Evaluating Weld Magnification Factor in Welded Tubular Joints Using Artificial Neural Networks

A. Fathi, A. A. Aghakuchak, and Gh. A. Montazer
Faculty of Engineering, Tarbiat Modarres University

Abstract: In welded tubular joints, when the fatigue crack depth is less than 20% of chord wall thickness, the crack growing process is highly affected by weld geometry. Hence, T-butt solution and weld magnification factor (Mk) are applicable tools for evaluating the crack growth rate in this domain. In this research, the capability of Artificial Neural Network (ANN) for estimating the Mk of weld toe cracks in T-butt joints is investigated. Four Multi-Layer Perceptron (MLP) networks are designed and trained to predict the Mk in deepest point and ends of weld toe cracks under membrane and bending stresses. Training and testing data of

چکیده: در اتصالات لوله‌ای، وقتی عمق تیر خستگی کمتر از ۲۰ درصد ضخامت جداره عضو اصلی است، رشد تیر بسیار از هنضت اثر هندسه جوش در اتصال است. از این رو هر اتصال T شکل و ضرب بزرگنمایی جوش (Mk) ازار مناسب برای محاسبه سرعت رشد تیر در اتصالات T شکل مورد اطمینان قرار گرفته است. جهت شکل از نوع پرستون چندلایه (MLP) طراحی و آموزش داده شده‌اند تا مدل‌های MK را در عمق‌ترین نقطه تیر و نقاط انتهایی آنها تحت تکمیلی و برش عضوی مورد استخراج شده است. مقایسه بین نتایج بدست آمده از شکل‌ها و جدیدترین روابط منشوری شده محاسبهMK نشان دهنده قابلیت بالای شکل‌ها عصبی مصنوعی

از اتاق کلیدی: اتصالات لوله‌ای- سکوهای درب‌ای- تیر خستگی- مکانیک شکست الاستیک خنثی- ضرب بزرگنمایی جوش- شبکه‌های عصبی مصنوعی
networks are extracted from a reputable resource on finite element modeling. Comparison of the results obtained and those from the most recently published equations shows that using ANN seems to be very beneficial in this field.

Keywords: Tubular joint, Offshore platforms, Fatigue crack, Linear elastic fracture mechanics, Weld magnification factor, Artificial Neural Networks.

<table>
<thead>
<tr>
<th>ظرفیت علائم</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب بزرگنمایی جوش در عدم تقریب نفته ترک</td>
</tr>
<tr>
<td>تحت نش شیائی</td>
</tr>
<tr>
<td>ضریب بزرگنمایی جوش در نوک ترک تحت نش</td>
</tr>
<tr>
<td>ضریب شیائی</td>
</tr>
<tr>
<td>ساختار سیکل نش</td>
</tr>
<tr>
<td>ضریب تمکر نش</td>
</tr>
<tr>
<td>ضریب اصلاح شدت نش</td>
</tr>
<tr>
<td>ضریب اصلاح شدت نش تحت نش خمشی</td>
</tr>
<tr>
<td>ضریب بزرگنمایی جوش در نوک ترک تحت نش خمشی</td>
</tr>
</tbody>
</table>

\[\frac{\text{d}a}{\text{d}N} = C(\Delta K)^m \]

(1)

در سوالات خستگی، معیار ضریب شدت تحت نش یک معیار مناسب تشخیص داده شده است؛ چرا که اغلب خستگی در دانه‌های پایین و نرخ زیاد رخ می‌دهد و شعله پلاستیک رأس ترک یک بزرگ نیست [2].

در تعیین سرعت درخشش ترک خستگی در سکوهای دربایی با استفاده از مکانیک شکست، به علت در گیر بودن مستقل با برخی عوامل و پارامترهای تشکیل دهنده امکان رسیدن به جواب‌های کامل وجود ندارد که بازتابی این عوامل اجاید کند. عده‌ای در این مورد بر ترک خستگی در سکوهای دربایی و تشکیل بینی بر اساس اندازه‌گیری‌ها و مدل‌سازی استفاده کرده‌اند [2].

