اتصال بین تعمیر بالا سپیلیسی به بتن اساس شده است. تاثیر دوده سپیلیسی در افزایش مقاومت برخی اتصال نسبتاً کم بوده است. لیکن کاربرد لاکنش سپیلیسی تأثیر نسبتاً کمی در مقاومتهای کششی اتصال با بتن اساس داشته است. در این امر این است که دوده سپیلیسی به دلیل ریزی بسیار زیاد ابعاد آن باعث بهبود کیفیت خیمر سیمان در ناحیه اتصال با بتن اساس می‌شود. مکانیزم بهبود ساختار را می‌توان مشاهده با عملکرد دوده سپیلیسی در بهبود ناحیه اتصال خیمر سیمان با سنتگانه دانست.
جدول 9- پارامترهای اندازه‌گیری شده در خصوصی وضعیت خوردگی آرامان‌های فولادی در بندهای اساس و تمیز

<table>
<thead>
<tr>
<th>نوع بن</th>
<th>اختلاف پتانسیل الکتریکی (mV)</th>
<th>تخلیه جریان (μA)</th>
<th>مقاومت ویژه الکتریکی (kΩ.cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بن اساس</td>
<td>6</td>
<td>60</td>
<td>0.2/22</td>
</tr>
<tr>
<td>بن تمیز پایه سیمانی</td>
<td>3</td>
<td>30</td>
<td>0.4/26</td>
</tr>
<tr>
<td>بن تمیز حاوی دود سیلیسی</td>
<td>0/8</td>
<td>8</td>
<td>38/4</td>
</tr>
<tr>
<td>بن تمیز حاوی لانکس</td>
<td>0/2</td>
<td>2</td>
<td>88/35</td>
</tr>
</tbody>
</table>

مقاومت الکتریکی یک پارامتر حائز اهمیتی در خصوصی دوام بن در برای خوردگی آرامان‌های است. برای افزایش مقدار این پارامتر، تخلیه جریان و مقاومت ویژه الکتریکی کمتری از 8835kΩ.cm را می‌تواند در بر رفته باشد در معرض کربن دی‌اکسید. مقادیر حاصل از برای بن تمیز حاوی دود سیلیسی و بن تمیز کنترل به ترتیب 9/8/kΩ.cm و 28/4/kΩ.cm

- در 8-3 نمونه‌های تک خوردگی مقداری برزخ در ناحیه اتصالات پایه تمیز پایه سیمانی و بن اساس به عوامل شناختی از پتانسیل تک خوردگی پایه تمیز به جمع‌نمایی بعدی افزوده و در نظر گرفته شد. شکل (9) مقدار این زایمانی به سه پایان یک دوره 3 ماهه تحت خشک شدگی در شرایط محیطی آزمایشگاه در دما 70 درصد و رطوبت نسبی 35 درصد در بند (10) آمده است. همان‌طور که ملاحظه می‌شود مقدار عرض تک خوردگی متعلق به پایه تمیز پایه سیمانی حاول لانکس است. این امر به دلیل یافته‌های بسیار قابل توجه مقادارتی شدگی ناشی از خشک شدن بن این مدل است. توده‌های سیمانی که در این میان‌پاس آن به بن اساس است.

هرچند عامل‌کننده خود پایه تمیز پایه سیمانی حاوی دود سیلیسی به خوبی بن تمیز حاوی لانکس نیز به‌طور است. لیکن در مقایسه با بن تمیز پایه سیمانی کاهش قابل توجهی در

برای جذب آب مایه‌بر نیز عبارتند از: 0.5 mm/min 0.5 و برای مایه‌بر نیز به سیمان/6 و

برای مایه‌بر نیز به دقت ارزیابی حفرات

مایه‌بر جذب آب مایه‌بر را کاهش داد.

- خوردگی آرامان‌های فولادی ناشی از نفوذ پانل مخصوص

پتاسیل خوردگی، شدت خوردگی و مقاومت الکتریکی در

جدول 9) شاخص است.

با مقایسه نتایج به دست آمده ملاحظه می‌شود که پس ازیک دوره 4 ماهه آرامان‌های موجود در نمونه بن اساس با 4 ماهه آرامان‌های موجود در

خوردگی شاخص است. در میان بندهای عرض خوردگی 4 ماهه آرامان‌های 4 ماهه حفره خوردگی کرده است. بن تمیز حاوی لانکس به‌تدریج عملکرد را با شدت 5 ماهه آرامان‌های 4 ماهه حفره پایه سیمانی پس از 4 ماهه افزایش داده است و

احتمال خوردگی آن نیز در آینده پیش‌بینی می‌شود. بن تمیز حاوی دود سیلیسی نیز عملکرد خوبی از خورد در برای روی

حمله بیشتر کردد و خوردگی در دوره 4 ماهه در آن

رخ نداده است.
شکل 9- ترک خوردگی محل اتصال بین تعمیر به بتن اساس

جدول 10- عرض ترک در پهنای تعمیر

<table>
<thead>
<tr>
<th>نوع تن تعمیر</th>
<th>عرض ترک (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پایه سیمانی</td>
<td>1/1</td>
</tr>
<tr>
<td>حاوی دود سیلیسی</td>
<td>0/5</td>
</tr>
<tr>
<td>حاوی لانکس</td>
<td>0/1</td>
</tr>
</tbody>
</table>

عرض ترک، ايجاد كرده است كه ناشي از بهبود در مقاومت كششي و همچنين مقاومت اتصال در اثر كاربرد دود سيليسی است.

- تبیج گری

1. استفاده از دود سیلیسی برای جایگزینی 7/5 درصد از مواد سیمانی در بین تعمیری پایه سیمانی باعث افزایش مقاومت فشاری، مقاومت کششی و مدل الاستیسیتی به میزان 15 درصد نسبت به بین تعمیری پایه سیمانی با نسبت آب به سیمان برای شد. همچنين بین تعمیری پایه سیمانی حاوی دود سیلیسی در مقایسه با بین تعمیری پایه سیمانی دارای مقاومت کششی اتصال بهتری بوده است. بر اساس آزمایش‌های مختلف انجام شده میزان بهبود در مقاومت کششی از 22 تا 50 درصد بوده است. مقاومت برخی اتصالات نیز به میزان حدود 6 درصد در اثر كاربرد دود سیلیسی

2. کاربرد لانکس به میزان 10 درصد مواد سیمانی تاثیر قابل توجهی روی خواص مقاومت نداشت. لیکن معدل الاستیسیتی به میزان قابل توجهی (حدود 20%) کاهش پایفت.
6. Karberd Laans, a.k.a. SBR, used in this study was a grade of SBR latex with 25% solids. The SBR was chosen because it is known for its excellent adhesion properties, which make it suitable for use in repairing concrete surfaces. The SBR was applied to the concrete surface by brushing it onto the surface in a thin layer.

7. The tensile bond test was conducted by applying a tensile force to a prepared bond length of concrete samples. The bond length was held constant at 100 mm. The tensile force was applied at a constant rate until the bond failed. The bond strength was calculated as the ratio of the applied force to the bond length. The bond strength was found to be dependent on the SBR content in the mixture.

Reference:
9. ACI 546R,”Concrete repair guide,” American Concrete Institute, ed. 2001.
13. ACI503.5R,” Guide for the selection of Polymer Adhesives with Concrete,” American Concrete Institute, reapproved 1997.