علاوه بر منحنی‌های S-N و روشهای مثبت بر آن که به طور گسترده در طراحی سکوهای دربایی برای خستگی مورد استفاده قرار می‌گیرند، از روشهای مکانیک شکست نیز برای تعیین آن‌هاگونگی رشد ترک و عمر خستگی بالا قابل انتقاد استفاده. This is a sample text in Persian.
در این تحقیق سعی بر پیشینه‌ای ضرب در گرماگیری جوش با استفاده از شیکه‌های عصبی مصنوعی است. این ضرب برای تصمیم‌گیری ضرب‌شکت تنش به‌دست آمده از حل ورق تخت و وارد کردن تأثیر شکست‌های جوش در محاسبه آهنگ رشد ترک در اتصالات لویه به کار می‌رود.

2- استفاده از حل ورق تخت در اتصالات لویه
در استفاده از قانون پایپسد مشاهده محاسبه ضرب‌شکت K است که با ماهیت زیر به نشان داده شده و ابزار ترک مربوط می‌شود:

\[K = \gamma 0 \sqrt{x} \]

2- استفاده از حل ورق تخت در اتصالات لویه
با توجه به عدم قطعیت هم و مشکلات ذکر شده در زمینه بررسی رشد ترک در اتصالات لویه، رفع هر یک از این مشکلات در نیل به جواب‌های بهتر مطلب خواهد بود. در برخی از موارد بالا که به محاسبه سرعت رشد ترک در اتصالات لویه نجوم می‌شود، تحقیقات از زمینه استفاده از شیکه‌های عصبی مصنوعی صورت گرفته است که به عنوان نمونه به کار فاجعده و کلمسن [2] برای شمارش سیستم‌های تنش در حالت بارگذاری نمایندگی کار و ایکن [3] در استفاده از شیکه‌های عصبی برای تغییر نیروز تأثیر پایش دینامیکی سازه سکو در رشد ترک خشک‌شک و با کار جیو و همکاران [4] در تعیین مقدار تنش حاد در اتصالات لویه می‌توان اشاره کرد که بین‌الگور تجعل می‌شود به آزمودن توانایی شیکه‌های عصبی مصنوعی در این زمینه.

شکل 1- ترک نیمه بیضوی سطحی واقع در ورق تخت
۱- اثر شرایط مرزي و تغییر مسیر بار

این مورد بیشتر اثبات شده است. در اینجا اختلاف بارهای حمل
ورق تحت تخت با حالت اصلی داده شده است. انتقال بارهای
ورق تحت تخت یک جزءات سازنده نامهی از شمار می‌رود که
می‌تواند وجد تکر را در خود تحمل کند و ضمنه ترک
به عمل نمایند سازه اصلی، ما بررسی می‌کنیم با این
محدوده ترک نخورده مقیاس شود. این امری یکی از دلایل عمدی
در انتقال ورق تحت تخت در انتقال داده‌ای، ضمن
بزرگ شدن تکر و کاشت مقطع بار است. بیشترین تأثیر پیدا
می‌شود و در حالت (به) و (افزایش ابعاد ترک) تأثیر
تغییر مسیر بار نیز افزایش می‌یابد.

برای در نظر گرفتن تأثیر تغییر مسیر جریان بار نخستین
مدل اصلی حالت تکر و تغییرات آن[11] ارائه کرده که به مدل آزاد سازی نگار موسوم است. در این
مدل تجربی تأثیر نش خمش به تدریج و به صورت خطی با
افزایش عدد ترک کاهش می‌یابد و وقتی ترک سطحی گذاشتم
جدار نغمه می‌کند تأثیر نش خمش بهکل حذف می‌شود.
فلسفه ارائه این مدل بر این است که آن انتقال
لوله‌ای که بر اساس کاملیت این ترک در دیدار
آن، تبیین به انتقال یک‌قطعی می‌شود و قادر به عبور دادن تنش
خمشی از محل ترک نیست. در نتیجه نش خمشی از قسمت‌های
ترک نخورده عبور کرده، از وکل در سرعت رشد نخواهد داشت.

۲- تغییرات نش حول مقطع اتصال

نش در مقطع ترک نخورده یک ورق تحت تخت مثبت غشا
و خمشی ناشی از بار ورودست در تمام عرض صفحه یکسان
است؛ در حالی که در اتصال لوله‌ای مقادیر این نش و
همچنین نسبت بین آنها در نقاط مختلف مقطع اتصال متفاوت

و تحت اثر تنش‌های غشا و خمشی است که به ارائه روابط
برای محاسبه مقدار Y در نوک و عمق‌ترین نقطه ترک در یک
ورق تحت تخت خشی و غشا منجر شده است.

مقدار Y به‌دست آمده از رابطه پارسیکوکار می‌رود:

\[Y_m = \left[Y_m \left(-\text{DOB} \right) + Y_p \right] \left(\frac{\text{nom}}{Y_m} \right) \]

که در این صورت ضریب اصلی است که برای نش خشی و
ضریب اصلی شدت نش برای نش خشی و ورق

میزان خمش است.

علت روبروی محققان بر رویش‌های با دامنه کاربرد و مصرف
مثل حرف ورق تحت تخت، بر این اساس است که انتقال
لوله‌ای به دلیل هندسه و گویی برای انتخاب مناسب
در سه طرفه اصلی، تغییرات ابعادی منحنی به آن
می‌تواند باعث توسعه یکدستی و ارائه یک شکو در
طرحی از بررسی جداسازی در اتصال بینی‌پز می‌گردد. اما باید
توجه داشت که این روش در عمل معمولاً به‌خاطر پیش‌تر
همه‌هست. علت وجود بخشی از نگاه کلی این
روش به مسئله است: در واقع عمومی، مستلزم جامعیت آنها
نیست.

۳- نارسایی‌های حلقه‌ای ورق تحت اتصالات

لوله‌ای و روش‌های اصلاحی آن

علت عدم تطبیق حلقه‌ای ورق تحت تخت و اتصالات لوله‌ای به
به طور کلی علت عدم موفقیت محققان برای ارائه یک سری
روابط که برای تأمین اتصالات قابل کاربرد بودند. این است که
رشد تورک خطی از اتصالات لوله‌ای تحت تأثیر مستقیم
عواملی است که به‌طور گسترده‌ای در اتصالات لوله‌ای و ورق
 تحت متفاوت است؛ بهبود در اتصالات لوله‌ای نیز هر اتصال
خاص تحت یک مدل بارگذاری، طیف خاصی از این عوامل
مؤثر را در بر می‌گیرد. به طوری که برای هر اتصال تحت یک
بارگذاری مشخص باید به دنیای یک مکانیزم منحصربه‌فرد
برای رشد ترک بود (شیب راه حلقه‌ای که برای بدست آوردن

استقلال، سال ۲۶، شماره ۲، اسفند ۱۳۸۶ (پژوهش‌های روشهای عضدی در مهندسی)
شکل ۲- تغییرات تنش حول مقطع اتصال لوله‌ای T

شکل ۳- تغییرات تنش در طول عضو میله‌ای به اتصال لوله‌ای

مقطع اتصال، می‌توان به مدل‌های مونالوو و مایرز (۳) نیز اشاره کرد.

۳-۲- افزایش تنش ناشی از هندسه اتصال

علت دیگر تفاوت حل ورق تحت با اتصال لوله‌ای افزایش
تشن در طول اینان می‌توان به اتصالات است. این افزایش همان
طور که در شکل (۳) نشان داده شده است، اول به دلیل هندسه
اتصال و دوم به دلیل تأثیر هندسه جوش است (۱۰). این
(SCF) با توسعه روابط پارامتری برای محاسبه ضریب تمرکز تنش
است. شکل (۲) تغییرات تنش را حول مقطع یک اتصال Y
تحت سه مدلکاری نشان می‌دهد.

با پروگ زدن ترک دور سر آن از محدوده‌های تنش حاد به
نواحی پا تنش کمتر در اتصال حرکت می‌کند و در نتیجه ترمک
در نواحی دور سر، تنش کمتری را تحمل می‌کند و سرعت
رشد آن در طول کمتر می‌شود که باعث کم شدن سرعت رشد
در عملی نیز می‌شود؛ البته تأثیر این مورد از تأثیر تغییر مسیر
بار بسیار کمتر است [۱۰]. از مدل‌های معرفي شده برای اصلاح
روش نیومن- راگو برای در نظر گرفتن تغییر تنش حول

استقلال، سال ۱۳۸۶، شماره ۲، استادان: روش‌های عدیدی در مهندسی)
شکل 3 - تأثیر جوش در تغییرات نش در عمق جداره عضو اصلی

\[K = [M_k Y_m SCF(1 - DOB) + M_k Y_p SCF DOB] \sigma_{\text{nom}} \sqrt{\pi a} \]

(5)

در اتصالات تحت شرایط بارگذاری مختلف، معادله (5) برای ترک کردن اثر هندسه اتصال به صورت زیر اصلاح شده است:

\[K = [Y_m \text{SCF}(1 - DOB) + Y_p \text{SCF DOB}] \sigma_{\text{nom}} \sqrt{\pi a} \]

(6)

شکل 5 - تغییرات نش در عمق جداره اتصال T

5-3- دخالت مدهای دوم و سوم بازده‌گی ترک

در ورق تخت، ترک ضمن رشد، نه مد اول بازده‌گی را تجربه می‌کنند. در حالی که در اتصال لوله‌ای ممکن است ترک تحت اثر مدهای دوم و سوم نیز قرار گیرد، در این صورت ترک عمود بر مقطع عرضی دیواره ترک به لنزی از بین کافی نخواهد بود. ابتدا مشاهدات آزمایش‌گاهی حاکی از آن است که در بیشتر اتصالات لوله‌ای به علت بالا بودن تنش خمیشی مابین در رشد ترک همانند مابین اول اتصال [9] همچنین احتمال تراکم دردشت و جهت گیری آن در زیر پنجه جوش به سمت عضو فرعی، تأثیر مد اول را بسیار بالا

4-2- تأثیر جوش در افزایش نش

وجود جوش نیز به طور مناسب باعث افزایش نسبتاً زیاد نش در طول و ضخامت المان می‌شود که این تأثیر در ترک‌های با عمق کمتر از 20 درصد عمق کل جداره، شدیدتر است [10]. شکل 5-3 در آنها توزیع نش در عمق جداره اتصال T شکل مشابه اتصالات لوله‌ای است، شکل (5). برای رفع این ضعف روش‌های حل اتصال T شکل توسه داده شده‌اند که در آنها ضریب برگشت‌گیری جوش (Mk) محاسبه شده است و به صورت زیر برای محاسبه ضربین شدت نش به کار می‌رود:

(1386) بی‌پام‌نامه: روش‌های عدیدی در مهندسی

استقلال، سال 36، شماره 3، اسفند 1386
شکل 6- مقطع ترك نيمه بيضوي در روح تحت B اتصال T شکل

می‌بادد [1]: اما احتمال دخالت مدهای دوم و سوم به خصوص در اتصالات پیچیده و زمانی که ترك از یک محدوده وارد محدوده دیگر مانند سخت کننده حلقوی می‌شود، قابل توجه خواهد بود (9).

3- رشد ترك تا انتهای ضخامت اتصال

در اتصالات لوله‌ای به دلیل قابلیت بالای اتصال در تحمیل ترك، امکان بررسی فرآیند رشد تا رسیدن ترك به وجه دیگر جداره عضو داخلی وجود دارد؛ اما در وروشچای تحت معمول آن امر به غیر از وروشچای بسیار عریض ممکن نیست و ورق قبل از رسیدن کامل ترك به وجه دیگر دچار شکست می‌شود. به همین دلیل حلاتی مرتبط بر حل ورق تحت معمول B را می‌توان به صورت زیر می‌توان بیان کرد:

1- تأثیر بیشتر زیادی رشد ترك از هندسه جوش در 20% اولیه ضخامت به دلیل وجود تنش تنش‌های ناشی از جوش در لبه خارجی ضخامت جداره عضو اصلی.

2- عدم وجود پدیده تغییر مسیر بار در ترک‌های سطحی به دلیل اینکه وجود ترك در این ابعاد، سخت‌تر اتصال و در نتیجه توزیع تنش در آن را تحت تأثیر محوری قرار نمی‌دهد.

3- عدم تأثیر محسوس تاکنون تنش حول ترك به دلیل کوچک بودن داده پریک در مقیاسی که کل اتصال به دلیل ترك به محدوده‌های به تنش خیلی کمتر از تنش نقطه خالی می‌باشد.

4- روشهای حل اتصال T شکل و ضرب بزرگ‌مانی (Mk)

جوش عموماً اساس روشهای محاسبه Mk تهیه مدارهای زیر

بی‌پایهای ترک نیمه به‌پایوی در پنجه

برای با نسبت Y جوش و محاسبه ضرب Y در آنهاست. Mk

بر اساس Y در اتصال T شکل به Y در ورق تحت شرط پیمان

ورق پایه حاوی ترك به‌شکل پیمان ترک است. شکل (6).

استقبال سال 1386، شماره 26، اسفند 1386 (ویژنامه: روشهای عضوی در مهندسی)
شکل ۷- مراحل محاسبه ضریب شدت نش با استفاده از حل T

۵- معرفی داده‌های استفاده شده برای آموزش و آزمون شیکه
دسته داده‌های انتخاب شده برای تخمین TOSOST TOSOST MK بوسیله [10] که برای استخراج معادلات MK به‌کار می‌رود، مقادیر پایین نسبتاً کمی از متغیرهای ورودی را شامل می‌شود. پس از انتخاب TOSOST TOSOST شکل و TOSOST MK هر دو موجود در آن در شکل (۸) نشان داده شده است. در این شکل، میانگین و نرمال یک عرض گره افقی، ۰ زاویه جوش و ۴ تغییرات نهایی جوش برای جوشهای سنتی‌تر شده است.

از لیست TOSOST TOSOST MK در پایه‌ای محسوب TOSOST TOSOST L و a/c TOSOST L و a/c TOSOST MK در نظر گرفته است. برای انتخاب میانگین TOSOST L و a/c TOSOST MK نسبت ۵/۰، ۰/۵، ۰/۵، ۰/۵، ۰/۵، ۰/۵، ۰/۵، ۰/۵ با انتخاب شده است که بیشتر میانگین و نرمال را در عمل بافت می‌شود. پیش‌بینی می‌گردد TOSOST L و a/c TOSOST MK با توجه به توصیه‌های استاندارد ۵۰ و ۵۰ TOSOST MK لیست TOSOST L و a/c TOSOST MK جوش و TOSOST L و a/c TOSOST MK جوش همگونی حاصل از سنتی‌گزی TOSOST MK با عملکرد دقت و کاربردی گره‌های جوش در انتخاب TOSOST MK با رای اکثریت a/c TOSOST MK که شکل (۱۰) نشان می‌دهد.

شکل ۸- پارامترهای هندسی ترک و جوش در انتخاب T

بنابراین، سطح نش و شیکه [۲۲] استفاده از روش محاسبه برای TOSOST MK با عمق کمتر از ۲۰ \% ضخامت جداره عضو اصلی به عنوان بهترین گزینه برخوردار است. در واقع نش را در حالت که برای تمام انتقالات و تحت همه پارامترها، قابل استفاده است، روش حل انتقالات TOSOST MK در محدوده ۰/۲/۰ است.

در شکل (۸) مراحل محاسبه سرعت رشد ترک در انتقالات لوله‌ای با استفاده از حل TOSOST TOSOST ۷ نشان داده شده است.

Bell می‌تواند از روی [۱۳] برای انتقالات TOSOST MK محاسبه کمک‌ارزی انتقالات TOSOST TOSOST ۷ نشان داده شده است. یک جدول پایه‌ای TOSOST MK ساختار بهترین PD۶۴۹۳ جدول‌های پایه‌ای TOSOST MK برای انتقالات TOSOST MK محاسبه است که حاصل مدل‌سازی و حل گسترده مدل‌های محدود انتقالات TOSOST MK شکل برای حالت قدیمی‌ترین هندسه ترک و جوش و به‌دست آوردن معادلات برای محاسبه TOSOST MK شکل برای حالت قدیمی‌ترین هندسه ترک و جوش نقاط ترک و تغییرات نهایی جوش و خم مشابه است. این معادلات در دو حاله بهتر جوش ترک و پایه جوش هموار حاصل از سنتی‌گزی TOSOST MK با عملکرد دقت و کاربردی گره‌های جوش در انتخاب TOSOST MK با رای اکثریت a/c TOSOST MK که شکل (۱۰) نشان می‌دهد.

استقلال، سال ۲۶، شماره ۲، اسفند ۱۳۸۶ (پژوهشگر: روشهای عددی در مهندسی)
4- روند حل به کمک شبکه‌های عصبی

با توجه به طالبی بیان شده در قسمت‌های قبلی، در این فصل مسئله آموزش شبکه‌های عصبی به‌منظور درک تک‌های L/T (مشخصات کرک) و 0 و a/t (مشخصات کرک) با دانسته‌های مقادیر (مدل‌های منفی، دخمه‌ها) و جوش و ضریب بزرگ‌نمایی جوش را پیش‌بینی کنیم. این بیان در این مقادیر Y در این حالت می‌تواند از روی داده‌های حاصل از سرعت تشدید واقع و برخی حالت سازه، دامنه نوسان نش و ناتمامی‌های پیشبرد، سرعت رشد تک در محصوله 2/3 قابل محسوب کردن بود.

شبکه استخراج به‌دست آمده و سنگین‌سازی آن بر اساس آماری و خط (MLP) با تابع محرک لگاریتمی زیگموندی برای نمای نرم‌افزاری مناسب و خاصی است که از الگوریتم‌های یادگیری بی‌ناتریکس استفاده می‌شود. حاصل این نشان خواهد بود که اعتبار شده است. در مورد معمایی شبکه این نتیجه برآورد که یک شبکه باید به توجه به داده‌های موجود، هر چهار ضریب بزرگ‌نمایی جوش و پیش‌بینی کردن برای نورونت در نظر را خروجی ساخته شود. پس از ساخت این شبکه و طی مراحل آموزش و آزمون در مورد آن، ملاحظه شد که جواب‌های به دست آمده در حد مطلوب نبودند، به این معنی که یک شبکه مناسب برای هر چهار ضریب باید معمایی و یک تعداد جریان یادگیری واحد به وضعیت بهینه بررسی شود. این امر مؤید این موضوع است که کیفیت جواب داده‌های بزرگ‌نمایی جوش در حالات مختلف تک مصرفی (تک تک، تک تک) نشان و نش نشان خشایی (با یکدیگر متقابل است) در توجه به پیش‌بینی هر یک از ضرایب یک شبکه می‌سازد. این شبکه این است که هر یک نشان دهنده نبوده و در نهایت یک نمودار در نظر خروجی دارد. نشان و نش در محاسبه شبکه‌های نهایی جواب در امکان بایان حاصل تعداد سیگنال‌های مختلف آموزش برای آن، مطلوب فواید را تصدیق می‌کند.

از مجموع 2749 کوی موجود در سوم (375 آموزش، و 275 آموزش و 1830 کوی) برای آموزش و یک خود (169 آموزش) برای آموزش است. انتخاب داده‌ها با توییزیک‌کننده در سمت داده‌ها انجام شده است و داده‌های حاوی پارامترهای بیشتر و کمی به دست آموزش جوش در نظر گرفته شده است. راویه 1360 درجه در انتشارات T شکل کاربرد تندارد و این نتایج حالت که تک مصرفی تقسیم و تکمیل انتشارات لوله‌ای می‌گردد. در انتشارات لوله‌ای، زاویه و مسقف‌های محصول 1، یک زاویه معنی‌دار است. در مقایسه کم زاویه جوش تحقیق زده است. در سری مدل‌سازی، از نمونه‌هایی با ضرایب مختلف استفاده کرده است، تا بر خلاف حل‌های ورق تحت حاصل در عرض ورق مستقل سازه، تحلیل‌ها برای هر حاوی تک‌کیف پیکارین با وجود تغییرات

آماری و ضریب یکپارچه برای هم می‌نموند. به ترتیب میزان 2.10 کن/رنم و 3.4 بوده است. یک ادوار یک فرح برای حل، ABAQUS، محاسبه ضریب کلمات تکن بروش انتگرال چی دستور گرفته است. مقدار مدول پانژ و ضریب پوآسن برای هم می‌نموند. به ترتیب برای T-butt پیکارین 2.10 کن/رنم و 3.4 بوده است. این ادوار از انتشاراتی T-butt به به همین‌هم‌ندی و در تکن بیناگر ضریب بزرگ‌نمایی جوش در هر یک از چهار حالت بالاست که منجر به محاسبه ضرایب زیر می‌شود:

- ضریب بزرگ‌نمایی جوش در ابتکرین قطع تک تحتMK_t غشایی

- ضریب بزرگ‌نمایی جوش در ابتکرین قطع تک تحتMK_g

- ضریب B Giant MK_g

- ضریب B Giant MK_t

- که برای حالت جوش به پنجه نیز منجر شکل محاسبه به‌دست می‌آید، داده‌های مربوط به حالت جوش به پنجه نیز برای عمق تکمیل 0334 و 2 برای حل شبکه‌های عصبی انتخاب شده است. علت این انتخاب کارامدی بیشتر حاصل T در این محصول و وجود نواصعی که به آنها اشاره شده، برای تعداده 0/323. است.
جدول ۲- شکلاه MLP برای پیش‌بینی M_k

<table>
<thead>
<tr>
<th>تعداد انواع نهان</th>
<th>تعداد نرتنهای لایه نهان اول</th>
<th>تعداد نرتنهای لایه نهان دوم</th>
<th>تعداد نرتنهای لایه نهان سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳</td>
<td>۱۲ نرون</td>
<td>۷ نرون</td>
<td>۷ نرون</td>
</tr>
<tr>
<td>Max</td>
<td>0.39999</td>
<td>0.99999</td>
<td>0.99999</td>
</tr>
<tr>
<td>Min</td>
<td>-0.39999</td>
<td>-0.99999</td>
<td>-0.99999</td>
</tr>
<tr>
<td>RMS</td>
<td>0.39999</td>
<td>0.99999</td>
<td>0.99999</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M_k</th>
<th>M_k</th>
<th>M_k</th>
</tr>
</thead>
</table>

جدول ۳- شکلاه MLP برای پیش‌بینی M_k

<table>
<thead>
<tr>
<th>تعداد انواع نهان</th>
<th>تعداد نرتنهای لایه نهان اول</th>
<th>تعداد نرتنهای لایه نهان دوم</th>
<th>تعداد نرتنهای لایه نهان سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴</td>
<td>۱۶ نرون</td>
<td>۱۵ نرون</td>
<td>۱۵ نرون</td>
</tr>
<tr>
<td>Max</td>
<td>0.39999</td>
<td>0.99999</td>
<td>0.99999</td>
</tr>
<tr>
<td>Min</td>
<td>-0.39999</td>
<td>-0.99999</td>
<td>-0.99999</td>
</tr>
<tr>
<td>RMS</td>
<td>0.39999</td>
<td>0.99999</td>
<td>0.99999</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قرار گرفتند. انتخاب الگوهای آموزشی و آزمون برای هر چهار ضریب به صورت به‌کارگیری شدن نهایی انجام شده است. برای ساختمان M_k و M_k از استفاده در برنامه MATLAB استفاده شده است. مشخصات M_k و M_k از مقداری در شکلاه M_k و M_k به‌کاربرد در جدول (۱) (۱) دارد این است. M_k و M_k

با دور لایه نهان برای محاسبه M_k و M_k و شبکه‌هایی با سه لایه M_k و M_k انتخاب شده‌اند در شکلاه (۹) (۱۶) مقادیر واقعی در پایان مقادیری به شبکه‌ها پیش‌بینی کرده‌اند و خط برازش داده شده برای این مقادیر نمایش داده شده است. استقلال سال ۲۶ شماره ۲ اسفند ۱۳۸۶ (وزن‌نامه: روش‌های عدیدی در مهندسی)
شکل 9- مقادیر پیش‌بینی شده توسط شیوه MLP بی‌هبیه در برای مقادیر حل دقیق در دسته داده‌های آموزش

شکل 10- مقادیر پیش‌بینی شده توسط شیوه MLP بی‌هبیه در برای مقادیر حل دقیق در دسته داده‌های آموزش

شکل 11- مقادیر پیش‌بینی شده توسط شیوه MLP بی‌هبیه در برای مقادیر حل دقیق در دسته داده‌های آموزش

شکل 12- مقادیر پیش‌بینی شده توسط شیوه MLP بی‌هبیه در برای مقادیر حل دقیق در دسته داده‌های آموزش

\(y = 0.9997x + 0.0005 \quad R^2 = 0.9997 \)

\(y = 0.9997x - 0.0002 \quad R^2 = 0.9997 \)

\(y = 0.9986x + 0.0034 \quad R^2 = 0.9997 \)

\(y = 1.0035x - 0.0118 \quad R^2 = 0.9989 \)
شكل 14- مقادیر پیش‌بینی شده توسط شبکه MLP به هنگام بررای مقادیر حل دقیق در دسته داده‌های آموزش

یک‌نقطه‌ی اجرایی ۰.۹۹۹۵ به هنگام بررای مقادیر حل دقیق در دسته داده‌های آموزش

۰.۹۹۹۹

۰.۹۹۸۶

۰.۹۹۷۹

R² = ۰.۹۹۹۹

R² = ۰.۹۹۹۹

R² = ۰.۹۹۹۱

شکل 18- مقایسه فرکانس خطأ در پیش‌بینی توسط شبکه Lee-Bowness و روش MLP در داده‌های آموزش و آزمون

شکل 17- مقایسه فرکانس خطأ در پیش‌بینی توسط شبکه Lee-Bowness و روش MLP در داده‌های آموزش و آزمون

شکل 20- مقایسه فرکانس خطأ در پیش‌بینی توسط شبکه Lee-Bowness و روش MLP در داده‌های آموزش و آزمون

شکل 19- مقایسه فرکانس خطأ در پیش‌بینی توسط شبکه Lee-Bowness و روش MLP در داده‌های آموزش و آزمون

با دقت در این شکل ملاحظه می‌شود که عرض از مبدأ آن تنزدیک به صفر و ضرب زاویه این خط و نیز مجزا عمل ضرب همیشه گرمی در حد بسیار مطلوبی به یک نزدیک است که در این مقدارهای داده‌های نواحی و قابلیت بالای شبکه در پیش‌بینی ضراپ مورد نظر است. این قابلیت به خصوص برای داده‌های آزمون به عنوان تیم‌هایهای از فضای حل شبکه ضمن آموزش اطلاعی از آنها ندارد، بیشتر به چشم می‌خورد.

7- مقایسه نتایج با معادلات بونس و لی

برای حصول اطمینان از کارایی شبکه، مقادیر فرکانس خطای از داده‌های آموزش و آزمون شبکه و همان داده‌ها از معادلات لی-بونس و لی محاسبه و در شکل‌های (20) نشان داده شده است. همان طور که در این نمودارها نشان داده شده است، شبکه‌ها حتی برای داده‌های آزمون که اطلاعی از آنها نداشتند، جواب‌های بهتری از روش لی بی‌دست داده‌های است. با وجود آنکه لی
از همه داده‌ها برای بدست آوردن معادلات استفاده کرده است.

8- نتیجه‌گیری

با توجه به انعکاس‌داری و توالتی بالای شیبه‌های عصبی

1. jacket type
2. semi elliptical surface cracks
3. chord
4. linear elastic fracture mechanics
5. Paris
6. stress intensity factor
7. weld magnification factor
8. membrane
9. bending
10. load shedding
11. stress concentration factor
12. grinding
13. local dihedral angle
14. multi layer perceptron

مراجع

استلال، سال 26، شماره 2، اسفند 1386 (ویژنامه: روش‌های عدید در مهندسی)